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Abstract. In classical statistics, research typically relies on precise data to estimate the population mean,

especially when auxiliary information is available. However, in the presence of outliers, conventional statistical

approaches that depend on accurate data and auxiliary information encounter challenges. The primary objective

is to attain the most accurate population mean estimates while minimizing the mean square error. Neutrosophic

statistics, a more attractive framework than classical statistics, deals with data characterized by imprecision and

uncertainty. In this current article, we adapt Särndal’s strategy and introduce neutrosophic mean estimators,

applying them to meteorological data, specifically stratified dew point data. In these proposed estimators, the

incorporation of auxiliary information and the application of robust techniques address issues that arise due to

outliers and imprecise observations. These factors can otherwise undermine the effectiveness of neutrosophic

estimation methods. The article also suggests combining auxiliary information with extremely indeterminate

neutrosophic observations, utilizing robust regression methods (Huber-M, Hampel-M, and Tukey-M), as well as

the quantile regression technique. These approaches enhance the neutrosophic mean estimation process. The

outcomes, which include the utilization of dew point data, showcase the superior performance of the proposed

estimators compared to adapted estimators in a neutrosophic context. Ultimately, this study provides valuable

insights by taking an initial step in defining and utilizing the concept of neutrosophic indeterminate extreme

observations.

Keywords: Neutrosophic Mean estimation, Särndal Approach, Extreme Values, Neutrosophic Robust Regres-

sion, Neutrosophic Robust Quantile Regression.
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1. Introduction

The term ‘dew point’ holds significant meaning in the field of meteorology, as it represents

the crucial temperature at which moisture begins to condense, leading to the formation of

visible dew, mist, or clouds. While traditionally viewed as a single value, the concept of dew

point gains a fascinating complexity when examined through the lens of neutrosophic logic—a

theory that accounts for uncertainty and indeterminacy. Traditionally, the dew point is con-

sidered the temperature at which the air can no longer absorb moisture, leading to visible

condensation. However, neutrosophic logic challenges this binary perspective. In neutrosophy,

the dew point is seen as a triadic truth, consisting of the region of true saturation (where con-

densation is inevitable), the region of indeterminate saturation (where the distinction between

saturation and unsaturation is unclear), and the region of false saturation (indicating a lack of

saturation). This trinity captures the intricate interplay between temperature, moisture, and

atmospheric dynamics.

In the neutrosophic context, the relationship between the dew point and moisture undergoes

a transformative shift. Humidity, as a measure of atmospheric moisture, transcends a simple

binary concept. Neutrosophic humidity encompasses the presence of moisture, a hazy realm of

uncertainty where the state of moisture’s existence remains unclear, as well as the absence of

moisture. This aligns with the complex nature of humidity levels, where distinguishing between

moist and dry conditions isn’t always straightforward. Neutrosophic dew point introduces an

element of uncertainty into predictions. High dew point often indicate favorable conditions

for precipitation, while low dew point typically signal drier circumstances. Neutrosophic logic

incorporates this uncertainty. High dew point not only suggest the possibility of precipitation

but also acknowledge the inherent uncertainty in meteorological forecasts. Forecasts become

increasingly unpredictable when the value indeterminate comes into play. Even low dew point,

commonly viewed as clear indicators of dryness, find representation within the neutrosophic

spectrum. This underscores the idea that outcomes may not always align with expectations

based on dryness.

Viewing human comfort through the neutrosophic lens adds a layer of depth, especially

in relation to humidity. High humidity typically leads to discomfort because evaporative

cooling becomes less effective. Neutrosophy accommodates varying degrees of ambiguity in this

context. The indeterminate element acknowledges that while high humidity often coincides

with discomfort as a true condition, comfort isn’t solely determined by humidity levels. Similar

to the false aspect, which represents lower humidity, it doesn’t guarantee everyone’s comfort.

Amidst fluctuating humidity, neutrosophic reflection allows us to explore the intricate range

of human sensations. The dew point serves as the conductor of the neutrosophic atmosphere,

illustrating atmospheric events. Within this realm of uncertainty, weather patterns are shaped
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by warm currents and colder masses. In this symphony, the neutrosophic triad is expressed.

The true value signifies air saturation at specific times, while the indeterminate section records

transitions from one definitive condition to another. The false aspect pertains to situations

where saturation is still absent. This triadic dance mirrors the complex choreography of

atmospheric components.

In statistical inference, estimators that incorporate auxiliary data have proven to be essen-

tial. Researchers have developed various estimation approaches, including ratio estimation

methods, to compute population metrics like the mean. These techniques have received ex-

tensive research attention and have shown promise in reducing sampling error, particularly

when a strong connection exists between the study variable and auxiliary variable. By con-

sidering both the auxiliary variable and the primary research variable, these estimators can

enhance precision and potentially reduce the required sample size. Cochran [9] emphasized

the advantages of ratio estimation techniques in obtaining more accurate estimates.

Fuzzy logic has emerged as an effective tool for data analysis, particularly when dealing with

data that is fuzzy, ambiguous, uncertain, or imprecise— in contrast to classical statistics, which

assumes precise data. Such data can be effectively handled and processed using fuzzy statistics.

However, fuzzy statistics do not explicitly consider the level of data uncertainty. Neutrosophic

logic, an extension of fuzzy logic, offers a more comprehensive approach by incorporating both

the determinate and indeterminate aspects of observations. Smarandache [30] highlights that

neutrosophic logic enables the measurement and interpretation of data with hazy or unclear

observations. Fuzzy logic techniques, involving complex fuzzy sets and their broadening to

complex neutrosophic sets, have discovered practical applications in decision-making contexts.

Researchers have also investigated the use of different kinds of auxiliary information to improve

the performance of ratio-type estimators, including incorporating the coefficient of variation,

as noted by Robson [17] applications.

The growing demand for statistical approaches capable of handling and analyzing data in

a more robust and flexible manner is evident in the application of neutrosophic numbers in

decision-making scenarios. Neutrosophic statistics open up new avenues for research, enabling

a deeper understanding and analysis of data with varying degrees of indeterminacy. Motivated

by these insights, we propose Särndal-type neutrosophic robust mean estimators that utilize

extreme indeterminate observations. We assess the performance of these estimators through

an application to a dew point data set.

The article is organized into several sections to provide a structured exploration of the

proposed concepts and methodologies. In Section 2, we delve into the notion of Extreme

Observations and robust mean estimation. Section 3 delves into the realm of Neutrosophic
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Statistics and Adapted Estimators. Section 4 introduces our proposal for Neutrosophic Esti-

mators, encompassing Neutrosophic Ratio Estimators, Neutrosophic Product Estimators (both

in combined and separate versions), and the Särndal method. Further, Section 4.1 presents our

proposed Neutrosophic OLS Regression and its Proposed Estimators, while Section 4.2 covers

the intricacies of the proposed Neutrosophic Robust Regression and its Proposed Estimators.

Subsection 4.3 provides insights into Neutrosophic Robust Quantile Regression along with its

Proposed Estimators. Sections 5 and 6 are dedicated to showcasing practical applications and

discussing the outcomes of our proposed methodologies. Finally, in Section 7, we draw the

article to a close by outlining the potential utility of neutrosophic estimators in addressing the

complexities and ambiguities inherent in real-world data analysis.

2. Extreme Observations and Neutrosophic Robust Estimation of Mean

The characteristics of neutrosophic observations high, low include ambiguity, indeterminacy,

and paraconsistency. As a result, it is impossible to determine with certainty whether a

neutrosophic observation is high, low, or neither. When there is a lot of uncertainty or when

the data is insufficient, this kind of observation can be helpful. A neutrosophic observation of

high and low, for instance, may be used to characterise the stock market, which is renowned

for being erratic. Additionally, it might be used to the possibility of a natural disaster like a

tsunami or hurricane. A neutrosophic number, which is a number with three elements including

truth, indeterminacy, and falsehood, may be used to describe neutrosophic observations such

as high and low. The degree to which an observation is true is represented by its truth

component, while its degree of uncertainty is represented by its indeterminacy component and

its degree of falsehood by its falsity component. The observation “the stock market will go up

tomorrow” might be represented by a neutrosophic number such as (0.6, 0.2, 0.2). In other

words, there is a 60% chance the stock market will rise tomorrow, a 20% chance it won’t rise

or fall, and a 20% chance it will fall.

The inclusion of unusual observations can significantly impact mean estimators’ outcomes,

which is not uncommon in sample survey data. These estimators, designed to calculate a vari-

able’s average value, are particularly sensitive to extremely large or small values when present

in the sample. The presence of extreme values can introduce bias into estimations, leading

researchers to often consider excluding them from the dataset entirely. However, an alterna-

tive approach is to retain known extreme values in the data and use them as supplementary

information to enhance estimation accuracy. By incorporating these high values as additional

data points, estimators can leverage a broader range of information, potentially leading to

more accurate and reliable results. This approach underscores the importance of considering

auxiliary variables to improve estimation precision alongside the utilization of extreme values.
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When available, auxiliary variables provide additional data that can enhance the accuracy of

the estimation process. It becomes clear that these estimators are often based on single-point

estimate when looking for estimators that make use of the maximum and lowest values of X.

They concentrate to include the extreme values of the variable to offer insights into the data

distribution or to draw conclusions about the characteristics of the population. Such as Ali et

al. [1], Zaman et al. [41] [43], Bulut and Zaman [7] have done numerious contributions in this

field.

Reserchers such as Tahir et al. [31], Kumar et al. [14], Singh et al. [29], Singh et al. [27],

Yadav and Smarandache [33], Alomair and Shahzad [4], Yadav and Prasad ( [34], [35]), Kumari

et al. [15], Singh and Kumari [28], Alqudah et al. [3] and Ullah et al. [32] present a variety of

different neutrosophic mean estimators and discuss their applications.

It is important to note that there aren’t many research especially looking at how to use extreme

observations in neutrosophic mean estimators. The current article focuses on this particular

point.

3. Neutrosophic Statistics and Adapted Estimators

Neutrosophic statistical approaches have grown in popularity for analysing datasets with

variable degrees of uncertainty, often known as neutrosophic data. This statistical technique

recognises the difficulty of precisely establishing sample sizes, as noted in Smarandache’s

study [30]. Smarandache’s [30] work has proved the use of neutrosophic statistics in inves-

tigating systems with inherent uncertainty and ambiguity. In addition to more general uses,

neutrosophic statistics are useful in the discipline of rock engineering. Researchers have utilised

neuosophic numbers to investigate issues like the scale effect and the anisotropy of joint rough-

ness coefficients. According to Chen et al. [8], these efforts have resulted in the development

of effective methods for addressing information loss and creating well-fitting functions.

A fresh method for analysing neutrosophic data has also been made available through neu-

trosophic analysis of variance. This method broadens the scope of data analysis in the context

of ambiguous or missing data by allowing researchers to draw important conclusions from

datasets with varied degrees of ambiguity. Neutosophic interval value statistics is a particular

method within Neutosophic Statistics that expresses data using Neutosophic Intervals in the

context of sample surveys. A generalisation of conventional intervals, neutrosophic intervals

allow for indeterminacy and partial truth but lack sharp boundary definitions. To handle

such ambiguous interval data, neutrosophic interval value statistics expands on conventional

statistical techniques.

To demonstrate neutrosophic interval value statistics in a representative survey, let’s look at

the following example:

Vinay Kumar Yadav, Deepak Majhi, Alia A. Alkhathami and Shakti Prasad, Neutrosophic
Mean Estimators Using Extreme Indeterminate Observations in Sample Surveys

Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                90



Let’s say you were to survey a population to find out how tall each person was. The con-

ventional method would entail gathering exact height measurements, such as 165 cm, 172 cm,

and so on. The data that is currently accessible, nevertheless, could occasionally be ambigu-

ous or inaccurate. For instance, during the survey, individuals may give estimations of their

height that are general or ambiguous, such as “around 170 cm” or “between 160 cm and 180

cm.” These replies muddy the data and leave it up to interpretation. These ambiguous height

measurements would be represented by neutrosophic intervals in neutrosophic interval value

statistics. For instance, the response “around 170 cm” may be represented as a neutrosophic

interval [165 cm, 175 cm, 0.6], where the bounds of the interval denote the range of feasible

heights and the truth-membership value 0.6 denotes the degree of trust that the height falls

within that range. The response “between 160 cm and 180 cm” might be expressed similarly

as a neutrosophic interval [155 cm, 185 cm, 0.8], suggesting a broader range with a greater

level of conviction. After gathering a collection of neutrosophic interval data, you may analyse

the data using statistical methods designed specifically for neutrosophic statistics. This might

entail doing hypothesis testing using neutrosophic intervals or computing other statistical mea-

sures, such as the mean, median, mode, and variance. By using neutrosophic interval value

statistics, it is possible to include ambiguous and imprecise data in the analysis and gain a

deeper knowledge of the survey data.

Consider a population of the size N is divided into L mutually exclusive strata of sizes

Nh(h = 1, 2, 3, ..., L) such that
∑L

h=1Nh = N . We consider a neutrosophic variable, de-

noted by Y(δN) ϵ [Y(δN)L , Y(δN)U ], on a finite population U(δN) consisting of N identifiable

units. To estimate the unknown mean of neutosophic study variable Y(δN), denoted by

Ȳ(δN) ϵ [Ȳ(δN)L , Ȳ(δN)U ], a neutrosophic auxiliary variable X(δN) ϵ [X(δN)L , X(δN)U ] is used.

Note that additional information may be available for the entire population through knowledge

of X(δN) or X̄(δN) ϵ [X̄(δN)L , X̄(δN)U ], or on a sample from U(δN) in the absence of population

information related to study variable.

In stratified random sampling Yhi(δN)
and Xhi(δN)

be the values of the neutrosophic study

variable and the neutrosophic auxiliary variable at ith unit (i = 1, 2, 3, ..., Nh) in the hth

(h = 1, 2, 3, ..., L) stratum respectively. Let a sample of size nh (h = 1, 2, 3, ..., L) is drawn

from each stratum independently by simple random sampling without replacement (SRSWOR)

such that
∑L

h=1 nh = n where n is total number of units in a sample. Let yhi(δN)
and xhi(δN)

be the values of the neutrosophic study variable and the neutrosophic auxiliary variable of the

ith unit (i = 1, 2, 3, ..., Nh) in a sample.

Define:

Ȳ(δN) =

∑N
i=1 Yi(δN)

N , X̄(δN) =

∑N
i=1 Xi(δN)

N = Population means of the neutrosophic study and

the neutrosophic auxiliary variables respectively,
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Ȳh(δN)
=

∑N
i=1 Yhi(δN)

N , X̄h(δN)
=

∑N
i=1 Xhi(δN)

N = Population means of the neutrosophic study

and the neutrosophic auxiliary variables in the hth statum,

ȳh(δN)
=

∑N
i=1 yhi(δN)

N , x̄h(δN)
=

∑N
i=1 xhi(δN)

N = Sample means of the neutrosophic study and the

neutrosophic auxiliary variables in the hth statum,

S2
hx(δN)

= Neutrosophic auxiliary variable Population variance in the hth stratum,

S2
hy(δN)

= Neutrosophic Population study variable variance in the hth stratum,

Shyx(δN)
= Neutrosophic Population covariance of Y(δN) and X(δN) in the hth stratum,

βh(δN)
= Neutrosophic Population regression coefficient for the hth stratum,

βc(δN)
= Neutrosophic Population regression coefficient across the strata,

Wh = Neutrosophic Stratum weight in the hth stratum,

fh = Neutrosophic Sampling fraction in the hth stratum,

R(δN) = Neutrosophic Population ratio,

Rh(δN)
= Neutrosophic Population ratio in the hth stratum.

when the study variable’s and the auxiliary variables’ regression line does not pass through

the origin, it indicates that the regression model has an intercept term. The intercept term

causes a change in the regression line, expressing the intrinsic link between the study variable

and the auxiliary variables that goes beyond a simple proportionate relationship. In these

circumstances, the regression estimate outperforms the ratio and product estimators.

Hansen and Hurwitz [12] suggested two distinct strategies for building ratio estimators in

stratified random sampling. Stratified random sampling entails segmenting the population

into various groups or strata and then sampling from each stratum separately. Ratio esti-

mators estimate population parameters by calculating the ratio of auxiliary variables to the

study variable within each stratum. The methods suggested in have introduced innovative

methodologies or adjustments to current ratio estimating systems, therefore improving the

estimates’ accuracy.

In this paper, we consider the use of maximum and minimum values in neutrosophic statistics

using both combined and separate estimators. To deal with uncertainty and inconsistencies,

neutrosophic statistics mixes fuzzy logic, intuitionistic logic, and paraconsistent logic. We can

investigate the upper and lower boundaries of neutrosophic statistics by employing maximum

and minimum values.

The Neutrosopic mean per unit estimator in stratified random sampling are given by:

ȳst(δN)
=

L∑
h=1

Whȳh(δN)
(1)

V ar(ȳst(δN)
) =

L∑
h=1

W 2
hλhS

2
hy(δN)

(2)
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where λh = 1−fh
nh

Adapted Neutrosophic Combined Estimators

Neutrosophic Combined ratio estimators in stratified random sampling of a finite population

mean (Ȳ(δN)) are given as:

ˆ̄YRC0(δN)
=

ȳst(δN)

x̄st(δN)

X̄(δN) (3)

MSE( ˆ̄YRC0(δN)
) ∼=

L∑
h=1

W 2
hλh

(
S2
hy(δN)

+R2
(δN)S

2
hx(δN)

− 2R(δN)Shyx(δN)

)
(4)

Neutrosophic Combined product estimators in stratified random sampling of a finite population

mean (Ȳ(δN)) are given as:

ˆ̄YPC0(δN)
=

ȳst(δN)

X̄(δN)

x̄st(δN)
(5)

MSE( ˆ̄YPC0(δN)
) ∼=

L∑
h=1

W 2
hλh

(
S2
hy(δN)

+R2
(δN)S

2
hx(δN)

+ 2R(δN)Shyx(δN)

)
(6)

Neutrosophic Combined regression estimators in stratified random sampling of a finite popu-

lation mean (Ȳ(δN)) are given as:

ˆ̄YlrC0(δN)
= ȳst(δN)

+ bc(δN)

(
X̄(δN) − x̄st(δN)

)
(7)

where bc(δN)
is a neutrosophic combined sample regression coefficient.

MSE( ˆ̄YlrC0(δN)
) =

L∑
h=1

W 2
hλhS

2
hy(δN)

(
1− p2c

)
(8)

where pc =

∑L
h=1 W

2
hλhShyx(δN)√∑L

h=1 W
2
hλhS

2
hy(δN)

∑L
h=1 W

2
hλhS

2
hx(δN)

We can also write MSE( ˆ̄YlrC0(δN)
) expression as

MSE( ˆ̄YlrC0(δN)
) =

{ L∑
h=1

W 2
hλhS

2
hy(δN)

+ β2
c(δN)

L∑
h=1

W 2
hλhS

2
hx(δN)

− 2βc(δN)

L∑
h=1

W 2
hλhS

2
hyx(δN)

}
(9)

Where βc(δN)
=

∑L
h=1 W

2
hλhS

2
hyx(δN)∑L

h=1 W
2
hλhS

2
hx(δN)

Adapted Neutrosophic Separate Estimators

Neutrosophic Separate ratio estimators in stratified random sampling of a finite population

mean (Ȳ(δN)) are given as:

ˆ̄YRS0(δN)
=

L∑
h=1

WhȳhR(δN)
, where ȳhR(δN)

=
ȳh(δN)

x̄h(δN)

X̄h(δN)
(10)

MSE( ˆ̄YRS0(δN)
) ∼=

L∑
h=1

W 2
hλh

(
S2
hy(δN)

+R2
h(δN)

S2
hx(δN)

− 2Rh(δN)
Shyx(δN)

)
(11)
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Neutrosophic Separate product estimators in stratified random sampling of a finite population

mean (Ȳ(δN)) are given as:

ˆ̄YPS0(δN)
=

L∑
h=1

WhȳhP(δN)
, where ȳhP(δN)

=
ȳh(δN)

X̄h(δN)

x̄h(δN)
(12)

MSE( ˆ̄YPS0(δN)
) ∼=

L∑
h=1

W 2
hλh

(
S2
hy(δN)

+R2
h(δN)

S2
hx(δN)

+ 2Rh(δN)
Shyx(δN)

)
(13)

Neutrosophic Separate regression estimators in stratified random sampling of a finite popula-

tion mean (Ȳ(δN)) are given as:

ˆ̄YlrS0(δN)
=

L∑
h=1

Whȳhlr(δN)
(14)

where ȳhlr(δN)
= ȳh(δN)

+ bh(δN)
(X̄h(δN)

− x̄h(δN)
) and bh(δN)

=
Shyx(δN)

S2
hx(δN)

MSE( ˆ̄YlrS0(δN)
) =

L∑
h=1

W 2
hλhS

2
hy(δN)

(
1− p2h

)
(15)

where ph =
Shyx(δN)

Shy(δN)
Shx(δN)

We can also write MSE( ˆ̄YlrS0(δN)
) expression as

MSE( ˆ̄YlrS0(δN)
) =

L∑
h=1

W 2
hλh

[
S2
hy(δN)

+ β2
h(δN)

S2
hx(δN)

− 2βh(δN)
S2
hyx(δN)

]
(16)

Where βh(δN)
=

S2
hyx(δN)

S2
hx(δN)

4. Särndal approach and proposed neutrosophic estimators

In many cases, real databases contain instances of exceptionally big or tiny numbers. This

is also true in the context of neutrosophic statistics, which considers the existence of inde-

terminacy, ambiguity, and inconsistency in data. Hybrid seed production firms, for example,

produce new seed kinds and provide specified productivity ranges per acre that might help

farmers. These ranges enable the detection of maximum and lowest values within the col-

lection. Similarly, when calculating the average income of families, it is typically well-known

what the income of the richest individual (maximum) in a community is, but determining the

income of the lowest person (minimum) is simple. Furthermore, several surveys undertaken

at regular intervals give significant information on both the maximum and minimum values.

However, a problem in neutrosophic statistics is that the mean per unit estimate for the

mean of a finite population is very sensitive to extreme values. Accordingly, the estimator can

yield false findings if any of these unexpected values are chosen for the sample. Särndal [19]

provided an unbiased estimator to handle this issue precisely within the context of extreme
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observations in the population. The purpose of this estimate is to lessen the influence of the

extreme values seen in the dataset. Särndal’s method can be used to enhance the precision

and dependability of statistical analysis in neutrosophic statistics.

Let yhmax(δN)
(yhmin(δN)

) and xhmax(δN)
(xhmin(δN)

) be the neutrosophic study’s maximum

(minimum) and auxiliary variables’ respective maximum (minimum) values in stratum h. The

suggested estimate for finite population mean is (Ȳ(δN)) under neutrosophic stratified random

sampling are as follows:

ȳst(δN)
=

L∑
h=1

Whȳhc(δN)
(17)

ȳhc(δN)
=


ȳh(δN)

+ ch(δN)
if a sample from the hth stratum contains yhmin(δN)

but not yhmax(δN)
,

ȳh(δN)
− ch(δN)

if a sample from the hth stratum contains yhmax(δN)
but not yhmin(δN)

,

ȳh(δN)
in other cases,

(18)

where ȳhc(δN)
(h = 1, 2, 3, ..., L) are arbitrary constants.

The selection of values in a sample is based on the relationship between the neutrosophic

study variable Yh(δN)
and the neutrosophic auxiliary variable Xh(δN)

. When the relationship is

positive, it is predicted that a big value of Yh(δN)
will be picked for large values of Xh(δN)

and a

small value of Yh(δN)
for small values of Xh(δN)

. The definition of ratio estimators follows from

this. In contrast, when Yh(δN)
and Xh(δN)

have a negative relationship, a big value of Yh(δN)
is

anticipated for small values of Xh(δN)
and a small value of Yh(δN)

is anticipated for large values

of Xh(δN)
. Consequently, product estimators are defined. These estimators are based on the

assumption that the sample’s selected values will be consistent.

(1) : Neutrosophic Ratio Estimators

Neutrosophic Combined ratio estimators in stratified random sampling using extreme values

of data.

ˆ̄YRC1(δN)
=

ȳst.c11(δN)

x̄st.c21(δN)

X̄(δN) (19)

Neutrosophic Separate ratio estimators in stratified random sampling using extreme values of

data.

ˆ̄YRS1(δN)
=

L∑
h=1

Wh

ȳh.c11(δN)

x̄h.c21(δN)

X̄h(δN)
(20)

where; ȳst.c11(δN)
=

∑L
h=1Whȳh.c11(δN)

and x̄st.c21(δN)
=

∑L
h=1Whx̄h.c21(δN)

and

(ȳhc.11(δN)
, x̄hc.21(δN)

) =


∆R1 if a sample contains yhmin(δN)

but not yhmax(δN)
,

∆R2 if a sample contains yhmax(δN)
but not yhmin(δN)

,

∆R3 in other cases,

(21)

Vinay Kumar Yadav, Deepak Majhi, Alia A. Alkhathami and Shakti Prasad, Neutrosophic
Mean Estimators Using Extreme Indeterminate Observations in Sample Surveys

Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                95



where ∆R1 =
(
ȳh(δN)

+ c1h(δN)
, x̄h(δN)

+ c2h(δN)

)
, ∆R2 =

(
ȳh(δN)

− c1h(δN)
, x̄h(δN)

− c2h(δN)

)
,

∆R3 =
(
ȳh(δN)

, x̄h(δN)

)
, c1h(δN)

and c2h(δN)
(h = 1, 2, 3, ..., L) are arbitrary constant.

(2) : Neutrosophic Product Estimators

Neutrosophic combined product estimators in stratified random sampling using extreme values

of data.

ˆ̄YPC1(δN)
=

ȳst.c12(δN)

X̄(δN)

x̄st.c22(δN)
(22)

Neutrosophic Separate product estimators in stratified random sampling using extreme values

of data.

ˆ̄YPS1(δN)
=

L∑
h=1

Wh

ȳh.c12(δN)

X̄h(δN)

x̄h.c22(δN)
(23)

where; ȳst.c11(δN)
=

∑L
h=1Whȳh.c11(δN)

and x̄st.c21(δN)
=

∑L
h=1Whx̄h.c21(δN)

and

(ȳhc.12(δN)
, x̄hc.22(δN)

) =


∆P1 if a sample contains yhmin(δN)

but not yhmax(δN)
,

∆P2 if a sample contains yhmax(δN)
but not yhmin(δN)

,

∆P3 in other cases,

(24)

where ∆P1 =
(
ȳh(δN)

+ c1h(δN)
, x̄h(δN)

− c2h(δN)

)
, ∆P2 =

(
ȳh(δN)

− c1h(δN)
, x̄h(δN)

+ c2h(δN)

)
,

∆P3 =
(
ȳh(δN)

, x̄h(δN)

)
, c1h(δN)

and c2h(δN)
(h = 1, 2, 3, ..., L) are arbitrary constant.

Properties of the Neutrosophic estimators

To study the large sample properties of neutrosophic estimators let’s consider the following

transformations:

est.c1j(δN)
=

(
ȳst.c1j(δN)−Ȳ(δN)

)
Ȳ(δN)

, est.c2j(δN)
=

(
x̄st.c2j(δN)−X̄(δN)

)
X̄(δN)

, j = 1, 2

eh.c1j(δN)
=

(
ȳh.c1j(δN)−Ȳh(δN)

)
Ȳh(δN)

, eh.c2j(δN)
=

(
x̄h.c2j(δN)−X̄h(δN)

)
X̄h(δN)

, j = 1, 2

Up to the first order of the approximation, we will get

E(est.c1j(δN)
) = E(est.c2j(δN)

) = E(eh.c1j(δN)
) = E(eh.c2j(δN)

) = 0,

E(e2st.c1j(δN)
) = 1

Ȳ 2
(δN)

∑L
h=1W

2
hλh

{
S2
hy(δN)

−
2nhc1h(δN)

Nh−1 (yhmax(δN)
− yhmin(δN)

− nhc1h(δN)
)

}
,

E(e2st.c2j(δN)
) = 1

X̄2
(δN)

∑L
h=1W

2
hλh

{
S2
hx(δN)

−
2nhc2h(δN)

Nh−1 (xhmax(δN)
− xhmin(δN)

− nhc2h(δN)
)

}
,

E(e2h.c1j(δN)
) = 1

Ȳ 2
h(δN)

λh

{
S2
hy(δN)

−
2nhc1h(δN)

Nh−1 (yhmax(δN)
− yhmin(δN)

− nhc1h(δN)
)

}
,
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E(e2h.c2j(δN)
) = 1

X̄2
h(δN)

λh

{
S2
hx(δN)

−
2nhc2h(δN)

Nh−1 (xhmax(δN)
− xhmin(δN)

− nhc2h(δN)
)

}
,

E(est.c1j(δN)
, est.c2j(δN)

) =
1

Ȳ(δN)X̄(δN)

L∑
h=1

W 2
hλh

[
Shyx(δN)

− nh

Nh − 1

{
c1h(δN)

(xhmax(δN)
− xhmin(δN)

) + c2h(δN)
(yhmax(δN)

− yhmin(δN)
)

−2nhc1h(δN)
c2h(δN)

}]

E(eh.c1j(δN)
, eh.c2j(δN)

) =
1

Ȳh(δN)
X̄h(δN)

λh

[
Shyx(δN)

− nh

Nh − 1

{
c1h(δN)

(xhmax(δN)
− xhmin(δN)

) + c2h(δN)
(yhmax(δN)

− yhmin(δN)
)

−2nhc1h(δN)
c2h(δN)

}]
for j = 1, 2.

Properties of Neutrosophic Combined Estimators :

Neutrosophic combined ratio estimators ˆ̄YRC1(δN)
in terms of relatives error is given by

ˆ̄YRC1(δN)
= Ȳ(δN)

(
1 + est.c11(δN)

)(
1 + est.c21(δN)

)−1
, (25)

Approximation upto first order, we have

( ˆ̄YRC1(δN)
− Ȳ(δN)) ∼= Ȳ(δN)

(
est.c11(δN)

+ est.c21(δN)
− est.c11(δN)

est.c21(δN)

+e2st.c21(δN)

)
, (26)

The Bias of ˆ̄YRC1(δN)
is given by

Bias( ˆ̄YRC1(δN)
) ∼=

L∑
h=1

W 2
h

λh

X̄(δN)

[
R(δN)

{
S2
hx(δN)

−
2nhc2h(δN)

Nh − 1
(xhmax(δN)

−xhmin(δN)
− nhc2h(δN)

)
}
−
{
Shyx(δN)

− nh

Nh − 1
(c1h(δN)

(xhmax(δN)

−xhmin(δN)
) + c2h(δN)

(yhmax(δN)
− yhmin(δN)

)

−2nhc1h(δN)
c2h(δN)

)
}]

(27)

The MSE of ˆ̄YRC1(δN)
is given by

MSE( ˆ̄YRC1(δN)
) ∼= MSE( ˆ̄YRC0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

−R(δN)c2h(δN)
){

(yhmax(δN)
− yhmin(δN)

)−R(δN)(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
−Rc2h(δN)

)
}

(28)
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Differentiating MSE( ˆ̄YRC1(δN)
) with respect to c1h(δN)

and c2h(δN)
(h = 1, 2, 3, ..., L) respec-

tively and equate to zero, we have

∂MSE( ˆ̄YRC1(δN)
)

∂c1h(δN)

= 0 (29)

(yhmax(δN)
− yhmin(δN)

)−R(δN)(xhmax(δN)
− xhmin(δN)

)− 2nh(c1h(δN)
−Rc2h(δN)

) = 0 (30)

Since there are 2L unknowns in these equations, a unique solution for the constants is

not feasible. We believe that c1h(δN)
=

(
yhmax(δN)

−yhmin(δN)

)
2nh

and it implies that c2h(δN)
=(

xhmax(δN)
−xhmin(δN)

)
2nh

. For the optimum values of c1h(δN)
and c2h(δN)

, the MSE of ( ˆ̄YRC1(δN)
),

is given by

MSE( ˆ̄YRC1(δN)
)min = MSE( ˆ̄YRC0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1)

{
(yhmax(δN)

−yhmin(δN)
)−R(δN)(xhmax(δN)

− xhmin(δN)
)
}2

(31)

Similarly, the combined product estimator’s bias and MSE ˆ̄YPC1(δN)
, are given by

Bias( ˆ̄YPC1(δN)
) ∼=

L∑
h=1

W 2
h

λh

X̄(δN)

[
Shyx(δN)

− nh

Nh − 1

{
c1h(δN)

(xhmax(δN)

−xhmin(δN)
) + c2h(δN)

(yhmax(δN)
− yhmin(δN)

)

−2nhc1h(δN)
c2h(δN)

}]
(32)

MSE( ˆ̄YPC1(δN)
) ∼= MSE( ˆ̄YPC0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

−R(δN)c2h(δN)
){

(yhmax(δN)
− yhmin(δN)

) +R(δN)(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
+R(δN)c2h(δN)

)
}

(33)

Utlizing values of c1h(δN)
and c2h(δN)

, MSE of ˆ̄YPC1(δN)
, is given as

MSE( ˆ̄YPC1(δN)
)min = MSE( ˆ̄YPC0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1)

{(
yhmax(δN)

−yhmin(δN)

)
−R(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(34)

Properties of Neutrosophic Separate Estimators :

Neutrosophic separate ratio estimators ˆ̄YRS1(δN)
in terms of relatives error is given by

ˆ̄YRS1(δN)
=

L∑
h=1

WhȲh(δN)

(
1 + eh.c11(δN)

)(
1 + eh.c21(δN)

)−1
, (35)
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Under the above considered transformations on expanding the expression we have

( ˆ̄YRS1(δN)
− Ȳ(δN)) ∼=

L∑
h=1

WhȲh(δN)

(
eh.c11(δN)

+ eh.c21(δN)
− eh.c11(δN)

eh.c21(δN)

+e2h.c21(δN)

)
, (36)

The Bias of ˆ̄YRS1(δN)
is given by

Bias( ˆ̄YRS1(δN)
) ∼=

L∑
h=1

W 2
h

λh

X̄h(δN)

[
Rh(δN)

{
S2
hx(δN)

−
2nhch(δN)

Nh − 1
(xhmax(δN)

−xhmin(δN)
− nhc2h(δN)

)
}
−
{
Shyx(δN)

− nh

Nh − 1
(c1h(δN)

(xhmax(δN)

−xhmin(δN)
) + c2h(δN)

(yhmax(δN)
− yhmin(δN)

)

−2nhc1h(δN)
c2h(δN)

)
}]

(37)

The MSE of ˆ̄YRS1(δN)
is given by

MSE( ˆ̄YRS1(δN)
) ∼=

L∑
h=1

W 2
hλh

[
S2
hy(δN)

−
2nhc1h(δN)

Nh − 1
(yhmax(δN)

− yhmin(δN)

−nhc1h(δN)
) +R2

h(δN)

{
S2
hx(δN)

−
2nhc2h(δN)

Nh − 1
(xhmax(δN)

−xhmin(δN)
− nhc2h(δN)

)
}
− 2Rh(δN)

{
Shyx(δN)

− nh

Nh − 1
(

c1h(δN)
(xhmax(δN)

− xhmin(δN)
) + c2h(δN)

(yhmax(δN)
− yhmin(δN)

)

−2nhc1h(δN)
c2h(δN)

)
}]

(38)

Min MSE of ˆ̄YRS1(δN)
, is as follows

MSE( ˆ̄YRS1(δN)
)min = MSE( ˆ̄YRS0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1)

{(
yhmax(δN)

−yhmin(δN)

)
−Rh(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(39)

Similarly bias and MSE of estimator ˆ̄YPS1(δN)
, are as follows

Bias( ˆ̄YPS1(δN)
) ∼=

L∑
h=1

W 2
h

λh

X̄(δN)

[
Shyx(δN)

− nh

Nh − 1

{
c1h(δN)

(xhmax(δN)

−xhmin(δN)
) + c2h(δN)

(yhmax(δN)
− yhmin(δN)

)

−2nhc1h(δN)
c2h(δN)

}]
(40)
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MSE( ˆ̄YPS1(δN)
) ∼= MSE( ˆ̄YPS0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

+Rh(δN)
c2h(δN)

){
(yhmax(δN)

− yhmin(δN)
) +Rh(δN)

(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
+Rh(δN)

c2h(δN)
)
}

(41)

Min MSE of ˆ̄YPS1(δN)
, is as follows

MSE( ˆ̄YPS1(δN)
)min = MSE( ˆ̄YPS0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1)

{(
yhmax(δN)

−yhmin(δN)

)
−Rh(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(42)

4.1. Neutrosophic OLS Regression and Proposed Estimators

In the discipline of statistics, parametric regression techniques are widely used, providing

useful tools for modeling and analysing correlations between variables. Among these strategies,

Ordinary Least Squares (OLS) stands out as one of the most often used. The primary goal

of OLS is to estimate model parameters by minimising the sum of squared residuals, which

indicate the differences between observed and projected values. We are utilising the Särndal

method for addressing extreme values as we pursue thorough statistical analysis.

Neutrosophic statistics addresses uncertainty that is characterised by ambiguity, vagueness,

and indeterminacy, posing particular difficulties for data interpretation. Neutosophic statistics

incorporates the Särndal technique, and we want to create novel approaches that efficiently

manage high values in the presence of uncertain data. This combination strategy has a great

deal of promise to enhance the reliability and validity of statistical analysis, facilitating better

informed decision-making across a variety of disciplines.

4.1.1. When Positive Correlated

(1) : Neutrosophic Combined Regression Estimators

Neutrosophic combined regression estimators in stratified random sampling of a finite popu-

lation mean (Ȳ(δN)) are given as:

ˆ̄YlrC11(δN)
= ȳst.c11(δN)

+ bc(δN)

(
X̄(δN) − x̄st.c21(δN)

)
(43)

where bc(δN)
is a neutrosophic combined sample regression coefficient.

(2) : Neutrosophic Separate Regression Estimators
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Neutrosophic separate regression estimators in stratified random sampling of a finite popula-

tion mean (Ȳ(δN)) are given as:

ˆ̄YlrS11(δN)
=

L∑
h=1

Wh

[
ȳh.c11(δN)

+ bh(δN)

(
X̄h(δN)

− x̄h.c21(δN)

)]
(44)

4.1.2. When Negative Correlated

(1) : Neutrosophic Combined Regression Estimators

Neutrosophic combined regression estimators in stratified random sampling of a finite popu-

lation mean (Ȳ(δN)) are given as:

ˆ̄YlrC12(δN)
= ȳst.c12(δN)

+ bc(δN)

(
X̄(δN) − x̄st.c22(δN)

)
(45)

(2) : Neutrosophic Separate Regression Estimators

Neutrosophic separate regression estimators in stratified random sampling of a finite popula-

tion mean (Ȳ(δN)) are given as:

ˆ̄YlrS12(δN)
=

L∑
h=1

Wh

[
ȳh.c12(δN)

+ bh(δN)

(
X̄h(δN)

− x̄h.c22(δN)

)]
(46)

Properties of Neutrosophic Combined Regression Estimators

Bias and MSE of combined neutrosophic regression estimator ˆ̄YlrC11(δN)
in case positive corre-

lation given by

Bias( ˆ̄YlrC11(δN)
) = −Cov

(
x̄st.c21(δN)

, bc(δN)

)
(47)

MSE( ˆ̄YlrC11(δN)
) ∼= MSE( ˆ̄YlrC0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

− βc(δN)
c2h(δN)

){
(yhmax(δN)

− yhmin(δN)
)− βc(δN)

(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
− βc(δN)

c2h(δN)
)
}

(48)

where βc(δN)
=

Cov

(
ȳst(δN)

,x̄st(δN)

)
V ar

(
x̄st(δN)

) is population regression coefficient.

Min MSE of ˆ̄YlrC11(δN)
, is as follows:

MSE( ˆ̄YlrC11(δN)
)min = MSE( ˆ̄YlrC0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− βc(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(49)
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When there is negative correlation , the MSE of neutrosophic combined regression estimator

ˆ̄YlrC12(δN)
, is given by

MSE( ˆ̄YlrC12(δN)
) ∼= MSE( ˆ̄YlrC0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

+ βc(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
+ βc(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

+ βc(δN)
c2h(δN)

)}
(50)

Min MSE of ˆ̄YlrC12(δN)
, is as follows:

MSE( ˆ̄YlrC12(δN)
)min

∼= MSE( ˆ̄YlrC0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ βc(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(51)

Equations (49) and (51)’s findings for the variances of combined regression estimators allow us

to calculate the minimum mean square error of the combined regression estimator as follows.

MSE( ˆ̄YlrC1(δN)
)min

∼= MSE( ˆ̄YlrC0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |βc(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2
(52)

Properties of Neutrosophic Separate Regression Estimators

Bias and MSE of separate neutrosophic regression estimator ˆ̄YlrS11(δN)
in case positive corre-

lation given by

Bias( ˆ̄YlrS11(δN)
) = −

L∑
h=1

Wh(δN)
Cov

(
x̄h.c21(δN)

, bh(δN)

)
(53)

MSE( ˆ̄YlrS11(δN)
) ∼= MSE( ˆ̄YlrS0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

− βh(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
− βh(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

− βh(δN)
c2h(δN)

)}
(54)

where βh(δN)
=

Shyx(δN)

S2
hx(δN)

is population regression coefficient in hth stratum.

Min MSE of ˆ̄YlrS11(δN)
, is as follows:

MSE( ˆ̄YlrS11(δN)
)min = MSE( ˆ̄YlrS0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− βh(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(55)
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When there is negative correlation , the MSE of neutrosophic Separate regression estimator

ˆ̄YlrS12(δN)
, is given by

MSE( ˆ̄YlrS12(δN)
) ∼= MSE( ˆ̄YlrS0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

+ βh(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
+ βh(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

+ βh(δN)
c2h(δN)

)}
(56)

Min MSE of ˆ̄YlrS12(δN)
, is as follows:

MSE( ˆ̄YlrS12(δN)
)min = MSE( ˆ̄YlrS0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ βh(δN)

(
xhmax(δN)

− xhmin(δN)

)}2
(57)

Generally the minimum mean square error of Separate regression estimator can be written as

MSE( ˆ̄YlrS1(δN)
)min = MSE( ˆ̄YlrS0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |βh(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2
(58)

4.2. Neutrosophic Robust Regression and Proposed Estimators

When working with datasets, the presence of outliers or exceptional data points may affect

the accuracy of estimates obtained through the ordinary least squares (OLS) approach. OLS,

a commonly employed approach for establishing relationships between variables, becomes sus-

ceptible in the face of outliers, as even a single outlier can exert undue influence on the results

of investigation. The vulnerability has been demonstrated by researchers Hampel et al. [11]

and Rousseeuw and Leroy [18],

Seber and Lee [21] explain the causes of OLS’s susceptibility to outliers. First off, greater

residuals have a disproportionately strong impact on the total error assessment, dominating the

contributions of smaller residuals, when mistakes are quantified using the squared deviations

among observed and predicted results (residuals). Furthermore, common measures of central

tendency, such as the arithmetic mean, are not designed to deal with outliers. Due to the

impact of greater squared values, the existence of outliers causes significant distortions in

error estimates, magnifying their effect on regression findings.

Alternative techniques, including robust regression, are used to mitigate the negative impact

of outliers on regression results. These methods are made to be less impacted by outliers and

to give more accurate predictions even when there are odd data points present. Interested

parties can read Yu and Yao’s study [37] for an in-depth explanation of these robust regression
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techniques. Regression using ordinary least squares (OLS) is a popular method for estimating

a linear regression model’s parameters. Its primary process entails minimising the sum of

squared differences between the dependent variable’s expected and actual values. Finding the

best line that best explains the relationship between the independent and dependent variables

while reducing model errors is the major goal. However, OLS relies on several presumptions

that could not hold true in all real-world situations, such as the normal distribution of the

residuals (the differences between estimated and observed values) and a constant variance.

OLS’s increased sensitivity to outliers—data values that significantly deviate from the

norm—is an important attribute. Natural variances or mistakes in the data collection process

might lead to outliers. Even though it could be irregular, their influence might be significant,

skewing predictions of regression coefficients and producing inaccurate forecasts. Enter ro-

bust regression, a strategy that has gained interest to address OLS’s sensitivity to outliers.

Robust regression offers a more robust analysis since it is made to be less impacted by these

unusual instances. This is especially helpful when working with real-world data when OLS’s

presumptions might not hold true. Robust regression allows for the diversity and complex-

ity that are frequently seen in real-world data, allowing analysts to gain more trustworthy

conclusions. The differences between the two approaches highlight the constantly developing

approaches in statistics and data analysis, highlighting the demand for flexible tools that can

negotiate the complexities of real datasets and produce accurate findings even in the face of

anomalies. Within robust statistical techniques, robust regression is a subset that focuses on

minimising the sum of absolute residues instead of the sum of squared residuals. This novel

strategy avoids the weaknesses to outliers that afflict conventional approaches. Extreme data

points have less disproportionate effect on results when the absolute values of residuals are

highlighted. In robust regression, outliers are given less weight rather than being given the

same weight as other data points. This tactic greatly reduces their influence on the regression’s

estimated coefficients. Ordinary Least Squares (OLS) analysis frequently falls short of robust

regression because it is less adept at navigating the turbulent seas of extreme values, especially

in circumstances rife with outliers.

The homoscedasticity assumption, which underlies OLS regression, states that residual vari-

ance should be consistent over the range of the independent variable. This principle, however,

can be undermined by real-world data, particularly if the distribution of the dependent vari-

able is atypical. The difference may result in inaccurate coefficient estimations and uncertain

projections. Another obstacle for OLS is sensitivity to outliers, which can reduce precision.

With its weighted least squares technique, robust regression intervenes in this situation as

a solution to the problem. With this strategy, observations with smaller variations receive

heavier weights while those with bigger variances receive lesser weights. The end result is a
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more accurate estimation of the coefficients, which holds up well even when there are outliers

or important data points. Regression analyses are therefore kept reliable and perceptive even

while dealing with the complexity and uncertainties present in real-world data thanks to this

strong technique.

When dealing with data that vary from a normal distribution and hence violate the as-

sumption of normality, robust regression outperforms ordinary least squares (OLS) regression.

In order for OLS regression to work, the dependent variable must have a normal distribution,

which is a requirement that is frequently not satisfied by real-world data. As a result, predic-

tions may turn out to be inaccurate and the coefficients obtained using OLS may be biased.

Contrastingly, robust regression does not rely on the normality assumption and has a better

ability to deal with non-normal data. Huber-M, Hampel-M, and Tukey-M are three robust

regression approaches that are specially used in this work. For a complete understanding of

these strategies, please refer to the in-depth study conducted by Zaman [38], Zaman and Bulut

( [39], [40], [42]), Shahzad et al.( [24], [26], [25]), Sajjad et al. [20], Ali et al. [2], Mukhtar and

Shahzad [16], Bulut and Zaman [6].

4.2.1. When Positive Correlated

(1) : Neutrosophic Combined Robust Regression Estimators

Neutrosophic combined regression estimators (Ȳ(δN)) are given as:

ˆ̄Y(Pi).C11(δN)
= ȳst.c11(δN)

+ β(robi).c(δN)

(
X̄(δN) − x̄st.c21(δN)

)
(59)

(2) : Neutrosophic Separate Robust Regression Estimators

Neutrosophic separate regression estimators (Ȳ(δN)) are given as:

ˆ̄Y(Pi).S11(δN)
=

L∑
h=1

Wh

[
ȳh.c11(δN)

+ β(robi).h(δN)

(
X̄h(δN)

− x̄h.c21(δN)

)]
(60)

4.2.2. When Negative Correlated

(1) : Neutrosophic Combined Robust Regression Estimators

Neutrosophic combined regression estimators (Ȳ(δN)) are given as:

ˆ̄Y(Pi).C12(δN)
= ȳst.c12(δN)

+ β(robi).c(δN)

(
X̄(δN) − x̄st.c22(δN)

)
(61)

(2) : Neutrosophic Separate Robust Regression Estimators

Neutrosophic separate regression estimators (Ȳ(δN)) are given as:

ˆ̄Y(Pi).S12(δN)
=

L∑
h=1

Wh

[
ȳh.c12(δN)

+ β(robi).h(δN)

(
X̄h(δN)

− x̄h.c22(δN)

)]
(62)
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where β(robi).c(δN)
and β(robi).h(δN)

are computed from robust regression tools like Huber-M,

Hample-M, and Tukey-M for i = 1, 2, 3.

Properties of Neutrosophic combined Robust Regression Estimators

The bias and MSE of combined neutrosophic regression estimator ˆ̄Y(Pi).C11(δN)
in case positive

correlation given by

Bias
(
ˆ̄Y(Pi).C11(δN)

)
= −Cov

(
x̄st.c21(δN)

, bc(δN)

)
(63)

MSE
(
ˆ̄Y(Pi).C11(δN)

)
∼= MSE( ˆ̄Y(Pi).C0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

− β̂(robi).c(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
− β̂(robi).c(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

− β̂(robi).c(δN)
c2h(δN)

)}
(64)

where β̂(robi).c(δN)
is population regression coefficient.

Min MSE of ˆ̄Y(Pi).C11(δN)
, is as follows:

MSE( ˆ̄Y(Pi).C11(δN)
)min = MSE( ˆ̄Y(Pi).C0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− β̂(robi).c(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(65)

When there is negative correlation , the MSE of neutrosophic combined robust regression estimator
ˆ̄Y(Pi).C12(δN)

, is as follows

MSE( ˆ̄Y(Pi).C12(δN)
) ∼= MSE( ˆ̄Y(Pi).C0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

+ β̂(robi).c(δN)
c2h(δN)

)
{
(yhmax(δN)

− yhmin(δN)
) + β̂(robi).c(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

+ β̂(robi).c(δN)
c2h(δN)

)}
(66)

Min MSE of ˆ̄Y(Pi).C12(δN)
, is given by:

MSE( ˆ̄Y(Pi).C12(δN)
)min

∼= MSE( ˆ̄Y(Pi).C0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ β̂(robi).c(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(67)

Equations (65) and (67)’s findings for the variances of combined regression estimators allow us to

calculate the minimum mean square error of the combined regression estimator as follows.

MSE( ˆ̄Y(Pi).C1(δN)
)min

∼= MSE( ˆ̄Y(Pi).C0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |β̂(robi).c(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2

(68)
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Properties of Neutrosophic Separate Robust Regression Estimators

Bias and MSE of separate neutrosophic regression estimator ˆ̄Y(Pi).S11(δN)
in case positive correlation

given by

Bias( ˆ̄Y(Pi).S11(δN)
) = −

L∑
h=1

Wh(δN)
Cov

(
x̄h.c21(δN)

, bh(δN)

)
(69)

MSE( ˆ̄Y(Pi).S11(δN)
) ∼= MSE( ˆ̄Y(Pi).S0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

− β̂(robi).h(δN){
(yhmax(δN)

− yhmin(δN)
)− β̂(robi).h(δN)

(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
− β̂(robi).h(δN)

)
}

(70)

where β̂(robi).h(δN)
is population regression coefficient in hth stratum.

Min MSE of ˆ̄Y(Pi).S11(δN)
, is as follows:

MSE( ˆ̄Y(Pi).S11(δN)
)min = MSE( ˆ̄Y(Pi).S0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){
(yhmax(δN)

− yhmin(δN)
)− β̂(robi).h(δN)

(xhmax(δN)
− xhmin(δN)

)
}2

(71)

When there is negative correlation , the MSE of neutrosophic separate robust regression estimator
ˆ̄Y(Pi).S12(δN)

, is given by

MSE( ˆ̄Y(Pi).S12(δN)
) ∼= MSE( ˆ̄Y(Pi).S0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

+ β̂(robi).h(δN){
(yhmax(δN)

− yhmin(δN)
) + β̂(robi).h(δN)

(xhmax(δN)
− xhmin(δN)

)

−nh(c1h(δN)
+ β̂(robi).h(δN)

)
}

(72)

Min MSE of ˆ̄Y(Pi).S12(δN)
, is as follows:

MSE
(
ˆ̄Y(Pi).S12(δN)

)
min

= MSE
(
ˆ̄Y(Pi).S0(δN)

)
−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ β̂(robi).h(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(73)

Generally the Min MSE of Separate Robust neutrosophic regression estimator can be written as

MSE( ˆ̄Y(Pi).S1(δN)
)min = MSE( ˆ̄Y(Pi).S0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |β̂(robi).h(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2

(74)

4.3. Neutrosophic Robust Quantile Regression and Proposed Estimators

In contrast to the conventional linear regression strategy, quantile regression presents an alternative

that does not rely on the assumptions of constant variance and a normal distribution in error terms.

The adaptability of this alternative method avoids the necessity for certain presumptions to be true.

Quantile regression predicts the conditional values within the dependent variable’s distribution in a
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linear model rather than depending on averages [10]. The quartiles used to calculate the coefficients

are frequently 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, and 0.85. Robust quantile coefficients for regression

take center stage in place of the typical coefficients generated from Ordinary Least Squares (OLS)

regression, in contrast to the traditional emphasis on averages.

In our suggestion, neutrosophic estimators are used, providing improved resilience to the disruptive

influence of data outliers. When datasets are impacted by outlier data points, these estimators should

be used in estimation approaches due to their exceptional resilience. The robust quantile regression

method that is suggested delivers estimates that are more accurate even when outliers are present,

therefore it is not necessary to exclude these data points from the study.

Together, these viewpoints provide a more comprehensive understanding of the trans formative

properties of quantile regression, its stable coefficients, and the novel incorporation of neutrosophic

estimators, all of which support a more flexible and accurate analysis of data that may be affected by

outliers researchers such as Anas et al. [5], Yadav and Prasad [36], Shahzad et al. ( [22], [23]) and Koç

and Koç [13] have made significant contributions in the filed of robust quantile regression.

4.3.1. When Positive Correlated

(1) : Neutrosophic Combined Robust Quantile Regression Estimators

Neutrosophic combined robust quantile regression estimators in stratified random sampling of a finite

population mean (Ȳ(δN)) are given as:

ˆ̄Y(Qi).C11(δN)
= ȳst.c11(δN)

+ β(qj).c(δN)

(
X̄(δN) − x̄st.c21(δN)

)
(75)

(2) : Neutrosophic Separate Robust Quantile Regression Estimators

Neutrosophic Separate robust quantile regression estimators in stratified random sampling of a finite

population mean (Ȳ(δN)) are given as:

ˆ̄Y(Qi).S11(δN)
=

L∑
h=1

Wh

[
ȳh.c11(δN)

+ β(qj).h(δN)

(
X̄h(δN)

− x̄h.c21(δN)

)]
(76)

4.3.2. When Negative Correlated

(1) : Neutrosophic Combined Robust Quantile Regression Estimators

Neutrosophic combined robust quantile regression estimators in stratified random sampling of a finite

population mean (Ȳ(δN)) are given as:

ˆ̄Y(Qi).C12(δN)
= ȳst.c12(δN)

+ β(qj).c(δN)

(
X̄(δN) − x̄st.c22(δN)

)
(77)

(2) : Neutrosophic Separate Robust Quantile Regression Estimators

Neutrosophic separate robust quantile regression estimators in stratified random sampling of a finite

population mean (Ȳ(δN)) are given as:

ˆ̄Y(Qi).S12(δN)
=

L∑
h=1

Wh

[
ȳh.c12(δN)

+ β(qj).h(δN)

(
X̄h(δN)

− x̄h.c22(δN)

)]
(78)

where β(qj).c(δN)
and β(qi).h(δN)

are computed from robust quantile regression tools for j =

0.15, 0.25, 0.35, ..., 0.85.

Properties of Neutrosophic Combined Robust Quantile Regression Estimators
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Bias and MSE of combined neutrosophic regression estimator ˆ̄Y(Qi).C11(δN)
in case positive correlation

given by

Bias( ˆ̄Y(Qi).C11(δN)
) = −Cov

(
x̄st.c21(δN)

, bc(δN)

)
(79)

MSE( ˆ̄Y(Qi).C11(δN)
) ∼= MSE

(
ˆ̄Y(Qi).C0(δN)

)
−

L∑
h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

− β̂(qj).c(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
− β̂(qj).c(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

− β̂(qj).c(δN)
c2h(δN)

)}
(80)

where β̂(qj).c(δN)
is population regression coefficient.

Min MSE of ˆ̄Y(Qi).C11(δN)
, is as follows:

MSE( ˆ̄Y(Qi).C11(δN)
)min = MSE( ˆ̄Y(Qi).C0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− β̂(qj).c(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(81)

When there is negative correlation , the MSE of neutrosophic combined robust quantile regression

estimator ˆ̄Y(Qi).C12(δN)
, is as follows

MSE( ˆ̄Y(Qi).C12(δN)
) ∼= MSE( ˆ̄Y(Qi).C0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1

(
c1h(δN)

+ β̂(qj).c(δN)
c2h(δN)

)
{(

yhmax(δN)
− yhmin(δN)

)
+ β̂(qj).c(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh

(
c1h(δN)

+ β̂(qj).c(δN)
c2h(δN)

)}
(82)

Min MSE of ˆ̄Y(Qi).C12(δN)
, is as follows:

MSE( ˆ̄Y(Qi).C12(δN)
)min

∼= MSE( ˆ̄Y(Qi).C0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ β̂(qj).c(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(83)

Equations (81) and (83)’s findings for the variances of combined regression estimators allow us to

calculate the minimum mean square error of the combined regression estimator as follows.

MSE( ˆ̄Y(Qi).C1(δN)
)min

∼= MSE( ˆ̄Y(Qi).C0(δN)
)−

L∑
h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |β̂(qj).c(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2

(84)

Properties of Neutrosophic Separate Robust Quantile Regression Estimators

Bias and MSE of separate neutrosophic robust quantile regression estimator ˆ̄Y(Qi).S11(δN)
in case positive

correlation given by

Bias( ˆ̄Y(Qi).S11(δN)
) = −

L∑
h=1

Wh(δN)
Cov

(
x̄h.c21(δN)

, bh(δN)

)
(85)
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MSE( ˆ̄Y(Qi).S11(δN)
) ∼= MSE( ˆ̄Y(Qi).S0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

− β̂(qi).h(δN){(
yhmax(δN)

− yhmin(δN)

)
− β̂(qi).h(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh(c1h(δN)

− β̂(qi).h(δN)
)
}

(86)

where β̂(qi).h(δN)
is population regression coefficient in hth stratum.

Min MSE of ˆ̄Y(Qi).S11(δN)
, is as follows:

MSE( ˆ̄Y(Qi).S11(δN)
)min = MSE( ˆ̄Y(Qi).S0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− β̂(qi).h(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(87)

When there is negative correlation , the MSE of neutrosophic separate robust quantile regression

estimator ˆ̄Y(Qi).S12(δN)
, is given by

MSE( ˆ̄Y(Qi).S12(δN)
) ∼= MSE( ˆ̄Y(Qi).S0(δN)

)−
L∑

h=1

W 2
h

2λhnh

Nh − 1
(c1h(δN)

+ β̂(qi).h(δN){(
yhmax(δN)

− yhmin(δN)

)
+ β̂(robi).h(δN)

(
xhmax(δN)

− xhmin(δN)

)
−nh(c1h(δN)

+ β̂(qi).h(δN)
)
}

(88)

Min MSE of ˆ̄Y(Qi).S12(δN)
, is as follows:

MSE( ˆ̄Y(Qi).S12(δN)
)min = MSE( ˆ̄Y(Qi).S0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
+ β̂(qi).h(δN)

(
xhmax(δN)

− xhmin(δN)

)}2

(89)

Generally the Min MSE of Separate robust neutrosophic quantile regression estimator can be given as

MSE( ˆ̄Y(Qi).S1(δN)
)min = MSE( ˆ̄Y(Qi).S0(δN)

)−
L∑

h=1

W 2
h

λh

2(Nh − 1){(
yhmax(δN)

− yhmin(δN)

)
− |β̂(qi).h(δN)

|
(
xhmax(δN)

− xhmin(δN)

)}2

(90)

5. Applications

The use of weather data, notably dew point, emerges as a crucial and cutting-edge tactic in the

context of our work, which is committed to improving sample survey data processing approaches.

Assessing the impact of urban heat islands on locals’ health in four important Pakistani cities—Karachi,

Lahore, Peshawar, and Multan—is the central focus of our study. Our dataset has a total of 1460 data

points, which corresponds to the four strata and each including 365 days of dew point data, with each

city acting as a separate stratum. We take a unique strategy to improve estimation accuracy in the

face of the complexity of outliers and imprecise findings, which are particularly prominent in humidity

and temperature data.
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The incorporation of dew point in the form of an auxiliary variable assumes a crucial role in this

endeavor. Dew point offers an additional source of information that considerably improves our anal-

ysis as an indication of atmospheric moisture. This integration gives our investigation of the urban

heat island phenomena a multidimensional dimension that is specially designed for it. Our analytical

methodology overcomes the limitations imposed by single factors by comparing dew point alongside

temperature and humidity data. The result of this complementary fusion is a notable improvement in

estimating accuracy. Notably, the addition of dew point as an auxiliary variable enables us to stabilise

our results, especially by reducing the likelihood of distortions caused by high values—a problem that

outliers by their very nature provide.

The vital significance of dew point data is made clear as a result of this novel technique to navigating

the complicated terrain of urban health dynamics. Beyond supporting the validity of our findings, this

integration has larger implications that go across academic fields. The multidisciplinary scope includes

areas like public health policy and urban planning, where precise data analysis is crucial.

Additionally, our system is built to cover every possible angle. Starting with combined as well

as separate regression estimators accommodating both positive and negative data distributions, we

meticulously explore a variety of estimate strategies. We guarantee the validity and usefulness of

our findings by taking this heterogeneity into consideration. Next, we move on to the topic of robust

regression algorithms, which are made to resist the effects of outliers and anomalies present in real-world

data. Finally, robust quantile regression, which is a robust method that not only takes into consideration

the existence of outliers but also offers insights into various quantiles of the data distribution, serves as

the point where our trip comes to an end.

As we go forward, the mean squared error (MSE) becomes a crucial parameter for assessing the

effectiveness of our suggested estimators. The MSE provides a thorough assessment of estimator ac-

curacy by calculating the average squared difference between our estimators and the real values. This

essential evaluation enables us to determine how effectively our novel approaches provide accurate es-

timates in the presence of outliers and erroneous observations. Interestingly, the study’s least MSE

value is displayed by our suggested neutrosophic estimators, further demonstrating their superiority

in handling complicated data circumstances. Neutrosophic Summary of Weather Data (Dew Point) is

given in table [1].

6. Results Discussion

The empirical examination of our suggested estimators, supplemented by Weather data (Dew Point),

produced interesting findings that validate the efficacy of our novel technique. The evaluation includes

a wide range of estimators, such ratio, product, robust regression, as well as robust quantile regression,

each of which is evaluated for Mean Squared Error (MSE) efficiency.

(I): The MSE values for our estimators determined by dew point data are shown in Table [2]. No-

table are the ratio estimators, indicated as ˆ̄YRC0(δN)
, ˆ̄YRC1(δN)

, ˆ̄YRS0(δN)
, and ˆ̄YRS1(δN)

, show results in

the range [9.703, 10.218], demonstrating how well they did in capturing the fundamental demographic

factors. Product estimators, ˆ̄YPC0(δN)
, ˆ̄YPC1(δN)

, ˆ̄YPS0(δN)
, and ˆ̄YPS1(δN)

, display MSE results in the

range [835.224, 984.712], highlighting their resilience against data fluctuations. Additionally, the re-

gression estimators, ˆ̄YlrC0(δN)
, ˆ̄YlrC1(δN)

, ˆ̄YlrS0(δN)
, and ˆ̄YlrS1(δN)

, demonstrate favorable MSE results in
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the range [9.694, 9.965]. These findings demonstrate how well-suited these estimators are to handle

scenarios involving complicated data.

We shifted to robust regression approaches for delving deeper into robustness, where

(II): The MSE results for the robust regression estimators are presented in Table [3]. A member of these
ˆ̄YlrC1(δN)

and alternatives using the robustness methods Huber-M, Hampel-M, and Tukey-M provide

MSE values that are comparable with the baseline regression estimators. This consistency highlights

how well these estimators handle outliers and erroneous observations, leading to more accurate findings.

(III): Our study is expanded upon in Table [4] by robust quantile regression estimation tools.

Particularly, when using the combined and separate regression methods, the MSE data across quantiles

like Q0.25, Q0.35, Q0.45, Q0.55, Q0.65, Q0.75, and Q0.85 stay closely grouped and within the [9.690, 9.696]

range. This consistency underlines the robust quantile regression’s capacity to offer consistent and

trustworthy predictions across many quantile levels, assisting in the development of a more thorough

knowledge of the data distribution.

The suggested neutrosophic estimators in the study show the lowest MSE values among the tested

estimators, which is very noteworthy. This discovery highlights how effective our novel method is at

improving estimation accuracy, especially when there are outliers and ambiguous observations. These

findings confirm the potential of neutrosophic estimators to provide reliable statistical insights and

more precise population mean estimations.

Table 1. Neutrosophic Summary of Weather Data (Dew Point).

Notations Stratum-1 Stratum-2 Stratum-3 Stratum-4

nh [365] [365] [365] [365]

Ȳh(δN)
[76.03014, 102.4466] [78.46849, 96.77534] [70.90137, 77.46301] [78.8, 81.94521]

X̄h(δN)
[74.78356, 99.88767] [73.59178, 96.74247] [73.59452, 74.72055] [75.45753, 81.88767]

S2
hy(δN)

[40246, 63944.32] [40246.29, 64126.03] [40185.34, 15747.04] [40235.54, 15919.27]

S2
hx(δN)

[40591.26, 64155.49] [37724.89, 63984.47] [40214.41, 15831.21] [37895.75, 15919.27]

yhmax(δN)
[2039] [2041] [2028] [2041]

yhmin(δN)
[34] [45] [39] [46]

xhmax(δN)
[2046] [2043] [2045] [2048]

xhmin(δN)
[0] [0] [0] [0]

β̂(rob(Huber−M))(δN)
[0.9912323, 0.9999753] [0.9999594, 1.000504] [0.9937949, 0.9950768] [0.996666, 0.9984121]

β̂(rob(Hampel−M))(δN)
[0.9908839, 0.9993864] [1.000555, 1.000763] [0.9939584, 0.996543] [0.9972101, 0.9977789]

β̂(rob(Tuckey−M))(δN)
[0.993372, 1.003817] [1.000812, 1.000578] [0.9938141, 0.9959412] [0.997544, 0.9984946]

β̂(q(0.25)).h(δN)
[0.9959370, 0.9929364] [1.0005076, 1.0015038] [0.997544, 0.9984946] [0.9985007, 1.0010030]

β̂(q(0.35)).h(δN)
[0.9939668, 0.9919355] [1.000000, 1.0010081] [0.9964485, 0.9938838] [0.9974975, 1.0000000]

β̂(q(0.45)).h(δN)
[0.9929293, 1.00000] [1.0010030, 1.0010147] [0.9954292, 0.9919920] [0.9965000, 0.9979859]

β̂(q(0.55)).h(δN)
[0.9915966, 0.9989909] [1.00000, 1.0010010] [0.9940090, 0.9939086] [0.9955202, 0.9989960]

β̂(q(0.65)).h(δN)
[0.9903943, 1.0025432] [1.0000000, 1.000000] [0.9929613, 1.000000] [0.9949900, 0.9979445]

β̂(q(0.75)).h(δN)
[0.9906863, 1.0015228] [0.9990000, 0.9994926] [0.9924887, 1.00000] [0.9964877, 1.0000000]

β̂(q(0.85)).h(δN)
[0.9871668, 1.0015060] [0.9974912, 0.9984864] [0.9909684, 1.0020346] [0.9945110, 0.9989889]
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Table 2. Mean Square error of the Estimators based on Weather Data (Dew

Point).

Estimators MSE

Ratio Estimators
ˆ̄YRC0(δN)

[9.9039479, 0.3649951]

ˆ̄YRC1(δN)
[9.8270814, 0.3342089]

ˆ̄YRS0(δN)
[10.2176925, 0.4133462]

ˆ̄YRS1(δN)
[10.0927650, 0.3727853]

Product Estimators
ˆ̄YPC0(δN)

[975.3846, 984.7125]

ˆ̄YPC1(δN)
[975.3078, 984.6818]

ˆ̄YPS0(δN)
[974.6680, 983.6323]

ˆ̄YPS1(δN)
[835.2242, 897.9044]

Regression Estimators
ˆ̄YlrC0(δN)

[9.7058299, 0.2982712]

ˆ̄YlrC1(δN)
[9.6942937, 0.2869683]

ˆ̄YlrS0(δN)
[9.9656934, 0.2974041]

ˆ̄YlrS1(δN)
[9.8900701, 0.2904405]

Table 3. Mean Square error of the Robust Regression Estimators based on

Weather Data (Dew Point).

Estimators MSE

Robust Combined Regression
ˆ̄YlrC1(δN)

[9.6942937, 0.2869683]

ˆ̄Y(PHuber−M ).C1(δN)
[9.6928511, 0.2871328]

ˆ̄Y(PHampel−M ).C1(δN)
[9.6927111, 0.2870227]

ˆ̄Y(PTuckey−M ).C1(δN)
[9.6926003, 0.2863628]

Robust Separate Regression
ˆ̄YlrS1(δN)

[9.8900701, 0.2904405]

ˆ̄Y(PHuber−M ).S1(δN)
[9.690895, 0.286713]

ˆ̄Y(PHampel−M ).S1(δN)
[9.6907605, 0.2864177]

ˆ̄Y(PTuckey−M ).S1(δN)
[9.6907406, 0.2877568]
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Table 4. Mean Square error of the Robust Quantile Regression Estimators

based on Weather Data (Dew Point).

Estimators MSE

Robust Quantile Combined Regression
ˆ̄YlrC1(δN)

[9.6942937, 0.2869683]

ˆ̄Y(Q0.25).C1(δN)
[9.6923676, 0.2896927]

ˆ̄Y(Q0.35).C1(δN)
[9.6923538, 0.2894481]

ˆ̄Y(Q0.45).C1(δN)
[9.6924074, 0.2879263]

ˆ̄Y(Q0.55).C1(δN)
[9.6929382, 0.2873903]

ˆ̄Y(Q0.65).C1(δN)
[9.6935143, 0.2862498]

ˆ̄Y(Q0.75).C1(δN)
[9.6934387, 0.2862297]

ˆ̄Y(Q0.85).C1(δN)
[9.6963570, 0.2862297]

Robust Quantile Separate Regression
ˆ̄YlrS1(δN)

[9.8900701, 0.2904405]

ˆ̄Y(Q0.25).S1(δN)
[9.6915248, 0.2926856]

ˆ̄Y(Q0.35).S1(δN)
[9.6904203, 0.2928867]

ˆ̄Y(Q0.45).S1(δN)
[9.6904174, 0.2875686]

ˆ̄Y(Q0.55).S1(δN)
[9.691002, 0.287058]

ˆ̄Y(Q0.65).S1(δN)
[9.6916736, 0.2867495]

ˆ̄Y(Q0.75).S1(δN)
[9.6916991, 0.2866265]

ˆ̄Y(Q0.85).S1(δN)
[9.6946025, 0.2870798]

The importance of include Weather data, particularly dew point, in the analysis of sample survey

data is highlighted by our study’s thorough review, as shown by the MSE values. The innovative

neutrosophic estimators, in particular, are frequently highlighted by the findings for their robustness,

accuracy, and dependability. These results support our claim that novel techniques like these have the

potential to revolutionise statistical analysis in the face of complicated data situations, resulting in

more insightful and useful information.

7. Conclusion

In the analysis of sample survey data, this proposed study presents a novel approach that uses

meteorological information—specifically, Dew point—as an auxiliary variable. This novel method over-

comes the shortcomings of outliers and ambiguous observations, which frequently impair the precision of

traditional estimating methods. The mean estimator is particularly highlighted in the study, which de-

liberately focuses on the significant influence of uncommon data on statistical estimators. It emphasises

how important it is to keep outliers out of the results in order to maintain their reliability.

The study adopts a proactive approach to tackling this problem by exploring the integration of aux-

iliary factors and utilising the informative potential of dew point data to improve estimation accuracy.

The research of the study also broadens to include problems brought on by anomalous results in a

sample of survey data. It reveals how susceptible the mean estimator is to outliers, which might skew

results. The study investigates approaches for auxiliary variable integration, such as transformations,

to improve accuracy in order to counteract this. In particular, it recommends the use of known extreme
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values as supplementary information to enhance estimation precision. The limitations of standard sta-

tistical approaches that rely on exact data and supplementary information becomes clear in situations

characterised by outlier presence. To address this, the research employs novel neutrosophic estimators

inside a designed effectively stratified random sampling system. This paradigm is ideally suited to deal-

ing with uncertain along with imprecise data while also resisting the effect of outliers. Furthermore,

the study broadens its scope by include dew point as a possible auxiliary variable, which significantly

improves estimation accuracy.

The possible influence of dew point in combination with neutrosophic versions of robust regression

techniques such as Huber-M, Hampel-M, and Tukey-M is examined at a pivotal point in the study.

These approaches have been chosen purposefully to strengthen estimation accuracy against the disrup-

tive character of outliers. This investigation is expanded to include robust quantile regression, offering

a full and thorough estimate technique. A critical stage in the research is the thorough evaluation of

the proposed methodologies, including the novel incorporation of dew point, using computer trials with

real-world data. The results of these trials clearly demonstrate the superiority of the suggested tech-

niques over standard estimators, especially in the face of outlier-ridden and ambiguous circumstances.

This empirical confirmation is a compelling testimonial to the suggested techniques’ durability, efficacy,

and adaptability.

In the proposed study, an innovative approach for estimating the survey sample mean in the presence

of outliers and ambiguous observations is presented. To get around the shortcomings associated with

traditional estimating techniques, the strategy makes use of neutrosophic estimators using dew point

as an auxiliary variable. The study emphasises how important it is to keep outliers out of the findings

in order to retain the results’ dependability and emphasises the major impact that rare data have on

statistical estimators. The suggested approaches are thoroughly evaluated using computer simulations

with real-world data, and the findings clearly show that they outperformed traditional estimators,

even in the presence of outlier-filled and ambiguous conditions. Overall, the work has the potential to

significantly improve the methodology of surveys and the discipline of statistics.
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