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Abstract. Hamacher operators are extensively utilized in multicriteria attribute group decision-making

(MAGDM) problems due to their remarkable adaptability provided by an adjustable parameter. Here, the

Hamacher T-norm and T-conorm operations for two QSVNRNs are formulated.Using these Hamacher op-

erations, we present the quadripartitioned single-valued neutrosophic refined Hamacher weighted averaging

(QSVNRHWA) operators within the QSVNR framework and analyze their properties.Finally, we explore a

TOPSIS-based approach for multi-attribute decision-making problems that employs the QSVNRHWA opera-

tors, demonstrating its application in evaluating practical scenarios related to converting solid waste into energy.

Keywords: Quadripartitioned Single Valued Neutrosophic Refined Set,Quadripartitioned Single Valued Neu-

trosophic Refined Number,Multi attribute decision making, Aggregation Operator, TOPSIS.

—————————————————————————————————————————-

1. Introduction

In real life, we often encounter issues involving inconsistent, indeterminate, and incomplete

information that cannot be accurately represented by precise numbers. In response to this,
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Lotfi Aliasker Zadeh[34], the pioneer of fuzzy logic, introduced fuzzy sets in 1965 as a way

to effectively address these challenges. Later, in 1986, Krassimir Atanassov[1] expanded upon

Zadeh’s concept by introducing intuitionistic fuzzy sets, which incorporate varying degrees of

both membership and non-membership.

Florentin Smarandache[23,24] became familiar with the neutrosophic set, which under-

pins contemporary mathematical theories. Neutrosophic sets can generate intuitionistic fuzzy

sets(IF), fuzzy sets(FS), and classical sets. The term ”neutrosophic” originates from Neutros-

ophy, a philosophy that encourages the exploration of neutral thought. The main distinction

among fuzzy, intuitionistic fuzzy, and neutrosophic logic or sets is this concept of neutrality.

This idea is crucial for differentiating the three associated functions in the neutrosophic frame-

work: the truth membership function (T), the indeterminate membership function (I), and

the false membership function (F). Additionally, inspired by practical needs, Haibin Wang

and his team created single-valued neutrosophic sets by streamlining the neutrosophic set for

real-world applications.

Yager[31] pioneered the theory of bags, which extends classical set theory by permitting

the repetition of elements, thus introducing the foundation of the multiset. This concept,

allowing multiple occurrences of the same element within a set, was later rigorously defined

by Blizard [4] and Calude et al.[8].To synthesize the principles of fuzzy multisets with IFS,

Shinoj et al. [25] developed the notion of intuitionistic fuzzy multisets(IFMS). Nevertheless,

both fuzzy and intuitionistic fuzzy multisets exhibit limitations in addressing higher-order un-

certainties, often required in complex data analyses.To overcome these constraints, Chatterjee

et al.[21] introduced the single-valued neutrosophic multiset, which refined the representation

of uncertainty by incorporating distinct truth, indeterminacy, and falsity values. Building on

this framework, Smarandache [26] advanced neutrosophic logic in 2013 by proposing n-valued

refined neutrosophic logic. This sophisticated model decomposes the neutrosophic components

T1,T2,...,Tm and I1,I2,...,Ip and F1,F2,...,Fr allowing for a more granular depiction of uncer-

tainty across diverse applications.Deli et al.[12]expanded on these ideas by investigating the

fundamental properties of neutrosophic refined sets, which generalize both fuzzy and intuition-

istic fuzzy multisets, thereby offering enhanced flexibility in representing complex information.

Additionally, Ye et al.[33] developed sophisticated distance and similarity measures tailored for

single-valued neutrosophic multisets. These metrics were subsequently applied to fields such as

medical diagnostics, where data often present ambiguities, contradictions, and incompleteness,

illustrating the model’s practical utility in handling intricate, uncertain datasets.

In four-valued logic, Belnap [6] created a new concept in which any information is repre-

sented by four parameters: T, F, none, and both. These parameters stand for true, false,
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neither true nor false, and both true and false, respectively. Smarandache [24] presented four

numerical valued neutrosophic logic, which separates indeterminacy into two terms: Con-

tradiction (C) and Unknown (U). Belnap’s four-valued logic provides the foundation of this

reasoning.Thus, the Quadripartitioned Single Valued Neutrosophic Set (QSVNS), which has

four components T, C, U, and F in the real unit interval [0,1], was established by Rajashi

Chatterjee et al.[22].

The TOPSIS method integrates a range of valuable and effective models, including the

ideal positive and negative solutions, discrimination measures, and closeness measures, to

determine rankings based on proximity to ideal solutions. Initially introduced by researchers

in 1981, the foundation of the TOPSIS concept was laid by Hwang and Yoon [15]. Yoon [32]

then presented the formal theory in 1987, and Hwang et al. provided further evaluation in

1993 [16].For example, imagine a person shopping for a new mobile phone, assessing options

based on features like RAM, storage, display size, battery life, and price. Overwhelmed by

the variety, the customer may find it difficult to choose the most suitable option. TOPSIS

provides an effective solution by ranking the options based on the weight and significance of

each feature.Later,Chu and Lin [9] introduced the fuzzy TOPSIS technique, and Wang and

Elhag [30] applied a TOPSIS method with FS theory for bridge risk assessments. Several other

scholars, including Chen and Tsao [10], Sun and Lin [28], Dymova et al. [12], Ashtiani et al. [3],

and Memari et al. [20], applied TOPSIS within FS theory contexts. Furthermore, Shen et al.

[28] proposed a TOPSIS method for A-IF set theory, and Joshi and Kumar [18] incorporated

entropy measures in TOPSIS for A-IF information. Additional applications include Liu [19]

developing a TOPSIS approach for physical education issues, while Zulqarnain and Dayan [35]

applied TOPSIS to address challenges in the automotive industry.

Many important norms have been identified by researchers, but the Hamacher t-norms, in-

troduced by Hamacher in 1970, have had a significant and well-regarded influence on the field

of aggregation operators in computing. Additionally, Bellman and Zadeh [5] contributed to

the development of Hamacher aggregation theory, particularly in decision-making with fuzzy

information. Huang [14] explored the use of Hamacher aggregation operators for A-IF sets

and their role in decision-making, while Garg [13] proposed Hamacher aggregation operators

and entropy measures specifically for A-IF data. More recently, Cakir and Ulukan [7] made

advancements in the theory of A-IF Hamacher aggregation operators. These aggregation oper-

ators, based on Hamacher norms, are particularly powerful due to their adjustable parameter

range of 0 ≤ α ≤ ∞.

The paper is structured as follows: Section 2 introduces fundamental concepts related to

neutrosophic sets, neutrosophic refined sets, quadripartitioned single-valued neutrosophic sets,
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and Hamacher operations. Section 3 focuses on enhancing the Hamacher operations for quadri-

partitioned single-valued neutrosophic refined numbers. In Section 4, quadripartitioned single-

valued neutrosophic refined Hamacher weighted aggregation operators are introduced, along

with their essential properties. Section 5 explores the TOPSIS method using QSVNRHWA

information and demonstrates a MADM procedure to assess uncertain and unreliable data.

This method utilizes the TOPSIS technique and derived operators are developed to enhance

the accuracy and significance of the information.Section 7 concludes the paper and discusses

future research opportunities.

2. Preliminaries

Definition 2.1. [22] Let A∗
QR be a universe. A quadripartitioned single valued neutrosophic

set QSVNS KQNR on A∗
QR is defined by by a truth-membership function T̆K(a1), a contra-

diction membership function D̆K(a1),an unknown membership function Y̆K(a1) and a falsity

membership function F̆K(a1) such that for each a1 ∈ A∗
QR , T̆K,D̆K,Y̆K,F̆K ∈ [0,1] and 0 ≤

T̆K(a1)+T̆K(a1)+T̆K(a1)+T̆K(a1) ≤ 4.

Definition 2.2. [2] Let A∗
QR be a universe. A Quadripartitioned Single Valued Neutrosophic

Refined Set(briefly, QSVNRS) KQNR on A∗
QR is defined by

KQNR = {⟨ a1,(T̆1
KQNR

(a1),T̆
2
KQNR

(a1),....,T̆
p
KQNR

(a1)),(D̆
1
KQNR

(a1),D̆
2
KQNR

(a1),....,D̆
p
KQNR

(a1)),

(Y̆1
KQNR

(a1),Y̆
2
KQNR

(a1),....,Y̆
p
KQNR

(a1)),(F̆
1
KQNR

(a1),F̆
2
KQNR

(a1),....,F̆
p
KQNR

(a1))⟩:a1∈A∗
QR}

where T̆1
KQNR

(a1),T̆
2
KQNR

(a1),....,T̆
p
KQNR

(a1):A
∗
QR→[0,1],

D̆1
KQNR

(a1), D̆
2
KQNR

(a1),....,D̆
p
KQNR

(a1):A
∗
QR→[0,1],

Y̆1
KQNR

(a1),Y̆
2
KQNR

(a1),....,Y̆
p
KQNR

(a1):A
∗
QR→[0,1] and

F̆1
KQNR

(a1),F̆
2
KQNR

(a1),....,F̆
p
KQNR

(a1):A
∗
QR→[0,1] such that

0 ≤ T̆j
KQNR

(a1)+ D̆j
KQNR

(a1)+ Y̆j
KQNR

(a1)+ F̆j
KQNR

(a1) ≤ 4 (j=1,2,...p) for any a1 ∈ A∗
QR.

Here T̆1
KQNR

(a1),T̆
2
KQNR

(a1),....,T̆
p
KQNR

(a1),D̆
1
KQNR

(a1),D̆
2
KQNR

(a1),....,D̆
p
KQNR

(a1),

Y̆1
KQNR

(a1),Y̆
2
KQNR

(a1),....,Y̆
p
KQNR

(a1),F̆
1
KQNR

(a1),F̆
2
KQNR

(a1),....,F̆
p
KQNR

(a1) is the truth ,a contra-

diction, an unknown and a falsity membership sequence of the element a1, respectively.And p

is often referred to as QSVNRS(KQNR) dimension.

Definition 2.3. [14] Let KQNR = (T̆K,F̆K) be a collection of IFNs and Let IFHWA:Q\ →
Q,if

IFHWAw = (a1,a2,....,an) =
n⊕

j=1
(wjaj)
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where w = (w1,w2,....,wn)
T be the weight vector of an(j=1,2...n) and wj > 0,

n∑
j=1

wj = 1,then

IFHWA is called the IFHWA operator.

3. Hamacher Weighted Aggregation Operators of QSVNRNs

Definition 3.1. Let k∗1 = ⟨ T̆j
1, D̆

j
1, Y̆

j
1,F̆

j
1 : j = 1,2,...p⟩ and k∗2 = ⟨ T̆j

2, D̆
j
2, Y̆

j
2,F̆

j
2 : j = 1,2,...p

⟩ be two QSVNRNs and η̆ > 0 for any real number, then we define Hamacher T-norm and

Hamacher T-conorm with β̆ > 0

i) k∗1 ⊕ k∗2 =

〈
T̆
j
1 + T̆

j
2 − T̆

j
1T̆

j
2 − (1− β̆)T̆j

1T̆
j
2

1− (1− β̆)T̆j
1T̆

j
2

,
D̆

j
1 + D̆

j
2 − D̆

j
1D̆

j
2 − (1− β̆)D̆j

1D̆
j
2

1− (1− β̆)D̆j
1D̆

j
2

,

Y̆
j
1Y̆

j
2

β̆ + (1− β̆)(Y̆j
1 + Y̆

j
2 − Y̆

j
1Y̆

j
2

,
F̆
j
1F̆

j
2

β̆ + (1− β̆)(F̆j
1 + F̆

j
2 − F̆

j
1F̆

j
2)

〉
.

ii) k∗1 ⊗ k∗2 =

〈
T̆
j
1T̆

j
2

β̆ + (1− β̆)(T̆j
1 + T̆

j
2 − T̆

j
1T̆

j
2

,
D̆

j
1D̆

j
2

β̆ + (1− β̆)(D̆j
1 + D̆

j
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j
1D̆

j
2

,

Y̆
j
1 + Y̆

j
2 − Y̆

j
1Y̆

j
2 − (1− β̆)Y̆j

1Y̆
j
2

1− (1− β̆)Y̆j
1Y̆

j
2

,
F̆
j
1 + F̆

j
2 − F̆

j
1F̆

j
2 − (1− β̆)F̆j

1F̆
j
2

1− (1− β̆)F̆j
1F̆

j
2

〉
.

iii) η̆k∗1 =

〈
(1 + (β̆ − 1)T̆j

1)
η̆)− (1− T̆

j
1)

η̆

(1 + (β̆ − 1)T̆j
1)

η̆ + (β̆ − 1)(1− T̆
j
1)

η̆
,

(1 + (β̆ − 1)D̆j
1)

η̆)− (1− D̆
j
1)

η̆

(1 + (β̆ − 1)D̆j
1)

η̆ + (β̆ − 1)(1− D̆
j
1)

η̆
,

β̆(Y̆j
1)

η̆

(1 + (β̆ − 1)(1− Y̆
j
1))

η̆ + (β̆ − 1)(Y̆j
1)

η̆
,

β̆(F̆j
1)

η̆

(1 + (β̆ − 1)(1− F̆
j
1))

η̆ + (β̆ − 1)(F̆j
1)

η̆

〉
.

iv) (k∗1)
η̆ =

〈
(T̆j

1)
η̆

(1 + (β̆ − 1)(1− T̆
j
1))

η̆ + (β̆ − 1)(T̆j
1)

η̆
,

(D̆j
1)

η̆

(1 + (β̆ − 1)(1− D̆
j
1))

η̆ + (β̆ − 1)(D̆j
1)

η̆
,

(1 + (β̆ − 1)Y̆j
1)

η̆ − (1− Y̆
j
1)

η̆

(1 + (β̆ − 1)Y̆j
1)

η̆ + (β̆ − 1)(1− Y̆
j
1)

η̆
,

(1 + (β̆ − 1)F̆j
1)

η̆ − (1− F̆
j
1)

η̆

(1 + (β̆ − 1)F̆j
1)

η̆ + (β̆ − 1)(1− F̆
j
1)

η̆

〉
.

Example 3.2. Let two QSVNRNs are k∗1 = (⟨0.5,0.3,0.2,0.2⟩,⟨0.5,0.6,0.3,0.3⟩,⟨0.4,0.7,0.2,0.3⟩)
and k∗2 = (⟨0.3,0.6,0.3,0.1⟩,⟨0.5,0.5,0.2,0.3⟩,⟨0.6,0.9,0.3,0.3⟩ and η̆ = 2.Then for β̆ = 3.

k∗1 ⊕ k∗2 = ⟨0.949,0.919,0.500,0.455⟩
k∗1 ⊗ k∗2 = ⟨0.371,0.246,0.972,0.969⟩
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η̆k∗1 = ⟨0.941,0.821,0.381,0.280⟩
(k∗1)

η̆ = ⟨0.496,0.381,0.986,0.931⟩

Proposition 3.3. Let k∗1 and k∗2 be two QSVNRNs and β̆,β̆
′ ≥ 0.

a k∗1 ⊕ k∗2 = k∗2 ⊕ k∗1.

b k∗1 ⊗ k∗2 = k∗2 ⊗ k∗1.

c β̆(k∗1 ⊕ k∗2) = β̆ k∗1 ⊕ β̆ k∗2.

d β̆ k∗1 ⊕ β̆
′
k∗1 = (β̆+β̆

′
)k∗1.

e (k∗1 ⊗ k∗2)
β̆ = (k∗1)

β̆ ⊗ (k∗2)
β̆.

f (k∗1)
β̆ ⊗ (k∗1)

β̆
′
= (k∗1)

β̆+β̆
′

Proof. They are easily seen from the formulas in Definition 3.1, hence omitted

Definition 3.4. Let k∗r = ⟨ T̆
j
r , D̆

j
r, Y̆

j
r,F̆

j
r : j = 1,2,...,p⟩ (r = 1,2,...,n) is a collection of

QSVNRNs.Then the Quadripartitioned single valued neutrosophic refined hamacher weighted

average operator(QSVNRHWA) can be defined as follows:

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
n) =

⊕n
r=1(ϖ̈rk

∗
r).

where ϖ̈ = (ϖ̈1, ϖ̈2,....,ϖ̈n)be a weighted vector of k∗r such that ϖ̈r ∈ [0,1] and
n∑

r=1
(ϖ̈r)

= 1.

Theorem 3.5. Let k∗r = ⟨ T̆
j
r , D̆

j
r, Y̆

j
r,F̆

j
r : j = 1,2,...,p⟩ (r = 1,2,...,n) is a collection of

QSVNRNs then their aggregated value of QSVNRHWA operator is again a QSVNRNs can be

defined as follows

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
n) =

⊕n
r=1H(ϖ̈rk

∗
r)

=

〈 ∏n
r=1(1+(β̆−1)T̆j

r)
ϖ̈r−

∏n
r=1(1−T̆

j
r)

ϖ̈r

n∏
r=1

(1+(β̆−1)T̆j
r)ϖ̈r+(β̆−1)

∏n
r=1(1−̆

j
1)

ϖ̈r

,
∏n

r=1(1+(β̆−1)D̆j
r)

ϖ̈r−
∏n

r=1(1−D̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)D̆j

r)ϖ̈r+(β̆−1)
∏n

r=1(1−D̆
j
r)ϖ̈r

,

β̆
∏n

r=1(Y̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)(1−Y̆

j
r))ϖ̈r+(β̆−1)

∏n
r=1(Y̆

j
r)ϖ̈r

,
β̆
∏n

r=1(F̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏n
r=1(F̆

j
r)ϖ̈r

〉
......(5.2.1)

where ϖ̈ = (ϖ̈1, ϖ̈2,....,ϖ̈n) be a weighted vector of k∗r such that ϖ̈r ∈ [0,1] and
∑n

r=1(ϖ̈r) =

1, β̆ > 0.
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Proof. we can prove this theorem by mathematical induction.

For n=1,by Eq(5.2.1),we get

QSVNRHWAϖ̈(k
∗
1) = (ϖ̈1k

∗
1) = k∗1.

=

〈
(1+(β̆−1)T̆j

1)−(1−T̆
j
1)

(1+(β̆−1)T̆j
1)+(β̆−1)(1−T̆

j
1)
,

(1+(β̆−1)D̆j
1)−(1−D̆

j
1)

(1+(η̆−1)D̆j
1)+(β̆−1)(1−D̆

j
1)
,

β̆(Y̆j
1)

(1+(β̆−1)(1−Y̆
j
1))+(β̆−1)(Y̆j

1)
,

β̆(F̆j
1)

(1+(β̆−1)(1−F̆
j
1))+(β̆−1)(F̆j

1)

〉

Thus,satisfied for n=1.

put n = υ for Eq(5.2.1),then

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
υ) =

⊕υ
r=1H(ϖ̈rk

∗
r)

=

〈 ∏υ
r=1(1+(β̆−1)T̆j

r)
ϖ̈r−

∏υ
r=1(1−T̆

j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)T̆j

r)ϖ̈r+(β̆−1)
∏υ

r=1(1−̆
j
1)

ϖ̈r
,

∏υ
r=1(1+(β̆−1)D̆j

r)
ϖ̈r−

∏υ
r=1(1−D̆

j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)D̆j

r)ϖ̈r+(β̆−1)
∏υ

r=1(1−D̆
j
r)ϖ̈r

,

β̆
∏υ

r=1(Y̆
j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)(1−Y̆

j
r))ϖ̈r+(β̆−1)

∏υ
r=1(Y̆

j
r)ϖ̈r

,
β̆
∏υ

r=1(F̆
j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏υ
r=1(F̆

j
r)ϖ̈r

〉

If Eq(5.2.1) is true for n = υ.

For n = υ+1,then

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
υ+1) =

⊕υ+1
r=1H(ϖ̈rk

∗
r) ⊕H (ϖ̈υ+1k

∗
υ+1)

=

〈 ∏υ
r=1(1+(β̆−1)T̆j

r)
ϖ̈r−

∏υ
r=1(1−T̆

j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)T̆j

r)ϖ̈r+(β̆−1)
∏υ

r=1(1−̆
j
1)

ϖ̈r
,

∏υ
r=1(1+(β̆−1)D̆j

r)
ϖ̈r−

∏υ
r=1(1−D̆

j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)D̆j

r)ϖ̈r+(β̆−1)
∏υ

r=1(1−D̆
j
r)ϖ̈r

,

β̆
∏υ

r=1(Y̆
j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)(1−Y̆

j
r))ϖ̈r+(β̆−1)

∏υ
r=1(Y̆

j
r)ϖ̈r

,
β̆
∏υ

r=1(F̆
j
r)

ϖ̈r∏υ
r=1(1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏υ
r=1(F̆

j
r)ϖ̈r

〉

⊕H

〈
(1+(β̆−1)T̆j

υ+1)−(1−T̆
j
υ+1)

(1+(β̆−1)T̆j
υ+1)+(β̆−1)(1−T̆

j
υ+1)

,
(1+(β̆−1)D̆j

υ+1)−(1−D̆
j
υ+1)

(1+(η̆−1)D̆j
υ+1)+(β̆−1)(1−D̆

j
υ+1)

,

β̆(Y̆j
υ+1)

(1+(β̆−1)(1−Y̆
j
υ+1))+(β̆−1)(Y̆j

υ+1)
,

β̆(F̆j
υ+1)

(1+(β̆−1)(1−F̆
j
υ+1))+(β̆−1)(F̆j

υ+1)

〉
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=

〈 ∏υ+1
r=1 (1+(β̆−1)T̆j

r)
ϖ̈r−

∏υ+1
r=1 (1−T̆

j
r)

ϖ̈r∏υ+1
r=1 (1+(β̆−1)T̆j

r)ϖ̈r+(β̆−1)
∏υ+1

r=1 (1−̆
j
1)

ϖ̈r
,

∏υ+1
r=1 (1+(β̆−1)D̆j

r)
ϖ̈r−

∏υ+1
r=1 (1−D̆

j
r)

ϖ̈r

υ+1∏
r=1

(1+(β̆−1)D̆j
r)ϖ̈r+(β̆−1)

∏υ+1
r=1 (1−D̆

j
r)ϖ̈r

,

β̆
∏υ+1

r=1 (Y̆
j
r)

ϖ̈r∏υ+1
r=1 (1+(β̆−1)(1−Y̆

j
r))ϖ̈r+(β̆−1)

∏υ+1
r=1 (Y̆

j
r)ϖ̈r

,
β̆
∏υ+1

r=1 (F̆
j
r)

ϖ̈r∏υ+1
r=1 (1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏υ+1
r=1 (F̆

j
r)ϖ̈r

〉

Thus,Eq(5.2.1) is true for n = υ+1.Therefore,Eq(5.2.1) is satisfied for every n.

Theorem 3.6. (Idempotency)

Let k∗r (r=1,2,...,n) is a collection of QSVNRNs.If k∗r = k∗ for all (r=1,2,...,n) then

QSVNRHWAϖ̈(k
∗
1,k

∗
2,....,k

∗
n) = k∗.

Proof. Assume k∗r = k∗ for all (r=1,2,...,n).

By Theorem (4.2) we obtain that

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
n) =

⊕n
r=1H(ϖ̈rk

∗
r) =

⊕n
r=1H(ϖ̈rk

∗) =〈 ∏n
r=1(1+(β̆−1)T̆j)ϖ̈r−

∏n
r=1(1−T̆j)ϖ̈r

n∏
r=1

(1+(β̆−1)T̆j)ϖ̈r+(β̆−1)
∏n

r=1(1−̆
j
1)

ϖ̈r

,
∏n

r=1(1+(β̆−1)D̆j)ϖ̈r−
∏n

r=1(1−D̆j)ϖ̈r∏n
r=1(1+(β̆−1)D̆j)ϖ̈r+(β̆−1)

∏n
r=1(1−D̆j)ϖ̈r

,

β̆
∏n

r=1(Y̆
j)ϖ̈r∏n

r=1(1+(β̆−1)(1−Y̆j))ϖ̈r+(β̆−1)
∏n

r=1(Y̆
j)ϖ̈r

,
β̆
∏n

r=1(F̆
j)ϖ̈r∏n

r=1(1+(β̆−1)(1−F̆j))ϖ̈r+(β̆−1)
∏n

r=1(F̆
j)ϖ̈r

〉
= k∗

Theorem 3.7. (Monotonicity)

Let k∗r and k∗
′

r (r=1,2,...,n) be two collections of QSVNRNs.If k∗r ≤ k∗
′

r for all r=1,2,...,n then

QSVNRHWAϖ̈(k
∗
1,k

∗
2,....,k

∗
n) ≤ QSVNRHWAϖ̈(k

∗′
1 ,k

∗′
2 ,....,k

∗′
n ).

Proof. If k∗r ≤ k∗
′

r then we have

T̆
j
r ≤ T̆

j′
r , D̆

j
r ≤ D̆

j′
r ,Y̆

j
r ≤ Y̆

j′
r ,F̆

j
r ≤ F̆

j′
r for all r=1,2,...,n.

With these assumptions,we find that〈 ∏n
r=1(1+(β̆−1)T̆j

r)
ϖ̈r−

∏n
r=1(1−T̆

j
r)

ϖ̈r

n∏
r=1

(1+(β̆−1)T̆j
r)ϖ̈r+(β̆−1)

∏n
r=1(1−̆

j
1)

ϖ̈r

,
∏n

r=1(1+(β̆−1)D̆j
r)

ϖ̈r−
∏n

r=1(1−D̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)D̆j

r)ϖ̈r+(β̆−1)
∏n

r=1(1−D̆
j
r)ϖ̈r

,

β̆
∏n

r=1(Y̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)(1−Y̆

j
r))ϖ̈r+(β̆−1)

∏n
r=1(Y̆

j
r)ϖ̈r

,
β̆
∏n

r=1(F̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏n
r=1(F̆

j
r)ϖ̈r

〉

≤

〈 ∏n
r=1(1+(β̆−1)T̆j′

r )ϖ̈r−
∏n

r=1(1−T̆
j′
r )ϖ̈r

n∏
r=1

(1+(β̆−1)T̆j′
r )ϖ̈r+(β̆−1)

∏n
r=1(1−̆

j
1)

ϖ̈r

,
∏n

r=1(1+(β̆−1)D̆j′
r )ϖ̈r−

∏n
r=1(1−D̆

j′
r )ϖ̈r∏n

r=1(1+(β̆−1)D̆j′
r )ϖ̈r+(β̆−1)

∏n
r=1(1−D̆

j′
r )ϖ̈r

,

β̆
∏n

r=1(Y̆
j′
r )ϖ̈r∏n

r=1(1+(β̆−1)(1−Y̆
j′
r ))ϖ̈r+(β̆−1)

∏n
r=1(Y̆

j′
r )ϖ̈r

,
β̆
∏n

r=1(F̆
j′
r )ϖ̈r∏n

r=1(1+(β̆−1)(1−F̆
j′
r ))ϖ̈r+(β̆−1)

∏n
r=1(F̆

j′
r )ϖ̈r

〉

Then
⊕n

r=1H(ϖ̈rk
∗
r) =

⊕n
r=1H(ϖ̈rk

∗′),so QSVNRHWAϖ̈(k
∗
1,k

∗
2,....,k

∗
n) ≤

QSVNRHWAϖ̈(k
∗′
1 ,k

∗′
2 ,....,k

∗′
n ).
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Theorem 3.8. (Boundedness)

Let k∗r (r=1,2,...,n) be a collection of QSVNRNs.Then k∗min ≤ QSVNRHWAϖ̈(k
∗
1,k

∗
2,....,k

∗
n) ≤

k∗max.

Proof. k∗min = ⟨ min(T̆j
r), min(D̆j

r), max(Y̆j
r), max(F̆j

r): r=1,2,...,n ⟩
and k∗max = ⟨ max(T̆j

r), max(D̆j
r), min(Y̆j

r), min(F̆j
r): r=1,2,...,n ⟩

They can be proved using similar techniques, therefore omitted.

4. TOPSIS method for MADM problems using QSVNRHWA

One of the conventional methods for handling MADM problems is TOPSIS. It is used to

rank the practical options in order of priority and select the best option based on the available

data. Here, we will demonstrate how to solve the MADM problem using the TOPSIS tech-

nique, which is based on the QSVNRHWA operator.

Let us consider a collection of evaluation attributes Ω̂ = {Ω̂1,Ω̂2,...,Ω̂n}, ζ̂ = {ζ̂1,ζ̂2,...,ζ̂m} be

the set of feasible Preferences(Alternatives) and κ̈αβ, α = 1,2,...,m ; β = 1,2,...,n is the score

of preferencei ζ̂α with respect to attributes Ω̂β.Let ϖ̈ = (ϖ̈1, ϖ̈2,....,ϖ̈q) be a weighted vector

satisfying 0 ≤ ϖ̈β ≤ 1 and
∑n

β=1(ϖ̈β) = 1.

TOPSIS approach is summarized as follows:

Step 1: Computation of normalized decision matrix.

Formulate the normalized value ω̌αβ is a follows:

For the profit matrix, ω̌N
αβ =

ω̌αβ − ω̌−
β

ω̌+
β − ω̌−

β

where ω̌+
β = max

β
(ω̌αβ) and ω̌−

β = min
β

(ω̌αβ)or setting ω̌+
β is the best position and ω̌−

β is the

worst position.

For the cost matrix, ω̌N
αβ =

ω̌−
β − ω̌αβ

ω̌+
β − ω̌−

β

.

Step 2: Compute the QSVNRN for each alternative ζ̂α (α = 1,2,...,m) by using the oper-

tor QSVNRHWA.

QSVNRHWAϖ̈(k
∗
1,k

∗
2,...,k

∗
n) =

⊕n
r=1(ϖ̈rk

∗
r)

=

〈 ∏n
r=1(1+(β̆−1)T̆j

r)
ϖ̈r−

∏n
r=1(1−T̆

j
r)

ϖ̈r∏n
r=1(1+(β̆−1)T̆j

r)ϖ̈r+(β̆−1)
∏n

r=1(1−̆
j
1)

ϖ̈r
,

∏n
r=1(1+(β̆−1)D̆j

r)
ϖ̈r−

∏n
r=1(1−D̆

j
r)

ϖ̈r∏n
r=1(1+(β̆−1)D̆j

r)ϖ̈r+(β̆−1)
∏n

r=1(1−D̆
j
r)ϖ̈r

,

β̆
n∏

r=1
(Y̆j

r)
ϖ̈r∏n

r=1(1+(β̆−1)(1−Y̆
j
r))ϖ̈r+(β̆−1)

∏n
r=1(Y̆

j
r)ϖ̈r

,
β̆
∏n

r=1(F̆
j
r)

ϖ̈r∏n
r=1(1+(β̆−1)(1−F̆

j
r))ϖ̈r+(β̆−1)

∏n
r=1(F̆

j
r)ϖ̈r

〉
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where ϖ̈ = (ϖ̈1, ϖ̈2,....,ϖ̈n) be a weighted vector of k∗r such that ϖ̈r ∈ [0,1] and
∑n

r=1(ϖ̈r) =

1, β̆ > 0.

Step 3: Determine the quadripartitioned single valued neutrosophic refined positive ideal

solution (QSVNRPIS) and quadripartitioned single valued neutrosophic refined negative ideal

solutions (QSVNRNIS).

QSVNRPIS = D̈+
β = (ε̈+1 , ε̈

+
2 ,....,ε̈

+
n )

=
〈
max
β

(T̆αβ),max
β

(D̆αβ),min
β

(Y̆αβ),min
β

(F̆αβ)
〉
, α = 1,2,...,m ; β = 1,2,...,n.

QSVNRNIS = D̈−
β = (ε̈−1 , ε̈

−
2 ,....,ε̈

−
n )

=
〈
min
β

(T̆αβ),min
β

(D̆αβ),max
β

(Y̆αβ),max
β

(F̆αβ)
〉
, α = 1,2,...,m ; β = 1,2,...,n.

Step 4: Calculate the distance measures of a perferencei.

For the seperation measures, ξ̂+ and ξ̂− can be calculated by using Normalized Hamming

distance as follows:

ξ̂+α =
∑q

β=1 ϖ̈βd(ζ̂αβ, D̈
+
β ) and ξ̂−α =

∑q
β=1 ϖ̈βd(ζ̂αβ, D̈

−
β ) , α = 1,2,...,m.

Step 5: Formulate the relative closeness coefficient(RCC) for the alternative ζ̂α,which is de-

fined by

Γ̆α =
ξ̂+α

(ξ̂+α + ξ̂−α )
, α = 1,2,...,m ; 0 ≤ Γ̆α ≤ 1.

Step 6: Ranking the alternatives in decreasing or ascending order of their RCC.The greater

value Γ̆α indicates desirable alternative ζ̂α.

4.1. Application

In today’s world, the amount of solid waste produced rises daily as a result of both popula-

tion increase and the development of several technologies. While the government is employing

various disposal techniques to cut down on garbage, they are still searching for the best way to

solve this issue without negatively affecting society or the environment. Currently, solid waste

management refers to the undesired or worthless solid materials produced by human activity
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in commercial, industrial, or domestic settings. Therefore, it is essential to ethically reduce

solid waste and convert it into energy.

Let us consider a set of solid waste-to-energy technologies: 1)Biological conversion(ζ̂1);

2)Bioelectrochemical conversion( ζ̂2);3)Thermal conversion(ζ̂3);4) Mechanical conversion

( ζ̂4).These four kinds of solid waste-to-energy technologies are evaluated based on five at-

tributes: :1) Economy(Ω̂1);2) Technical aspects(Ω̂2) 3)Environment(Ω̂3) 4) Ecosystem (Ω̂4)

5) Society (Ω̂5).The weight vector assigned for the above five attributes is as follows ϖ̈ =

(0.2,0.1,0.3,0.2,0.2).Hence the proposed operator QSVNRHWA and here to solve MADM prob-

lem under QSVNRN information.

Step 1: Compute the normalized decision matrix.

The decision matrix for the profit type can be expressed as

Ω̂1 Ω̂2 Ω̂3 Ω̂4 Ω̂5

ζ̂1 ⟨0.6,0.3,0.5,0.4⟩
⟨0.5,0.6,0.2,0.3⟩
⟨0.6,0.7,0.5,0.2⟩

⟨0.6,0.6,0.4,0.3⟩
⟨0.9,0.7,0.3,0.1⟩
⟨0.8,0.8,0.3,0.4⟩

⟨0.5,0.6,0.5,0.4⟩
⟨0.6,0.4,0.3,0.6⟩
⟨0.7,0.5,0.6,0.3⟩

⟨0.4,0.5,0.4,0.2⟩
⟨0.6,0.7,0.5,0.6⟩
⟨0.7,0.4,0.6,0.5⟩

⟨0.8,0.6,0.4,0.3⟩
⟨0.6,0.7,0.2,0.5⟩
⟨0.7,0.5,0.6,0.2⟩

ζ̂2 ⟨0.5,0.7,0.3,0.5⟩
⟨0.6,0.4,0.3,0.4⟩
⟨0.8,0.5,0.7,0.3⟩

⟨0.5,0.5,0.4,0.2⟩
⟨0.8,0.7,0.3,0.4⟩
⟨0.7,0.6,0.6,0.3⟩

⟨0.4,0.4,0.7,0.6⟩
⟨0.7,0.7,0.3,0.2⟩
⟨0.6,0.5,0.3,0.4⟩

⟨0.5,0.3,0.6,0.4⟩
⟨0.9,0.6,0.4,0.5⟩
⟨0.7,0.8,0.4,0.2⟩

⟨0.8,0.5,0.4,0.4⟩
⟨0.4,0.4,0.5,0.6⟩
⟨0.5,0.7,0.6,0.2⟩

ζ̂3 ⟨0.7,0.5,0.6,0.4⟩
⟨0.5,0.8,0.4,0.6⟩
⟨0.6,0.3,0.5,0.2⟩

⟨0.7,0.6,0.4,0.3⟩
⟨0.8,0.8,0.2,0.2⟩
⟨0.9,0.7,0.3,0.2⟩

⟨0.6,0.5,0.7,0.4⟩
⟨0.5,0.6,0.4,0.2⟩
⟨0.4,0.4,0.3,0.6⟩

⟨0.5,0.7,0.6,0.4⟩
⟨0.7,0.6,0.5,0.3⟩
⟨0.5,0.3,0.5,0.7⟩

⟨0.8,0.5,0.6,0.5⟩
⟨0.7,0.6,0.3,0.3⟩
⟨0.5,0.7,0.5,0.3⟩

ζ̂4 ⟨0.6,0.4,0.3,0.2⟩
⟨0.7,0.5,0.6,0.8⟩
⟨0.3,0.6,0.5,0.4⟩

⟨0.7,0.6,0.5,0.3⟩
⟨0.5,0.5,0.6,0.7⟩
⟨0.9,0.9,0.4,0.4⟩

⟨0.4,0.6,0.3,0.5⟩
⟨0.8,0.5,0.6,0.3⟩
⟨0.5,0.6,0.4,0.2⟩

⟨0.8,0.5,0.6,0.4⟩
⟨0.5,0.4,0.3,0.5⟩
⟨0.6,0.8,0.4,0.2⟩

⟨0.4,0.6,0.7,0.3⟩
⟨0.6,0.3,0.4,0.7⟩
⟨0.7,0.6,0.4,0.3⟩

Step 2: Computed QSVNRHWA operator with β̆ = 2,we obtain the collective QSVNR decision

matrix.
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Ω̂1 Ω̂2 Ω̂3

ζ̂1 ⟨0.281,0.243,0.667,0.560⟩ ⟨0.294,0.232,0.794,0.730⟩ ⟨0.462,0.302,0.639,0.587⟩
ζ̂2 ⟨0.369,0.247,0.715,0.679⟩ ⟨0.212,0.165,0.855,0.768⟩ ⟨0.413,0.361,0.587,0.522⟩
ζ̂3 ⟨0.321,0.256,0.795,0.667⟩ ⟨0.314,0.232,0.768,0.723⟩ ⟨0.302,0.241,0.644,0.522⟩
ζ̂4 ⟨0.243,0.205,0.753,0.757⟩ ⟨0.251,0.230,0.896,0.876⟩ ⟨0.429,0.408,0.587,0.430⟩

Ω̂4 Ω̂5

ζ̂1 ⟨0.312,0.258,0.795,0.703⟩ ⟨0.440,0.321,0.667,0.679⟩
ζ̂2 ⟨0.540,0.306,0.757,0.631⟩ ⟨0.297,0.247,0.795,0.667⟩
ζ̂3 ⟨0.315,0.244,0.834,0.757⟩ ⟨0.406,0.321,0.753,0.640⟩
ζ̂4 ⟨0.424,0.319,0.715,0.631⟩ ⟨0.285,0.202,0.798,0.715⟩

Step 3: Calculate the QSVNRPIS and QSVNRNIS are defined as

D̈β
+

QSVNRPIS

D̈1
+ ⟨0.369,0.256,0.667,0.560⟩

D̈2
+ ⟨0.294,0.232,0.794,0.730⟩

D̈3
+ ⟨0.462,0.408,0.587,0.430⟩

D̈4
+ ⟨0.540,0.319,0.715,0.631⟩

D̈5
+ ⟨0.440,0.321,0.667,0.640⟩

D̈β
−

QSVNRNIS

D̈1
− ⟨0.243,0.205,0.795,0.757⟩

D̈2
− ⟨0.212,0.165,0.896,0.876⟩

D̈3
− ⟨0.302,0.241,0.639,0.587⟩

D̈4
− ⟨0.312,0.244,0.834,0.757⟩

D̈5
− ⟨0.285,0.202,0.798,0.715⟩

Step 4:Calculate the distance measures of a perferencei.

For the seperation measures, ξ̂+ and ξ̂− can be calculated by using Normalized Hamming

distance of each perference.

ξ̂+α =
∑5

β=1 ϖ̈βd(P̈αβ, D̈
+
β ) and ξ̂−α =

∑4
β=1 ϖ̈βd(P̈αβ, D̈

−
β ),α = 1,2,3,4.

ξ̂+1 = 0.0106, ξ̂+2 = 0.0101, ξ̂+3 = 0.0169, ξ̂+4 = 0.0126.

ξ̂−1 = 0.0148, ξ̂−2 = 0.0152, ξ̂−3 = 0.0091, ξ̂−4 = 0.0128.

Step 5: Calculate(RCC) for each alternative ζ̂α,which is defined by

Γ̆α = ξ̂+α
(ξ̂+α+ξ̂−α )

, α = 1,2,3,4.

⇒ Γ̆1 = 0.5825, Γ̆2 = 0.6013, Γ̆3 = 0.3505, Γ̆4 = 0.5040.

Step 5: Select the desirable alterative ζ̂α.

The four alternatives are ranked based on the RCC values for each preference.
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ζ̂2 > ζ̂1 > ζ̂4 > ζ̂3.

Therefore ζ̂2 is the desirable.

Results:

The highest RCC indicates that Bioelectrochemical conversion is the optimal approach for

solid waste-to-energy technology due to its environmentally friendly nature. This process

generates more green energy, contributing to environmental cleanliness and offering significant

employment opportunities to our society.

Figure 1. Rating values assigned to the alternatives

5. Conclusion

In this study, we introduced a comparative approach for two quadripartitioned single-valued

neutrosophic refined numbers.We proposed new aggregation operators for these quadripar-

titioned single-valued neutrosophic refined sets, based on Hamacher t-norm and Hamacher

t-conorm, and examined their fundamental properties. These operators were incorporated

into the TOPSIS method, and the approach was extended to solve MADM problems involving

quadripartitioned single-valued neutrosophic refined numbers. A practical application was pro-

vided, demonstrating the conversion of solid waste into energy, a solution relevant to current

global issues. For future research, we aim to expand the proposed approach and applying it to

a range of decision-making challenges, including information management, project selection,

and other decision-making areas.
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