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—————————————————————————————————————————-

1. Introduction

To explain uncertainty, a number of theories have been put forth, including fuzzy sets

(FS) [1], which have membership grades (MG) that range from 0. Atanassov [2] constructed

an intuitionistic FS (IFS) for ζ, ω ∈ [0, 1] using two MGs: 0 ≤ ζ + ω ≤ 1 and positive ζ and

negative ω. Yager [3] developed the Pythagorean FSs (PFS) idea, which is distinguished by

its MG and non-MG (NMG) with ζ +ω ≥ 1 to ζ2 +ω2 ≤ 1. Numerous studies have examined
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the use of IFSs and PFSs in various fields. Their ability to communicate information is

still restricted. Because of this, the experts were still having trouble interpreting the data

in these sets and the associated data. Wang et al. [4] investigated the concept of complex

IFS with DOMBI prioritized AOs and its application for trustworthy green supplier selection.

Hatamleh et al. [5]- [10] discussed the concept of new algebraic structures such as neutrosophic

sets, semigroups and its applications. According to Cuong et al. [11], the three primary ideas

of the picture FS are positive MG (ζ), neutral MG (∝), and negative MG (ω). Additionally,

it offers greater benefits than PFS and IFS. Since ζ, ω ∈ [0, 1], it has been noted that the

picture FS is an upgrade of the IFS that may handle greater inconsistency and 0 ≤ ζ +ω ≤ 1.

According on the picture FS description, expert comments like ”yes,” ”abstain,” ”no,” and

”refusal” will be supplied.

Shahzaib et al. [12] defined the SFS for certain AOs using MADM. SFS requires that 0 ≤
ζ2 + ω2 ≤ 1 rather than 0 ≤ ζ + ω ≤ 1. Hussain et al. [13] first proposed the concept

of an intelligent decision support system for SFS. Hatamleh et al. [14]- [18] deals that the

different algebraic concepts and its generalization. SFSs and their applications in DM were

initially presented by Rafiq et al. [19]. For instance, ζ2 + ω2 ≥ 1 is a DM problem with

a property. Senapati et al. [20] invented Fermatean FS (FFS) in 2019 with the condition

that 0 ≤ ζ3 + ω3 ≤ 1. The concept of generalized orthopair FSs was initially proposed

by Yager [21]. In the ∝-rung orthogonal pair FS (∝-ROFS), both the MG and the NMG

have power ∝; however, their sum can never be more than one. Palanikumar et al. [22]

introduced the MADM approach for Pythagorean neutrosophic normal interval-valued fuzzy

AOs. Aggregation operators are essential to solving MADM problems (AOs). According to Xu

et al. [23], there are IFS averaging operators that may be used to average IFS data. Recently

many authors discussed the new research and its aggregating operators [24]- [28].

Based on IFSs, Xu et al. [29] developed geometric operators, such as weighted, ordered

weighted, and hybrid operators. Li et al. [30] proposed generalized ordered weighted averaging

operators (GOWs) in 2002. Using AOs and distance measurements, Zeng et al. [31] described

how to calculate ordered weighted distances. Peng et al. [32] examined a basic PFS based on

the characteristics of AOs. Fuzzy sphere Dombi AOs were developed by Ashraf et al. [33].

Additionally, Ullah et al. [34, 35] offer more details on SFSs and T-SFSs. Al-Husban [36]

introduced the concept of multi-fuzzy rings and its extension. Palanikumar et al. [37–39]

investigated a variety of algebraic structures and aggregation methods with applications. The

rest of this work will be completed in the manner described below. For an introduction, see

section 1. In Section 2, PFS and NS were covered. Section 3 describes a number of techniques

on ∝ IVNNs. Section 4 discusses the AOs based on IVT ∝ NN. The conclusion is covered in

section 5.
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2. Background

This section has several crucial definitions that we should examine for future learning.

Definition 2.1. Let A be a universal. The PFS Γ =
{
[,
〈
LT ([),LF ([)

〉∣∣[ ∈ A}, LT : A →
(0, 1) and LF : A → (0, 1) called the MG and NMG of [ ∈ A to Γ, respectively and 0 �
(LT ([))2 + (LF ([))2 � 1. For Γ =

〈
LT ,LF

〉
is called a Pythagorean fuzzy number (PFN).

Definition 2.2. The NS Γ =
{
[,
〈
LT ([),LI([),LF ([)

〉∣∣[ ∈ A}, where LT ,LI ,LF : A → (0, 1)

is denote the MG, IMG and NMG of [ ∈ A, respectively and 0 ≤ (LT ([))+(LI([))+(LF ([)) ≤
2. For M =

〈
LT ,LI ,LF

〉
is called a neutrosophic number (NN).

Definition 2.3. The Pythagorean NS Γ =
{
[,
〈
LT ([),LI([),LF ([)

〉∣∣[ ∈ A
}

, where

LT ,LI ,LF : A → (0, 1) is called the MG, IMG and NMG of [ ∈ A, respectively and

0 ≤ (LT ([))2 + (LI([))2 + (LF ([))2 ≤ 2. For M =
〈
LT ,LI ,LF

〉
is called a Pythagorean

neutrosophic number (PyNN).

Definition 2.4. Let Γ1 = (a1, b1) ∈ Nand Γ2 = (a2, b2) ∈ N . Then the distance between Γ1

and Γ2 is defined as Λ(Γ1,Γ2) =
√

(a1 − a2)2 + 1
2(b1 − b2)2, where N is a natural number.

3. Operations for IVT ∝ NN

We present the concept of the ∝ IVNN, which is a tangent trigonometric. As a consequence,

the IVT ∝ NN and its operations were established and tanπ/2 = `

Definition 3.1. The ∝ NS Γ =
{
[,
〈(

[(` ◦ O)([), (` ◦ V)([)], [(` ◦ P)([), (` ◦ X )([)], [(` ◦

Q)([), (` ◦ Y)([)]
)〉∣∣∣[ ∈ A}, where (` ◦ O), (` ◦ P), (` ◦ Q) : A → (0, 1) denote the MG, IMG

and NMG of [ ∈ A to Γ, respectively and 0 ≤ ((` ◦V)([))∝ + ((` ◦X )([))∝ + ((` ◦Y)([))∝ ≤ 1.

For convenience, Γ =
〈(

[(` ◦ O), (` ◦ V)], [(` ◦ P), (` ◦ X )], [(` ◦ Q), (` ◦ Y)]
)〉

is represent a

IVT ∝ NN.

Definition 3.2. Let Γ =
〈(

[(` ◦ O), (` ◦ V)], [(` ◦ P), (` ◦ X )], [(` ◦ Q), (` ◦ Y)]
)〉
,Γ1 =

〈([(` ◦ O1), (` ◦ V1)], [(` ◦ P1), (` ◦ X1)], [(` ◦ Q1), (` ◦ Y1)])〉,Γ2 = 〈([(` ◦ O2), (` ◦ V2)], [(` ◦
P2), (` ◦ X2)], [(` ◦ Q2), (` ◦ Y2)])〉 be any three IVT ∝ NNs, and q > 0. Then

(1) Γ1 g Γ2 =



∝

√√√√ ((` ◦ O1))
∝ + ((` ◦ O2))

∝

−((` ◦ O1))
∝ · ((` ◦ O2))

∝
, ∝

√√√√ ((` ◦ V1))∝ + ((` ◦ V2))∝

−((` ◦ V1))∝ · ((` ◦ V2))∝
,

∝

√√√√ ((` ◦ P1))∝ + ((` ◦ P2))∝

−((` ◦ P1))∝ · ((` ◦ P2))∝
, ∝

√√√√ ((` ◦ X1))
∝ + ((` ◦ X2))

∝

−((` ◦ X1))
∝ · ((` ◦ X2))

∝
,

((` ◦ Q1))
∝((` ◦ Q2))

∝, ((` ◦ Y1))∝((` ◦ Y2))∝


,

Raed Hatamleh, Ahmed Salem Heilat, M.Palanikumar and Abdallah Al-Husban, Different
operators via weighted averaging and geometric approach using trigonometric ∝
neutrosophic interval-valued set and its extension

Neutrosophic Sets and Systems, Vol. 80, 2025                                                                               199



(2) Γ1 � Γ2 =



((` ◦ O1))
∝((` ◦ O2))

∝, ((` ◦ V1))∝((` ◦ V2))∝,

∝

√√√√ ((` ◦ P1))∝ + ((` ◦ P2))∝

−((` ◦ P1))∝ · ((` ◦ P2))∝
, ∝

√√√√ ((` ◦ X1))
∝ + ((` ◦ X2))

∝

−((` ◦ X1))
∝ · ((` ◦ X2))

∝

∝

√√√√ ((` ◦ Q1))
∝ + ((` ◦ Q2))

∝

−((` ◦ Q1))
∝ · ((` ◦ Q2))

∝
, ∝

√√√√ ((` ◦ Y1))∝ + ((` ◦ Y2))∝

−((` ◦ Y1))∝ · ((` ◦ Y2))∝



(3) ∂ · Γ =


∝
√

1−
(
1− (` ◦ (O)∝

)∂
,

∝
√

1−
(
1− (` ◦ (V)∝

)∂
,

∝
√

1−
(
1− (` ◦ (P)∝

)∂
,

∝
√

1−
(
1− (` ◦ (X )∝

)∂
,

((` ◦ (Q)∝)∂ , ((` ◦ (Y)∝)∂



(4) Γ∂ =


((` ◦ (O)∝)∂ , ((` ◦ (V)∝)∂ ,

∝
√

1−
(
1− (` ◦ (P)∝

)∂
,

∝
√

1−
(
1− (` ◦ (X )∝

)∂
,

∝
√

1−
(
1− (` ◦ (Q)∝

)∂
,

∝
√

1−
(
1− (` ◦ (Y)∝

)∂
 .

We present ED and HD measures for IVT ∝ NNs and investigate their mathematical char-

acteristics.

Definition 3.3. For any two IVT ∝ NNs Γ1 = 〈([(` ◦ O1), (` ◦ V1)], [(` ◦ P1), (` ◦ X1)], [(` ◦
Q1), (` ◦ Y1)])〉,Γ2 = 〈([(` ◦ O2), (` ◦ V2)], [(` ◦ P2), (` ◦ X2)], [(` ◦ Q2), (` ◦ Y2)])〉. Then

ΛE(Γ1,Γ2) =

√√√√√√√√√√
1

2



[
1 + ((` ◦ O1))

2 − ((` ◦ P1))2 − ((` ◦ Q1))
2

−
(
1 + ((` ◦ O2))

2 − ((` ◦ P2))2 − ((` ◦ Q2))
2
)]2

+

[
((` ◦ V1))2 − ((` ◦ X1))

2 − ((` ◦ Y1))2

−
(
((` ◦ V2))2 − ((` ◦ X2))

2 − ((` ◦ Y2))2
)]2


where ΛE(Γ1,Γ2) is called the ED between Γ1 and Γ2.

ΛH(Γ1,Γ2) =
1

2



∣∣∣∣∣ 1 + ((` ◦ O1))
2 − ((` ◦ P1))2 − ((` ◦ Q1))

2

−
(
1 + ((` ◦ O2))

2 − ((` ◦ P2))2 − ((` ◦ Q2))
2
)∣∣∣∣∣

+

∣∣∣∣∣ ((` ◦ V1))2 − ((` ◦ X1))
2 − ((` ◦ Y1))2(

−((` ◦ V2))2 − ((` ◦ X2))
2 − ((` ◦ Y2))2

)∣∣∣∣∣


where ΛH(Γ1,Γ2) is called the HD between Γ1 and Γ2.

4. Aggregating operators

We use IVT ∝ NWA, IVT ∝ NWG, GIVT ∝ NWA, and GIVT ∝ NWG to describe the

AOs.
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4.1. IVT qNWA

Definition 4.1. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs, W = (ð1, ð2, ...,ðn) be the weight of Γi, ði ≥ 0 and gn
i=1ði = 1. Then IVT ∝

NWA (Γ1,Γ2, ...,Γn) = gn
i=1ðiΓi.

Theorem 4.2. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then IVT qNWA(Γ1,Γ2, ...,Γn)

=


∝

√
1−fn

i=1

(
1− ((` ◦ Oi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Vi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Pi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Xi))∝

)ði
,

fn
i=1(((` ◦ Qi))

∝)ði ,fn
i=1(((` ◦ Yi))∝)ði

 .
Proof If n = 2, then IVT ∝ NWA(Γ1,Γ2) = ð1Γ1 g ð2Γ2, where

ð1Γ1 =


∝

√
1−

(
1− ((` ◦ O1))∝

)ð1
,

∝

√
1−

(
1− ((` ◦ V1))∝

)ð1
,

∝

√
1−

(
1− ((` ◦ P1))∝

)ð1
,

∝

√
1−

(
1− ((` ◦ X1))∝

)ð1
,

(((` ◦ Q1))
∝)ð1 , (((` ◦ Y1))∝)ð1



ð2Γ2 =


∝

√
1−

(
1− ((` ◦ O2))∝

)ð2
,

∝

√
1−

(
1− ((` ◦ V2))∝

)ð2
,

∝

√
1−

(
1− ((` ◦ P2))∝

)ð2
,

∝

√
1−

(
1− ((` ◦ X2))∝

)ð2
(((` ◦ Q2))

∝)ð2 , (((` ◦ Y2))∝)ð2

 .

Now, ð1Γ1 g ð2Γ2

=



∝

√√√√√√√√√√√√√√

(
1−

(
1− ((` ◦ O1))

∝
)ð1)

+(
1−

(
1− ((` ◦ O2))

∝
)ð2)

−
(

1−
(

1− ((` ◦ O1))
∝
)ð1)

·(
1−

(
1− ((` ◦ O2))

∝
)ð2)

, ∝

√√√√√√√√√√√√√√

(
1−

(
1− ((` ◦ V1))∝

)ð1)
+(

1−
(

1− ((` ◦ V2))∝
)ð2)

−
(

1−
(

1− ((` ◦ V1))∝
)ð1)

·(
1−

(
1− ((` ◦ V2))∝

)ð2)

∝

√√√√√√√√√√√√√√

(
1−

(
1− ((` ◦ P1))∝

)ð1)
+(

1−
(

1− ((` ◦ P2))∝
)ð2)

−
(

1−
(

1− ((` ◦ P1))∝
)ð1)

·(
1−

(
1− ((` ◦ P2))∝

)ð2)
, ∝

√√√√√√√√√√√√√√

(
1−

(
1− ((` ◦ X1))

∝
)ð1)

+(
1−

(
1− ((` ◦ X2))

∝
)ð2)

−
(

1−
(

1− ((` ◦ X1))
∝
)ð1)

·(
1−

(
1− ((` ◦ X2))

∝
)ð2)

,

(((` ◦ Q1))
∝)ð1 , (((` ◦ Q2))

∝)ð2 , (((` ◦ Y1))∝)ð1 , (((` ◦ Y2))∝)ð2
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=



∝

√
1−

(
1− ((` ◦ O1))

∝
)ð1(

1− ((` ◦ O2))
∝
)ð2

,

∝

√
1−

(
1− ((` ◦ V1))∝

)ð1(
1− ((` ◦ V2))∝

)ð2
,

∝

√
1−

(
1− ((` ◦ P1))∝

)ð1(
1− ((` ◦ P2))∝

)ð2
,

∝

√
1−

(
1− ((` ◦ X1))

∝
)ð1(

1− ((` ◦ X2))
∝
)ð2

,

(((` ◦ Q1))
∝)ð1 · (((` ◦ Q2))

∝)ð2 ,

(((` ◦ Y1))∝)ð1 · (((` ◦ Y2))∝)ð2


Hence, IVT qNWA(Γ1,Γ2)

=


∝

√
1−f2

i=1

(
1− ((` ◦ Oi))∝

)ði
,

∝

√
1−f2

i=1

(
1− ((` ◦ Vi))∝

)ði
,

∝

√
1−f2

i=1

(
1− ((` ◦ Pi))∝

)ði
,

∝

√
1−f2

i=1

(
1− ((` ◦ Xi))∝

)ði
,

f2
i=1(((` ◦ Qi))

∝)ði ,f2
i=1(((` ◦ Yi))∝)ði

 .
It valid for n ≥ 3. Thus, IVT qNWA(Γ1,Γ2, ...,Γl)

=


∝

√
1−fl

i=1

(
1− ((` ◦ Oi))∝

)ði
,

∝

√
1−fl

i=1

(
1− ((` ◦ Vi))∝

)ði
,

∝

√
1−fl

i=1

(
1− ((` ◦ Pi))∝

)ði
,

∝

√
1−fl

i=1

(
1− ((` ◦ Xi))∝

)ði
,

fl
i=1(((` ◦ Qi))

∝)ði ,fl
i=1(((` ◦ Yi))∝)ði

 .
If n = l + 1, then IVT ∝ NWA (Γ1,Γ2, ...,Γl,Γl+1)

=



∝

√√√√√√ gl
i=1

(
1−

(
1− ((` ◦ Oi))

∝
)ði)

+
(

1−
(

1− (Ol+1)
∝
)ðl+1

)
−fl

i=1

(
1−

(
1− ((` ◦ Oi))

∝
)ði)

·
(

1−
(

1− (Ol+1)
∝
)ðl+1

),
∝

√√√√√√ gl
i=1

(
1−

(
1− ((` ◦ Vi))∝

)ði)
+
(

1−
(

1− (Vl+1)
∝
)ðl+1

)
−fl

i=1

(
1−

(
1− ((` ◦ Vi))∝

)ði)
·
(

1−
(

1− (Vl+1)
∝
)ðl+1

)
,

∝

√√√√√√ gl
i=1

(
1−

(
1− ((` ◦ Pi))∝

)ði)
+
(

1−
(

1− (Pl+1)
∝
)ðl+1

)
−fl

i=1

(
1−

(
1− ((` ◦ Pi))∝

)ði)
·
(

1−
(

1− (Pl+1)
∝
)ðl+1

)
,

∝

√√√√√√ gl
i=1

(
1−

(
1− ((` ◦ Xi))

∝
)ði)

+
(

1−
(

1− (Xl+1)
∝
)ðl+1

)
−fl

i=1

(
1−

(
1− ((` ◦ Xi))

∝
)ði)

·
(

1−
(

1− (Xl+1)
∝
)ðl+1

)
,

fl
i=1(((` ◦ Qi))

∝)ði , ((Ql+1)
∝)ðl+1 ,fl

i=1(((` ◦ Yi))∝)ði , ((Yl+1)
∝)ðl+1
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=


∝

√
1−fl+1

i=1

(
1− ((` ◦ Oi))

∝
)ði

, ∝

√
1−fl+1

i=1

(
1− ((` ◦ Vi))∝

)ði
,

∝

√
1−fl+1

i=1

(
1− ((` ◦ Pi))∝

)ði
, ∝

√
1−fl+1

i=1

(
1− ((` ◦ Xi))

∝
)ði

,

fl+1
i=1(((` ◦ Qi))

∝)ði ,fl+1
i=1(((` ◦ Yi))∝)ði


Theorem 4.3. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then IVT ∝ NWA (Γ1,Γ2, ...,Γn) = Γ (idempotency property).

Proof Since (`◦Oi) = (`◦O) , (`◦Pi) = (`◦P) and (`◦Qi) = (`◦Q) and (`◦Vi) = (`◦V)

, (` ◦ Xi) = (` ◦ X ) and (` ◦ Yi) = (` ◦ Y) and gn
i=1ði = 1. Now, IVT qNWA(Γ1,Γ2, ...,Γn)

=


∝

√
1−fn

i=1

(
1− ((` ◦ Oi))

∝
)ði

, ∝

√
1−fn

i=1

(
1− ((` ◦ Vi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Pi))∝

)ði
, ∝

√
1−fn

i=1

(
1− ((` ◦ Xi))

∝
)ði

,

fn
i=1(((` ◦ Qi))

∝)ði ,fn
i=1(((` ◦ Yi))∝)ði



=


∝

√
1−

(
1− (` ◦ (O)∝

)gn
i=1ði

, ∝

√
1−

(
1− (` ◦ (V)∝

)gn
i=1ði

,

∝

√
1−

(
1− (` ◦ (P)∝

)gn
i=1ði

, ∝

√
1−

(
1− (` ◦ (X )∝

)gn
i=1ði

,

((` ◦ (Q)∝)g
n
i=1ði , ((` ◦ (Y)∝)g

n
i=1ði



=


∝

√
1−

(
1− (` ◦ (O)∝

)
, ∝

√
1−

(
1− (` ◦ (V)∝

)
,

∝

√
1−

(
1− (` ◦ (P)∝

)
, ∝

√
1−

(
1− (` ◦ (X )∝

)
,

(` ◦ (Q)∝, (` ◦ (Y)∝


= Γ.

Theorem 4.4. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then IVT ∝ NWA(Γ1,Γ2, ...,Γn)

where (` ◦ O) = min(` ◦ Oij), (` ◦ O) = max(` ◦ Oij), (` ◦ P) = min(` ◦ Pij), (` ◦ P) =

max(` ◦ Pij), (` ◦ Q) = min(` ◦ Qij), (` ◦ Q) = max(` ◦ Qij)

and (` ◦ V) = min(` ◦ Vij), (` ◦ V) = max(` ◦ Vij), (` ◦ X ) = min(` ◦ Xij), (` ◦ X ) = max(` ◦
Xij), (` ◦ Y) = min(`◦Yij), (` ◦ Y) = max(`◦Yij) and where 1 ≤ i ≤ n, j = 1, 2, ..., ij. Then,〈

(` ◦ O), (` ◦ V), (` ◦ P), (` ◦ X ), (` ◦ Q), (` ◦ Y)
〉

≤ IV TqNWA(Γ1,Γ2, ...,Γn)

≤
〈

(` ◦ O), (` ◦ V), (` ◦ P), (` ◦ X ), (` ◦ Q), (` ◦ Y)
〉
.

(Boundedness property).
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Proof Since, (` ◦ O) = min(`◦Oij), (` ◦ O) = max(`◦Oij) and (` ◦ O) ≤ (`◦Oij) ≤ (` ◦ O)

and (` ◦ V) = min(` ◦ Vij), (` ◦ V) = max(` ◦ Vij) and (` ◦ V) ≤ (` ◦ Vij) ≤ (` ◦ V).

Now (` ◦ O), (` ◦ V)

=
∝

√
1−fn

i=1

(
1− ((` ◦ O))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ V))∝

)ði
≤ ∝

√
1−fn

i=1

(
1− (((` ◦ Oij)))∝

)ði
,

∝

√
1−fn

i=1

(
1− (((` ◦ Vij)))∝

)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ O))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ V))∝

)ði
= (` ◦ O).

Since, (` ◦ P) = min(` ◦ Pij), (` ◦ P) = max(` ◦ Pij) and (` ◦ P) ≤ (` ◦ Pij) ≤ (` ◦ P) and

(` ◦ X ) = min(` ◦ Xij), (` ◦ X ) = max(` ◦ Xij) and (` ◦ X ) ≤ (` ◦ Xij) ≤ (` ◦ X ).

Now, (` ◦ P), (` ◦ X )

=
∝

√
1−fn

i=1

(
1− ((` ◦ P))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ X ))∝

)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ Pij))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Xij))∝

)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ P))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ X ))∝

)ði
= (` ◦ P), (` ◦ X ).

Since, (` ◦ (Q)∝) = min((` ◦ Qij))
∝, (` ◦ (Q)∝) = max((` ◦ Qij))

∝ and (` ◦ (Q)∝) ≤ ((` ◦
Qij))

∝ ≤ (` ◦ (Q)∝) and (` ◦ (Y)∝) = min((` ◦ Yij))∝, (` ◦ (Y)∝) = max((` ◦ Yij))∝ and

(` ◦ (Y)∝) ≤ ((` ◦ Yij))∝ ≤ (` ◦ (Y)∝).

We have,

(` ◦ (Q)∝ = fn
i=1(` ◦ (Q)∝)

ði
,fn

i=1(` ◦ (Y)∝)
ði

≤ fn
i=1(((` ◦ Qij))

∝)ði ,fn
i=1(((` ◦ Yij))∝)ði

≤ fn
i=1(` ◦ (Q)∝)

ði
,fn

i=1(` ◦ (Y)∝)
ði

= (` ◦ (Q)∝), (` ◦ (Y)∝).
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Therefore,

1

2
×




(

∝

√
1−fn

i=1

(
1− ((` ◦ O))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ P))∝

)ði)2

+1−
(
fn

i=1(((` ◦ Q))∝)ði
)2


+


(

∝

√
1−fn

i=1

(
1− ((` ◦ V))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ X ))∝

)ði)2

−
(
fn

i=1(((` ◦ Y))∝)ði
)2





≤ 1

2
×




(

∝

√
1−fn

i=1

(
1− ((` ◦ (` ◦ Oij)))

∝
)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Pij))∝

)ði)2

+

+1−
(
fn

i=1(((` ◦ Qij))
∝)ði

)2


+


(

∝

√
1−fn

i=1

(
1− ((` ◦ (` ◦ Vij)))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Xij))

∝
)ði)2

+

−
(
fn

i=1(((` ◦ Yij))∝)ði
)2





≤ 1

2
×




(

∝

√
1−fn

i=1

(
1− ((` ◦ O))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ P))∝

)ði)2

+

+1−
(
fn

i=1((` ◦ Q))∝)ði
)2


+


(

∝

√
1−fn

i=1

(
1− ((` ◦ V))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ X ))∝

)ði)2

+

−
(
fn

i=1((` ◦ Y))∝)ði
)2




.

Hence,〈
(` ◦ O), (` ◦ V), (` ◦ P), (` ◦ X ), (` ◦ Q), (` ◦ Y)

〉
≤ IV TqNWA(Γ1,Γ2, ...,Γn)

≤ 〈(` ◦ O), (` ◦ V), (` ◦ P), (` ◦ X ), (` ◦ Q), (` ◦ Y)〉.

Theorem 4.5. Let Γi = 〈([(` ◦ Otij ), (` ◦ Vtij )], [(` ◦ Ptij ), (` ◦ Xtij )], [(` ◦ Qtij ), (` ◦ Ytij )])〉
and Wi = 〈([(` ◦ Ohij

), (` ◦ Vhij
)], [(` ◦ Phij

), (` ◦ Xhij
)], [(` ◦ Qhij

), (` ◦ Yhij
)])〉, be the IVT

∝ NWAs. For any i, if there is (` ◦ Otij )
2 ≤ (` ◦ Ohij

)2 and (` ◦ Ptij )2 ≤ (` ◦ Phij
)2 and

(`◦Qtij )
2 ≥ (`◦Qhij

)2 and (`◦Vtij )2 ≤ (`◦Vhij
)2 and (`◦Xtij )

2 ≤ (`◦Xhij
)2 and (`◦Ytij )2 ≥

(` ◦ Yhij
)2or Γi ≤ Wi. Prove that IVT qNWA(Γ1,Γ2, ...,Γn) ≤ IV TqNWA(W1,W2, ...,Wn),

where (i = 1, 2, ..., n); (j = 1, 2, ..., ij) (monotonicity property).

Proof For any i, (` ◦ Otij )
2 ≤ (` ◦ Ohij

)2.

Therefore, 1− ((` ◦ Oti))
2 ≥ 1− ((` ◦ Ohi

))2.

Hence, fn
i=1

(
1− ((` ◦ Oti))

2
)ði
≥ fn

i=1

(
1− ((` ◦ Ohi

))2
)ði

and
∝

√
1−fn

i=1

(
1− ((` ◦ Oti))

∝
)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ Ohi

))∝
)ði

.

Similarly, (` ◦ Vtij )2 ≤ (` ◦ Vhij
)2.

Therefore, 1− ((` ◦ Vti))2 ≥ 1− ((` ◦ Vhi
))2.

Hence, fn
i=1

(
1− ((` ◦ Vti))

2
)ði
≥ fn

i=1

(
1− ((` ◦ Vhi

))2
)ði
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and
∝

√
1−fn

i=1

(
1− ((` ◦ Vti))

∝
)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ Vhi

))∝
)ði

.

For any i, (` ◦ Ptij )∝ ≤
(
(` ◦ Phij

)
)∝

.

Therefore, 1− ((` ◦ Pti))
∝ ≥ 1− ((` ◦ Phi

))∝.

Hence, fn
i=1

(
1− ((` ◦ Pti))

∝
)ði
≥ fn

i=1

(
1− ((` ◦ Phi

))∝
)ði

.

This implies that
∝

√
1−fn

i=1

(
1− ((` ◦ Pti))

∝
)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ Phi

))∝
)ði

.

Similarly, for any i, (` ◦ Xtij )
∝ ≤

(
(` ◦ Xhij

)
)∝

.

Therefore, 1− ((` ◦ Xti))
∝ ≥ 1− ((` ◦ Xhi

))∝.

Hence, fn
i=1

(
1− ((` ◦ Xti))

∝
)ði
≥ fn

i=1

(
1− ((` ◦ Xhi

))∝
)ði

.

This implies that
∝

√
1−fn

i=1

(
1− ((` ◦ Xti))

∝
)ði
≤ ∝

√
1−fn

i=1

(
1− ((` ◦ Xhi

))∝
)ði

.

For any i,
(
(` ◦ Qtij )

)2 ≥ ((` ◦ Qhij
)
)2

and
(
(` ◦ Qtij )

)∝ ≥ ((` ◦ Qhij
)
)∝

.

Therefore, 1− (fn
i=1(`◦Qtij ))

∝

2 ≤ 1−
(
fn

i=1(`◦Qhij
)
)∝

2 .

Similarly, for any i,(
(` ◦ Ytij )

)2 ≥ ((` ◦ Yhij
)
)2

and
(
(` ◦ Ytij )

)∝ ≥ ((` ◦ Yhij
)
)∝

.

Therefore, −
(
fn

i=1(` ◦ Ytij )
)∝ ≤ − (fn

i=1(` ◦ Yhij
)
)∝

.

Hence,

1

2
×




(

∝

√
1−fn

i=1

(
1− ((` ◦ Oti))

∝
)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Pti))∝

)ði)2

+1−
(
fn

i=1((` ◦ Qti))
∝
)2


+


(

∝

√
1−fn

i=1

(
1− ((` ◦ Vti))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Xti))

∝
)ði)2

−
(
fn

i=1((` ◦ Yti))∝
)2





≤ 1

2
×




(

∝

√
1−fn

i=1

(
1− ((` ◦ Ohi))

∝
)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Phi

))∝
)ði)2

+1−
(
fn

i=1((` ◦ Qhi
))∝
)2


+


(

∝

√
1−fn

i=1

(
1− ((` ◦ Vhi))∝

)ði)2

−
(

∝

√
1−fn

i=1

(
1− ((` ◦ Xhi

))∝
)ði)2

−
(
fn

i=1((` ◦ Yhi
))∝
)2




.

Hence, IVT qNWA (Γ1,Γ2, ...,Γn) ≤ IV TqNWA (W1,W2, ...,Wn).

4.2. IVT ∝ NWG

Definition 4.6. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then ∝NWG (Γ1,Γ2, ...,Γn) = fn
i=1Γ

ði
i .

Raed Hatamleh, Ahmed Salem Heilat, M.Palanikumar and Abdallah Al-Husban, Different
operators via weighted averaging and geometric approach using trigonometric ∝
neutrosophic interval-valued set and its extension

Neutrosophic Sets and Systems, Vol. 80, 2025                                                                               206



Corollary 4.7. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then IVT ∝ NWG (Γ1,Γ2, ...,Γn)

=


fn

i=1(((` ◦ Oi))
∝)ði ,fn

i=1(((` ◦ Vi))∝)ði

∝

√
1−fn

i=1

(
1− ((` ◦ Pi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Xi))∝

)ði
∝

√
1−fn

i=1

(
1− ((` ◦ Qi))∝

)ði
,

∝

√
1−fn

i=1

(
1− ((` ◦ Yi))∝

)ði
 .

Corollary 4.8. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs and all are equal. Then ∝NWG(Γ1,Γ2, ...,Γn) = Γ.

Corollary 4.9. It has other properties, including boundedness and monotonicity, as well as

having ∝NWG.

4.3. Generalized IVT ∝ NWA (GIVT∝NWA)

Definition 4.10. Let Γi = 〈(([(`◦Oi), (` ◦ Vi)], [(`◦Pi), (` ◦ Xi)], [(`◦Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NN. Then GIVT ∝ NWA (Γ1,Γ2, ...,Γn) =
(
gn

i=1 ðiΓ∂
i

)1/∂
.

Theorem 4.11. Let Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then GIVT ∝ NWA (Γ1,Γ2, ...,Γn)

=



(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Oi))

∝
)∝)ði )1/∝

,

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Vi))∝

)∝)ði )1/∝

,

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Pi))∝

)∝)ði )1/∝

,

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Xi))

∝
)∝)ði )1/∝

,

∝

√√√√1−

(
1−

(
fn

i=1

(
∝

√
1−

(
1− ((` ◦ Qi))∝

)∝)ði )∝)1/∝

,

∝

√√√√1−

(
1−

(
fn

i=1

(
∝

√
1−

(
1− ((` ◦ Yi))∝

)∝)ði )∝)1/∝



.

Proof To illustrate this, we may first show that,

gn
i=1ðiΓ∝

i =



∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Oi))

∝
)∝)ði

, ∝

√√√√√√√ 1−fn
i=1

(
1−

(
((` ◦ Vi))∝

)∝)ði

∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Pi))∝

)∝)ði

, ∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Xi))

∝
)∝)ði

fn
i=1

(
∝

√
1−

(
1− ((` ◦ Qi))∝

)∝)ði

, fn
i=1

(
∝

√
1−

(
1− ((` ◦ Yi))∝

)∝)ði


.
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Put n = 2, ð1Γ1 g ð2Γ2

=



∝

√√√√√√√√√√

(
∝

√
1−

(
1−

(
((` ◦ O1))

∝
)∝)ð1

)∝

+

(
∝

√
1−

(
1−

(
((` ◦ O2))

∝
)∝)ð1

)∝

−

(
∝

√
1−

(
1−

(
((` ◦ O1))

∝
)∝)ð1

)∝

·

(
∝

√
1−

(
1−

(
((` ◦ O2))

∝
)∝)ð1

)∝

, ∝

√√√√√√√√√√

(
∝

√
1−

(
1−

(
((` ◦ V1))∝

)∝)ð1
)∝

+

(
∝

√
1−

(
1−

(
((` ◦ V2))∝

)∝)ð1
)∝

−

(
∝

√
1−

(
1−

(
((` ◦ V1))∝

)∝)ð1
)∝

·

(
∝

√
1−

(
1−

(
((` ◦ V2))∝

)∝)ð1
)∝

,

∝

√√√√√√√√√√

(
∝

√
1−

(
1−

(
((` ◦ P1))∝

)∝)ð1
)∝

+

(
∝

√
1−

(
1−

(
((` ◦ P2))∝

)∝)ð1
)∝

−

(
∝

√
1−

(
1−

(
((` ◦ P1))∝

)∝)ð1
)∝

·

(
∝

√
1−

(
1−

(
((` ◦ P2))∝

)∝)ð1
)∝

, ∝

√√√√√√√√√√

(
∝

√
1−

(
1−

(
((` ◦ X1))

∝
)∝)ð1

)∝

+

(
∝

√
1−

(
1−

(
((` ◦ X2))

∝
)∝)ð1

)∝

−

(
∝

√
1−

(
1−

(
((` ◦ X1))

∝
)∝)ð1

)∝

·

(
∝

√
1−

(
1−

(
((` ◦ X2))

∝
)∝)ð1

)∝

(
∝

√
1−

(
1− ((` ◦ Q1))∝

)∝)ð1

,

(
∝

√
1−

(
1− ((` ◦ Q2))∝

)∝)ð1

,

(
∝

√
1−

(
1− ((` ◦ Y1))∝

)∝)ð1

,

(
∝

√
1−

(
1− ((` ◦ Y2))∝

)∝)ð1



=



∝

√
1−f2

i=1

(
1−

(
((` ◦ O1))∝

)∝)ði
,

∝

√
1−f2

i=1

(
1−

(
((` ◦ V1))∝

)∝)ði

∝

√
1−f2

i=1

(
1−

(
((` ◦ P1))∝

)∝)ði
,

∝

√
1−f2

i=1

(
1−

(
((` ◦ X1))∝

)∝)ði

f2
i=1

(
∝

√
1−

(
1− ((` ◦ Qi))∝

)∝)ði

,f2
i=1

(
∝

√
1−

(
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Corollary 4.12. If q = 1, then IVT ∝ NWA operator is used instead of the GIVT ∝ NWA

operator.

Theorem 4.13. If all Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 and
all are equal. Then GIVT ∝ NWA(Γ1,Γ2, ...,Γn) = Γ.

Corollary 4.14. The GIVT ∝ NWA operator meets both boundedness and monotonicity con-

straints.

4.4. Generalized IVT ∝NWG ( GIVT ∝NWG)

Definition 4.15. Let Γi = 〈(([(`◦Oi), (` ◦ Vi)], [(`◦Pi), (` ◦ Xi)], [(`◦Qi), (` ◦ Yi)]))〉 be the

IVT ∝ NNs. Then GIVT∝NWG (Γ1,Γ2, ...,Γn) = 1
∂

(
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.
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=



∝

√√√√1−

(
1−

(
fn

i=1

(
∝

√
1−

(
1− ((` ◦ Oi))∝

)∝)ði )∝)1/∝

,

∝

√√√√1−

(
1−

(
fn

i=1

(
∝

√
1−

(
1− ((` ◦ Vi))∝

)∝)ði )∝)1/∝

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Pi))∝

)∝)ði )1/∝

,

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Xi))

∝
)∝)ði )1/∝

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Qi))

∝
)∝)ði )1/∝

,

(
∝

√√√√ 1−fn
i=1

(
1−

(
((` ◦ Yi))∝

)∝)ði )1/∝



.

Corollary 4.17. When ∂ = 1, the GIVT ∝ NWG is converted to the ∝NWG.
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Corollary 4.18. GIVT∝NWG operators satisfy the boundness and monotonicity character-

istics.

Corollary 4.19. If all Γi = 〈(([(` ◦ Oi), (` ◦ Vi)], [(` ◦ Pi), (` ◦ Xi)], [(` ◦ Qi), (` ◦ Yi)]))〉 are
equal. Then GIVT∝NWG(Γ1,Γ2, ...,Γn) = Γ.

5. Conclusion:

This work presents novel weighted operators, such as geometric and averaging operators.

Boundedness, idempotency, commutativity, associativity, and monotonicity are some of the

characteristics of these operators. To describe the weighted vector, we looked at a number of

common metrics. Many aggregation operator criteria have been studied. Some findings have

been made after a few aggregating techniques for these IVT ∝ NNs have been examined.
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