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machine (IB-IFSA) over a finite group. Building upon the framework of neutrosophic logic, we introduce the

implication-based neutrosophic kernel and the implication-based neutrosophic subsemiautomaton, establishing
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and their implications within algebraic systems.
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—————————————————————————————————————————

1. Introduction

In 1965, Zadeh [13] introduced the concept of fuzzy sets, providing a mathematical frame-

work to model uncertainty and imprecision. This idea catalyzed significant developments in

various fields, including automata theory. In 1969, Wee [10] proposed the concept of fuzzy

automata, extending Zadeh’s work to computational models designed for learning and decision-

making processes. Later, in 1971, Rosenfeld [5] applied fuzzy set theory to algebraic group

structures, which opened new research directions in the study of fuzzy algebraic systems.
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The study of fuzzy subgroups, especially fuzzy normal subgroups, further enriched the

algebraic applications of fuzzy logic. Notable contributions in this domain include the works

of Dib and Hassan [1], Malik et al. [2], and Mukherjee and Bhattacharya [3], which investigated

the structural properties of fuzzy groups. Additionally, Asok Kumar [4] explored the products

of fuzzy subgroups, providing deeper insights into their composition and interactions.

The introduction of neutrosophic logic by Smarandache [7,8] significantly expanded the the-

oretical foundation of uncertainty modeling. Neutrosophic sets generalize fuzzy sets by intro-

ducing three membership degrees: truth, indeterminacy, and falsity. This enriched framework

allows for a more comprehensive representation of incomplete, inconsistent, or indeterminate

information, which is especially useful in fields requiring nuanced reasoning under uncertainty.

In this paper, we extend the application of neutrosophic logic to automata theory by defining

the implication-based neutrosophic finite state machine (IB-IFSA) over a finite group, also re-

ferred to as the implication-based neutrosophic semiautomaton. We introduce and analyze the

implication-based neutrosophic kernel and the implication-based neutrosophic subsemiautoma-

ton, exploring their algebraic properties within the context of finite groups. By integrating

neutrosophic logic with computational and algebraic systems, this work provides a founda-

tional framework for further research, with potential applications in decision-making models,

automated reasoning, and beyond.

2. Preliminaries

This section introduces the foundational concepts and definitions of neutrosophic sets, neu-

trosophic groups, and their properties, forming the mathematical framework for integrating

neutrosophic logic with algebraic structures.

Definition 2.1. [9] Let U be an initial universe set and A ⊆ U, a neutrosophic set (more

precisely, a single valued neutrosophic set) over U (SVN-set for short), denoted by Ã =

⟨U, µA, σA, ωA⟩, is a set of the form

Ã = {(u, µA (u) , σA (u) , ωA (u)) : u ∈ U}

where µA : U → I, σA : U → I and ωA : U → I are the membership function, the

indeterminacy function and the nonmembership function of A, respectively. For ev-

ery u ∈ U, µA (u), σA (u) and ωA (u) are said the degree of membership, the degree of

indeterminacy and the degree of nonmembership of u, respectively.

Definition 2.2. Let (Ω, ·) be a group, a neutrosophic set Ã = ⟨Ω, µA, σA, ωA⟩ over Ω is called

a neutrosophic group on Ω, if the following conditions hold:
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(i)


µA(xy) ≥ min{µA(x), µA(y)}
σA(xy) ≥ min{σA(x), σA(y)}
ωA(xy) ≤ max{ωA(x), ωA(y)}

, for every x, y ∈ Ω

(ii)


µA(x

−1) ≥ µA(x)

σA(x
−1) ≥ σA(x)

ωA(x
−1) ≤ ωA(x)

, for every x ∈ Ω.

Definition 2.3. Let (Ω, ·) be a group, a neutrosophic set Ã = ⟨Ω, µA, σA, ωA⟩ over Ω is called

a neutrosophic normal subgroup on Ω if:
µA(xyx

−1) ≥ µA(y)

σA(xyx
−1) ≥ σA(y)

ωA(xyx
−1) ≤ ωA(y)

for every x, y ∈ Ω.

Notation 2.4. Let U be a universe set and (Ω, ·) a group. In neutrosophic logic, the truth value

of a neutrosophic proposition α is denoted by [α]. The following notations are used to describe

the neutrosophic logical operations and their corresponding set-theoretical interpretations in

this paper:

(ν ∈ Ã) ≡ Ã(ν),

(α ∧ β) ≡ min{[α], [β]},

(α→ β) ≡ min{1, 1− [α] + [β]},

(∀ν α(ν)) ≡ inf
ν∈U

[α(ν)],

(∃ν α(ν)) ≡ sup
ν∈U

[α(ν)],

⊨ α if and only if [α] = 1 for all valuations.

This framework establishes the basis for applying neutrosophic logic within the algebraic context

analyzed in this study. The truth valuation rules adopted follow the  Lukasiewicz system of

continuous-valued logic.

Additionally, the concept of λ-tautology, as introduced by Ying [11], is defined as ⊨λ α if and

only if [α] ≥ λ for all valuations.

The following notions in neutrosophic theory are inspired by the frameworks outlined in [12]

and [6].

Definition 2.5. Let Ã = ⟨Ω, µA, σA, ωA⟩ over Ω be a neutrosophic set on a finite group Ω,

and let λ ∈ (0, 1] be a fixed number. If, for any ν1, ν2 ∈ Ω, the following conditions hold:

(i) ⊨λ

(
(ν1 ∈ Ã) ∧ (ν2 ∈ Ã) → (ν1ν2 ∈ Ã)

)
,

(ii) ⊨λ

(
(ν1 ∈ Ã) → (ν−1

1 ∈ Ã)
)
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then Ã is called an implication-based neutrosophic subgroup of Ω.

Definition 2.6. Let Ã be an implication-based neutrosophic subgroup of Ω, λ ∈ (0, 1] a fixed

number, and f : Ω → Ω a function defined on Ω. Then the implication-based neutrosophic

subgroup B̃ of f(Ω) is defined as:

⊨λ

(
∃ν{(ν ∈ Ã)}; ν ∈ f−1(ψ)

)
→ (ψ ∈ B̃), ∀ψ ∈ f(Ω).

Conversely, if B̃ is an implication-based neutrosophic subgroup of f(Ω), then the implication-

based neutrosophic subgroup Ã = f ◦ B̃ in Ω is defined as:

⊨λ

(
(f(ν) ∈ B̃) → (ν ∈ Ã)

)
, ∀ν ∈ Ω,

and is called the pre-image of Ã under f .

Definition 2.7. An implication-based neutrosophic subgroup Ã of Ω is called an implication-

based neutrosophic normal subgroup if:

⊨λ

(
(νψ ∈ Ã) → (ψν ∈ Ã)

)
, ∀ν, ψ ∈ Ω,

where λ ∈]0, 1] is a fixed number.

Proposition 2.8. Let Ã = ⟨Ω, µA, σA, ωA⟩ be an implication-based neutrosophic subgroup of

a finite group (Ω, ·). Then, for any ν ∈ Ω, the following holds:

⊨λ (ν ∈ Ã) → (ϵ ∈ Ã),

where ϵ is the identity element of the group Ω.

From this point onward, let Ω be a finite group with identity element ϵ and λ ∈]0, 1] a fixed

parameter.

3. Implication-Based Neutrosophic Semiautomaton over a Finite Group

The concept of an implication-based neutrosophic semiautomaton combines the algebraic

structure of finite groups with the logical framework of neutrosophic logic. This section formal-

izes the definition of a semiautomaton in this context, highlighting the interactions between

group elements, logical variables, and neutrosophic conditions. The proposed model provides

a versatile framework for analyzing transitions and behaviors in systems characterized by

uncertainty, indeterminacy, and truth variability.

Definition 3.1. Let NA = ⟨A,B,C⟩ be an implication-based neutrosophic subgroup of a finite

group Ω. An implication-based neutrosophic semiautomaton over the finite group (Ω, ·)
is a triple NS = (Ω,∆,NA), where ∆ represents the set of all logical variables.
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Remark 3.2. The set ∆ of the definition above consists of all logical variables used to describe

transitions within the semiautomaton. Each variable in ∆ encodes a specific logic operation

or transition condition.

Notation 3.3. If ∆ is a set of logical variables, ∆∗ denote the set of all finite combinations

of these logical variables, including the special element 0, which represents the null operation

or an empty transition.

Definition 3.4. Let NS = (Ω,∆,NA) be an implication-based neutrosophic semiautomaton

over the finite group Ω. Define NA∗ = ⟨A∗, B∗, C∗⟩ in Ω × ∆∗ × Ω such that, for every

α, β ∈ Ω, ξ ∈ ∆∗, and ω ∈ ∆, the following conditions hold:

(i) ⊨λ ((α,0, β) ∈ A∗) → 0 (with λ = 0)

(ii) ⊨λ ((α,0, β) ∈ B∗) → 0 (with λ = 0)

(iii) ⊨λ ((α,0, β) ∈ C∗) → 1

(iv) ⊨λ

(
∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ, ω, α) ∈ A∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ω, α) ∈ A∗)

(v) ⊨λ

(
∃γ{((β, ξ, γ) ∈ B∗) ∧ ((γ, ω, α) ∈ B∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ω, α) ∈ B∗)

(vi) ⊨λ

(
∀γ{((β, ξ, γ) ∈ C∗) ∨ ((γ, ω, α) ∈ C∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ω, α) ∈ C∗)

Theorem 3.5. Let NS = (Ω,∆,NA) be an implication-based neutrosophic semiautomaton over

the finite group Ω. Then, for all α, β ∈ Ω and ξ, ψ ∈ ∆∗, the following hold:

(1) ⊨λ

(
∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ, ψ, α) ∈ A∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ψ, α) ∈ A∗)

(2) ⊨λ

(
∃γ{((β, ξ, γ) ∈ B∗) ∧ ((γ, ψ, α) ∈ B∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ψ, α) ∈ B∗)

(3) ⊨λ

(
∀γ{((β, ξ, γ) ∈ C∗) ∨ ((γ, ψ, α) ∈ C∗)}; γ ∈ Ω

)
→ ((β, ξ ⊙ ψ, α) ∈ C∗)

Proof. Let α, β ∈ Ω and ξ, ψ ∈ ∆∗. The proof proceeds by induction on ord(ψ) = n.

Base Case (n = 0): If n = 0, then ψ = 0 and ξ ⊙ ψ = ξ ⊙ 0 = ξ. Thus:

⊨λ (∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ, ψ, α) ∈ A∗)}; γ ∈ Ω)

→ (∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ,0, α) ∈ A∗)}; γ ∈ Ω)

→ ((β, ξ, α) ∈ A∗)

→ ((β, ξ ⊙ ψ, α) ∈ A∗).

Similarly, the result holds for B∗ and C∗ using analogous reasoning. Thus, the theorem is

valid for n = 0.

Inductive Step: Assume that the result holds for any ζ ∈ ∆∗ such that ord(ζ) = n − 1

and n > 0. Let ψ ∈ ∆∗ such that ψ = ζ ⊙ ω with ζ ∈ ∆∗, ω ∈ ∆, and ord(ζ) = n − 1. We

need to show the result for ψ.
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For A∗ w have that:

⊨λ (∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ, ψ, α) ∈ A∗)}; γ ∈ Ω)

→ (∃γ{((β, ξ, γ) ∈ A∗) ∧ ((γ, ζ ⊙ ω, α) ∈ A∗)}; γ ∈ Ω)

→ (∃γ{((β, ξ, γ) ∈ A∗) ∧ (∃δ{((γ, ζ, δ) ∈ A∗) ∧ ((δ, ω, α) ∈ A∗)}; δ ∈ Ω)}; γ ∈ Ω)

→ (∃δ{((β, ξ ⊙ ζ, δ) ∈ A∗) ∧ ((δ, ω, α) ∈ A∗)}; δ ∈ Ω)

→ ((β, ξ ⊙ ζ ⊙ ω, α) ∈ A∗)

→ ((β, ξ ⊙ ψ, α) ∈ A∗).

For B∗ and C∗ the proofs follow similar steps, substituting B∗ and C∗ for A∗, with appropriate

adjustments for logical operations.

So, by using the Induction Principle, the result holds for all ψ ∈ ∆∗ with ord(ψ) = n and this

completes the proof.

Definition 3.6. Let NA = ⟨A,B,C⟩ be an implication-based neutrosophic subgroup over a

finite group (Ω, ·), and let NS = (Ω,∆,NA) be an implication-based neutrosophic semiautoma-

ton over the same finite group Ω. A neutrosophic subset ⟨ι, A,B,C⟩ of the group Ω is called

an implication-based neutrosophic subsemiautomaton of NS if the following conditions

hold:

(i) N
Ã
= ⟨A,B,C⟩ is an implication-based neutrosophic subgroup of Ω.

(ii) ⊨λ

(
((α, ξ, β) ∈ A) ∧ (α ∈ A)

)
→ (β ∈ A).

(iii) ⊨λ

(
((α, ξ, β) ∈ B) ∧ (α ∈ B)

)
→ (β ∈ B).

(iv) ⊨λ

(
(β ∈ C)

)
→

(
((α, ξ, β) ∈ C) ∨ (α ∈ C)

)
,

for all α, β ∈ Ω and ξ ∈ ∆.

Theorem 3.7. Let NS =
(
Ω,∆,N

Ã

)
be an implication-based neutrosophic semiautomaton

over the finite group (Ω, ·). Let N
Ã
= ⟨A,B,C⟩ be an implication-based neutrosophic subgroup

of Ω. Then N
Ã

is an implication-based neutrosophic subsemiautomaton of NS if and only if

the following conditions hold:

(1) ⊨λ

(
((α, ξ, β) ∈ A∗) ∧ (α ∈ A)

)
→ (β ∈ A)

(2) ⊨λ

(
((α, ξ, β) ∈ B∗) ∧ (α ∈ B)

)
→ (β ∈ B)

(3) ⊨λ

(
(β ∈ C)

)
→

(
((α, ξ, β) ∈ C∗) ∨ (α ∈ C)

)
for all α, β ∈ Ω and ξ ∈ ∆∗.

Proof. Let N
Ã

= ⟨A,B,C⟩ be an implication-based neutrosophic subsemiautomaton of NS.
Let α, β ∈ Ω and ξ ∈ ∆∗. We prove the theorem by induction on ord(ξ) = n.
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Base Case: If n = 0, then ξ = 0. For A∗:

⊨λ

(
((α, ξ, β) ∈ A∗) ∧ (α ∈ A)

)
→

(
((α,0, β) ∈ A∗) ∧ (α ∈ A)

)
→

(
0 ∈ A∗) ∧ (α ∈ A)

→ (β ∈ A).

Analogously, the same logic applies to B∗, while for C, we have:

⊨λ (β ∈ C) → ((α,0, β) ∈ C∗) ∨ (α ∈ C) → ((α, ξ, β) ∈ C∗) ∨ (α ∈ C).

Thus, the base case holds.

Inductive Step: Assume the result is true for all ψ ∈ ∆∗ such that ord(ψ) = n − 1 and

n > 0. Let ξ = ψ ⊙ ω where ω ∈ ∆. For A∗:

⊨λ

(
((α, ξ, β) ∈ A∗) ∧ (α ∈ A)

)
→

(
((α,ψ ⊙ ω, β) ∈ A∗) ∧ (α ∈ A)

)
→

(
∃γ{((α,ψ, γ) ∈ A∗) ∧ ((γ, ω, β) ∈ A)}; γ ∈ Ω

)
∧ (α ∈ A)

→
(
∃γ{(γ ∈ A) ∧ ((γ, ω, β) ∈ A)}; γ ∈ Ω

)
→ (β ∈ A).

The case for B∗ is analogous, while for C, we have that:

⊨λ (β ∈ C) →
(
∀γ{((γ, ω, β) ∈ C) ∨ (γ ∈ C)}; γ ∈ Ω

)
→

(
∀γ{((α,ψ, γ) ∈ C∗) ∨ ((γ, ω, β) ∈ C)}; γ ∈ Ω

)
∨ (α ∈ C)

→ ((α, ξ, β) ∈ C∗) ∨ (α ∈ C).

Thus, by induction, the forward implication has been proven for all ord(ξ) = n, showing

that if N
Ã
satisfies the conditions of an implication-based neutrosophic kernel, then the stated

properties hold for A∗, B∗, and C∗.

Since the converse is trivial, the theorem is completely proved.

Definition 3.8. Let NA = ⟨A,B,C⟩ be an implication-based neutrosophic subgroup over a

finite group (Ω, ·), and let NS = (Ω,∆,NA) be an implication-based neutrosophic semiautoma-

ton over the finite group (Ω, ·). A neutrosophic subset ⟨ι, A,B,C⟩ of the group Ω is called an

implication-based neutrosophic kernel of NS if the following conditions are satisfied:

(i) N
Ã
= ⟨A,B,C⟩ is an implication-based neutrosophic normal subgroup of Ω.

(ii) ⊨λ

(
((βκ, ξ, α) ∈ A) ∧ ((β, ξ, γ) ∈ A) ∧ (κ ∈ A)

)
→ (αγ−1 ∈ A).

(iii) ⊨λ

(
((βκ, ξ, α) ∈ B) ∧ ((β, ξ, γ) ∈ B) ∧ (κ ∈ B)

)
→ (αγ−1 ∈ B).

(iv) ⊨λ

(
(αγ−1 ∈ C)

)
→

(
((βκ, ξ, α) ∈ C) ∨ ((β, ξ, γ) ∈ C) ∨ (κ ∈ C)

)
,

for all α, β, γ, κ ∈ Ω and ξ ∈ ∆.
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Theorem 3.9. Let NS = (Ω,∆,NA) be an implication-based neutrosophic semiautomaton over

the finite group (Ω, ·) and N
Ã

= ⟨A,B,C⟩ be an implication-based neutrosophic subgroup of

Ω. Then N
Ã

is an implication-based neutrosophic kernel of NS if and only if the following

conditions hold:

(1) ⊨λ

(
((βκ, ξ, α) ∈ A∗) ∧ ((β, ξ, γ) ∈ A∗) ∧ (κ ∈ A)

)
→ (αγ−1 ∈ A)

(2) ⊨λ

(
((βκ, ξ, α) ∈ B∗) ∧ ((β, ξ, γ) ∈ B∗) ∧ (κ ∈ B)

)
→ (αγ−1 ∈ B)

(3) ⊨λ

(
(αγ−1 ∈ C)

)
→

(
((βκ, ξ, α) ∈ C∗) ∨ ((β, ξ, γ) ∈ C∗) ∨ (κ ∈ C)

)
for all α, β, γ, κ ∈ Ω and ξ ∈ ∆∗.

Proof. Let N
Ã
= ⟨A,B,C⟩ be an implication-based neutrosophic kernel of NS. We prove the

result by induction on ord(ξ) = n.

Base Case: If n = 0, then ξ = 0. For A∗ we have:

⊨λ

(
((βκ, ξ, α) ∈ A∗) ∧ ((β, ξ, γ) ∈ A∗) ∧ (κ ∈ A)

)
→

(
((βκ,0, α) ∈ A∗) ∧ ((β,0, γ) ∈ A∗) ∧ (κ ∈ A)

)
→

(
0 ∧ 0 ∧ (κ ∈ A)

)
→ (αγ−1 ∈ A).

Similarly, for B∗ the argument follows the same reasoning, while for C we have that:

⊨λ

(
(αγ−1 ∈ C)

)
→ 1 ∨ 1 ∨ (κ ∈ C)

→ ((βκ,0, α) ∈ C∗) ∨ ((β,0, γ) ∈ C∗) ∨ (κ ∈ C)

→ ((βκ, ξ, α) ∈ C∗) ∨ ((β, ξ, γ) ∈ C∗) ∨ (κ ∈ C).

Thus, the base case holds.

Inductive Step: Assume the result holds for all ψ ∈ ∆∗ such that ord(ψ) = n − 1. Let

ξ = ψ ⊙ ω where ω ∈ ∆. For A∗ we have:

⊨λ ((βκ, ξ, α) ∈ A∗) ∧ ((β, ξ, γ) ∈ A∗) ∧ (κ ∈ A)

→ ((βκ, ψ ⊙ ω, α) ∈ A∗) ∧ ((β, ψ ⊙ ω, γ) ∈ A∗) ∧ (κ ∈ A)

→ (∃ζ{((βκ, ψ, ζ) ∈ A∗) ∧ ((ζ, ω, α) ∈ A)}; ζ ∈ Ω) ∧ (∃η{((β, ψ, η) ∈ A∗)∧

((η, ω, γ) ∈ A)}; γ ∈ Ω) ∧ (κ ∈ A)
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→
(
∃η{∃ζ{((βκ, ψ, α) ∈ A∗) ∧ ((α, ω, α) ∈ A) ∧ (κ ∈ A) ∧ ((β, ψ, η) ∈ A∗)∧

((η, ω, γ) ∈ A)}; ζ ∈ Ω}; η ∈ Ω)

→
(
∃η{∃ζ{((βκ, ψ, α) ∈ A∗) ∧ ((β, ψ, η) ∈ A∗) ∧ (κ ∈ A) ∧ ((ζ, ω, α) ∈ A)∧

((η, ω, γ) ∈ A)}; ζ ∈ Ω}; η ∈ Ω)

→
(
∃η{∃ζ{(ζη−1 ∈ A) ∧ ((ζ, ω, α) ∈ A) ∧ ((η, ω, γ) ∈ A)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∃η{∃ζ{((η, ω, γ) ∈ A) ∧ (((η.η−1)α, ω, α) ∈ A) ∧ (αη−1 ∈ A)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∃η{∃ζ{((η, ω, γ) ∈ A) ∧ ((η.(αη−1), ω, α) ∈ A) ∧ (ζη−1 ∈ A)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∃η{∃ζ{((η.(ζη−1), ω, α) ∈ A) ∧ ((η, ω, γ) ∈ A) ∧ (ζη−1 ∈ A)}; ζ ∈ Ω}; η ∈ Ω

)
→ (αγ−1 ∈ A)

Analogously for B∗, while for C we have that:

⊨λ (αγ−1 ∈ C)

→
(
∀η{∀ζ{((η.(ζη−1), ω, α) ∈ C) ∨ ((η, ω, γ) ∈ C) ∨ (ζη−1 ∈ C)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∀η{∀ζ{((η, ω, γ) ∈ C) ∨ ((η.(ζη−1), ω, α) ∈ C) ∨ (ζη−1 ∈ C)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∀η{∀ζ{((η, ω, γ) ∈ C) ∨ (((η.η−1)ζ, ω, α) ∈ C) ∨ (ζη−1 ∈ C)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∀η{∀ζ{(ζη−1 ∈ C) ∨ ((ζ, ω, α) ∈ C) ∨ ((η, ω, γ) ∈ C)}; ζ ∈ Ω}; η ∈ Ω

)
→

(
∀η{∀ζ{((βκ, ψ, α) ∈ C∗) ∨ ((β, ψ, η) ∈ C∗) ∨ (κ ∈ C) ∨ ((ζ, ω, α) ∈ C)∨

((η, ω, γ) ∈ C)}; ζ ∈ Ω}; η ∈ Ω)

→
(
∀η{∀ζ{((βκ, ψ, α) ∈ C∗) ∨ ((ζ, ω, α) ∈ C) ∨ (κ ∈ C) ∨ ((β, ψ, η) ∈ C∗)∨

((η, ω, γ) ∈ C)}; ζ ∈ Ω}; η ∈ Ω)

→ (∀ζ{((βκ, ψ, α) ∈ C∗) ∨ ((ζ, ω, α) ∈ C)}; ζ ∈ Ω) ∨ (∀η{((β, ψ, η) ∈ C∗)∨

((η, ω, γ) ∈ C)}; η ∈ Ω) ∨ (κ ∈ C)

→ ((βκ, ψ ⊙ ω, α) ∈ C∗) ∨ ((β, ψ ⊙ ω, γ) ∈ C∗) ∨ (κ ∈ C)

→ ((βκ, ξ, α) ∈ C∗) ∨ ((β, ξ, γ) ∈ C∗) ∨ (κ ∈ C)

Thus, the result holds for ord(ξ) = n and so, by applying the Principle of Induction, the

forward implication has been established.

Since the reverse implication is straightforward, the proof is complete.

Theorem 3.10. Let N
Ã

= ⟨A,B,C⟩ be an implication-based neutrosophic kernel of the

implication-based neutrosophic semiautomaton NS = (Ω,∆,NA) over the finite group (Ω, ·).
Then N

Ã
is an implication-based neutrosophic subsemiautomaton if and only if the following

conditions are satisfied:
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(1) ⊨λ

(
((ϵ, ξ, α) ∈ A) ∧ (ϵ ∈ A)

)
→ (α ∈ A)

(2) ⊨λ

(
((ϵ, ξ, α) ∈ B) ∧ (ϵ ∈ B)

)
→ (α ∈ B)

(3) ⊨λ

(
α ∈ C

)
→

(
((ϵ, ξ, α) ∈ C) ∨ (ϵ ∈ C)

)
for all α ∈ Ω and ξ ∈ ∆, where ϵ is the identity element of the finite group (Ω, ·).

Proof. Let N
Ã
= ⟨A,B,C⟩ be an implication-based neutrosophic kernel of NS.

Assume N
Ã
satisfies:

(i) ⊨λ

(
((ϵ, ξ, α) ∈ A) ∧ (ϵ ∈ A)

)
→ (α ∈ A),

(ii) ⊨λ

(
((ϵ, ξ, α) ∈ B) ∧ (ϵ ∈ B)

)
→ (α ∈ B),

(iii) ⊨λ

(
(α ∈ C)

)
→

(
((ϵ, ξ, α) ∈ C) ∨ (ϵ ∈ C)

)
,

for all α ∈ Ω and ξ ∈ ∆.

Using these conditions, for A∗, we have:

⊨λ

(
((α, ξ, β) ∈ A) ∧ (α ∈ A)

)
→

(
(β ∈ A)

)
.

Similarly, for B∗, we deduce:

⊨λ

(
((α, ξ, β) ∈ B) ∧ (α ∈ B)

)
→ (β ∈ B).

Finally for C, we conclude:

⊨λ

(
(β ∈ C)

)
→

(
((α, ξ, β) ∈ C) ∨ (α ∈ C)

)
.

Thus, N
Ã
satisfies the definition of an implication-based neutrosophic subsemiautomaton.

Conversely, suppose N
Ã
is an implication-based neutrosophic subsemiautomaton. Then:

⊨λ

(
((ϵ, ξ, α) ∈ A) ∧ (ϵ ∈ A)

)
→ (α ∈ A),

⊨λ

(
((ϵ, ξ, α) ∈ B) ∧ (ϵ ∈ B)

)
→ (α ∈ B),

⊨λ

(
(α ∈ C)

)
→

(
((ϵ, ξ, α) ∈ C) ∨ (ϵ ∈ C)

)
.

Thus, N
Ã
satisfies the necessary conditions and the theorem is completely proved.

4. Conclusions

This study has explored the extension of neutrosophic logic to the algebraic framework

of finite groups through the introduction of implication-based neutrosophic subgroups. The

analysis has focused on key properties of these subgroups, including their connection to the

identity element and their behavior under group operations. Additionally, the concept of

implication-based neutrosophic normal subgroups has been introduced, providing a systematic

approach to studying these structures within group theory.

The results obtained generalize existing theories of fuzzy subgroups and demonstrate the

capacity of neutrosophic logic to incorporate varying degrees of truth, indeterminacy, and
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falsity into algebraic reasoning. By parametrizing these notions with λ, the proposed frame-

work allows for a refined and adjustable characterization of subgroup properties, enriching the

theoretical understanding of algebraic systems under uncertainty.

Potential directions for future research include the extension of these methods to more com-

plex algebraic structures, such as rings and fields, as well as the development of computational

techniques for their practical application. Furthermore, exploring the interaction between neu-

trosophic logic and other branches of mathematics may reveal additional insights and broaden

the scope of this approach in both theoretical and applied contexts.
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