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Abstract 

This article introduces a novel approach to enhance competency-based learning by combining the 

Deming Cycle with neutrosophic statistics. Competency-based education focuses on practical skills, 

but uncertainty in student performance and assessment can hinder its effectiveness.  Neutrosophic 

statistics, unlike traditional methods, explicitly models indeterminacy, providing a more complete 

picture of uncertainty in educational data. This approach integrates neutrosophic numbers into re-

gression analysis to predict learning outcomes and quantify the confidence level of those predictions. 

These predictions, with their associated indeterminacy, then inform the Deming Cycle (Plan-Do-

Check-Act), enabling educators to dynamically adjust teaching strategies based on data-driven in-

sights. This leads to more informed decision-making, improved accuracy and reliability in predic-

tions, and ultimately fosters continuous improvement in competency-based education. 

Keywords: Competency-based learning, Deming Cycle, neutrosophic numbers, regression analysis, 

uncertainty, educational data, machine learning, continuous improvement 

1. Introduction 

In the realm of education, uncertainty is an inherent challenge, particularly in competency-based learn-

ing where the goal is to equip students with practical skills applicable to real-world scenarios. The dy-

namic nature of education, coupled with the diverse needs and learning styles of students, introduces 

complexities that traditional analytical models often struggle to address. This underscores the need for 

a robust framework that acknowledges and effectively handles uncertainties in educational data, paving 

the way for continuous improvement in teaching methodologies. This article explores the integration of 

neutrosophic regression models with the Deming Cycle [1] as a novel approach to enhance the accuracy 

and effectiveness of competency-based learning. 

Competency-based learning has emerged as a crucial pedagogical approach, focusing on developing 

students' skills and preparing them for the challenges of their future careers. However, uncertainties in 

assessment and the diverse learning environment often hinder the achievement of desired learning out-

comes. Traditional models often oversimplify the educational landscape by neglecting critical factors 

such as variability in student performance and uncertainties in assessment data. To address this, we 

propose the use of neutrosophic models, which offer a powerful tool for analytically understanding and 

managing uncertainty. 
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The Deming Cycle, widely recognized for its effectiveness in driving continuous improvement in vari-

ous industries, provides a structured approach to process optimization. By systematically progressing 

through the stages of planning, doing, checking, and acting, the Deming Cycle enables the identification 

and resolution of areas for improvement. This study investigates the synergistic combination of neutro-

sophic regression models with the Deming Cycle to analyze and enhance competency-based learning 

strategies[2,3]. 

Using real data from students in the Food Industry and Nutrition program, we demonstrate the practi-

cal application of this combined approach in addressing uncertainties in educational data and facilitat-

ing data-driven improvements in learning strategies[4]. The findings of this study have significant im-

plications for both educational theorists and practitioners, offering a new perspective on managing in-

determinacy and promoting continuous improvement in diverse learning environments[5,6]. 

This article contributes to the field by presenting a comprehensive framework that integrates pedagog-

ical principles, advanced mathematical tools, and process management techniques. We delve into the 

theoretical foundations of the proposed approach, analyze the results obtained, and discuss their impli-

cations for the future of education. By combining neutrosophic regression models with the Deming Cy-

cle, we aim to provide educators with a robust and adaptable tool for navigating the complexities of 

competency-based learning and fostering a culture of continuous improvement.  

2. Preliminaries. 

2.1. Deming cycle. 

The Deming Cycle (Figure 1), or PDCA Cycle (Plan, Do, Check, Act), is very important to control quality 

and always improve a company was created by W. Edwards Deming and draws on the ideas of Walter 

A. Shewhart [7,8]. The model can be used in many different industries. It involves identifying problems, 

testing solutions, seeing how they work, and making standard improvements. This process has been 

very important for companies that want to improve their performance by receiving feedback and mak-

ing continuous changes to their operations. The cycle begins with the planning stage, where areas of 

opportunity are identified through a thorough analysis of the situation. During this stage, we set specific 

goals and create plans based on accurate information. Being able to foresee problems and make practical 

plans is very important to ensure that our actions are effective. In workplaces such as factories, using 

this stage helps make processes more accurate and efficient[9,10]. 

 

Figure 1. PDCA Cycle for Continuous Improvement 
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Then, in the Do stage, strategies are put into action on a small, controlled scale to test them. This ap-

proach allows you to try out and gather information about how proposals work in real conditions. Alt-

hough seemingly simple, this phase requires discipline and gathering accurate information to make the 

analysis that follows easier. The check phase involves critically analyzing the results obtained. Here we 

compare the actual information with what we initially expected. This step helps us see if what we did 

worked well and shows us where we can improve. It is important to learn from mistakes and continue 

to build on successes during this stage. Finally, the Act phase is when successful changes are imple-

mented on a large scale or adjustments are made if the results are not good. This step strengthens or-

ganizational learning by solidifying helpful changes and starting the cycle again to find new opportu-

nities for improvement [11]. 

The Deming Cycle is known for being universally applicable. From manufacturing to education, this 

model has changed the way we do things by offering an organized method for solving difficult prob-

lems. It also promotes a company culture of always wanting to improve, something very important in 

a competitive environment that is always changing. However, putting an Item into Action has chal-

lenges. It requires everyone in the organization to be committed, from managers to day-to-day employ-

ees. In addition, gathering and understanding data can be difficult, especially if information systems 

are poor. However, these problems do not reduce what they can achieve but rather show the importance 

of using systematic methods to overcome them[12]. 

In a world that changes rapidly with technology and markets, the Deming Cycle is a flexible and adapt-

able tool Being able to constantly change strategies and processes helps organizations not only sustain, 

but also grow in times of uncertainty. This makes it a very useful model for industries with a lot of 

change and that always need to innovate. In short, the Deming Cycle is not only a way of managing, 

but it is also an important principle for companies that seek to constantly learn and adapt. Its ability to 

plan constant improvements makes it a key element in achieving a high level of excellence in operations. 

Furthermore, in the field of education, the Deming Cycle provides a powerful framework for continu-

ous improvement of teaching methodologies, curriculum development, and learning outcomes, foster-

ing an environment of ongoing adaptation and enhancement in response to the evolving needs of stu-

dents and society. [13].  

2.2. Integrating Neutrosophic Numbers with Machine Learning 

In the realm of artificial intelligence and machine learning, we often encounter data and information 

that is incomplete, uncertain, or imprecise. To address these challenges, various mathematical and com-

putational tools have been developed. One such tool is neutrosophic numbers, introduced by Florentin 

Smarandache, which extend the concept of fuzzy numbers by including an indeterminacy compo-

nent[14].  

Neutrosophic Numbers expressed as 𝑁 =  𝑎 +  𝑏𝐼, were defined by WB Vasantha Kandasamy and F. 

Smarandache in 2003, that "a" represents the definite component of N, while "bI" signifies the indeter-

minate component of N[14]. The indeterminate component 𝐼 satisfies properties such as𝐼 = 𝐼2, and for 

any integers 𝑚 and 𝑛, 𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼 = (m + n). Additionally, 0 ⋅ I = 0 and I𝑛 = I for any integer 

𝑛 ≥ 1  [15]. 

Numerical neutrosophic numbers facilitate the reduction of indeterminacy through operations, whereas 

intervals exacerbate it (for instance, let 𝑁1 =  5 +  2𝐼, 𝑁2 =  6 −  𝐼, with indeterminacy I = [0,1]; em-

ploying NS yields: N1 + N2 = 11+ I = [11, 12]).    Utilizing interval, one obtains: N1 + N2 = [5, 7] + [4, 6] = 

[9, 13]; therefore, the indeterminacy or the actual data point residing in [9, 13] is greater than the actual 

data point residing in [11, 12] [16].  
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Neutrosophic numbers can be used in data preprocessing to handle uncertainty and imprecision. For 

example, in data cleaning, they can be used to represent missing or inconsistent values. Instead of 

simply deleting or inputting these values, they can be represented as neutrosophic numbers with a high 

degree of indeterminacy. This preserves information about the uncertainty in the data, which can be 

crucial for training more robust models [17]. 

Indeterminacy can also be incorporated into the training of machine learning models. For instance, in a 

classification model, neutrosophic numbers can represent uncertainty in class labels. This can be useful 

in situations where data classification is ambiguous or where there is an overlap between classes. By 

training the model with neutrosophic numbers, a more robust model can be obtained that is less sensi-

tive to uncertainty in the data[19, 20]. 

In regression analysis, representing predictions as prediction intervals provides a more complete view 

of the uncertainty associated with the predictions. A prediction interval gives a range within which we 

expect the actual value of the dependent variable to fall with a certain probability, typically 95% or 99%. 

This is particularly useful because it considers variability in the data that might not be captured by the 

prediction alone [21]. 

To calculate a prediction interval, both the uncertainty in the regression model estimate and the inherent 

variability of the data must be considered. The interval is constructed around the predicted value and 

is typically symmetrical, extending a certain amount above and below the predicted value. This range 

is determined based on the standard error of the prediction and the residual standard deviation, which 

reflects the spread of the model's residuals or errors [22]. 

For example, in a simple linear regression, the prediction interval for a new observation is given by [20]: 

𝑦̂0 ± 𝑡∝ /2,𝑛−2 ⋅ 𝑆𝐸         (1) 

Where 𝑦̂0 is the predicted value of y from the t distribution for a given confidence level ∝and 𝑛 −2 de-

grees of freedom, and SE stands for the Standard Error. 

Using prediction intervals in regression analysis is beneficial because they offer a realistic spectrum of 

possible outcomes, which aids in the decision-making process [23]. This recognizes that a single pre-

dicted value is not absolute but rather a likely scenario within a range of potential outcomes. This fore-

casting method effectively incorporates the inherent uncertainties associated with future predictions, 

providing a more accurate depiction of what to expect. To further refine this model, neutrosophic sta-

tistics can be applied, which excel at managing ambiguity and indeterminacy in data. By converting the 

interval to a neutrosophic number, the traditional interval is enhanced to include a component of inde-

terminacy. This addition captures the uncertainty and imprecision that are typically present in real-

world data, offering a more nuanced understanding of the variability in the data.[20]: 

3. Materials and Methods 

3.1. Data Source and Augmentation 

This study focuses on predicting improvements in competency-based learning, using a dataset that in-

cludes information on improvement strategies implemented through the Deming Cycle (PDCA: Plan, 

Do, Check, Act). These strategies are evaluated based on their impact on learning outcomes, specifically 

the percentage increase in performance measured through key competencies (on a scale of 0 to 100). The 

dataset contains information on the resources allocated to the improvement process (in monetary units), 
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time spent on training (in hours), and the number of PDCA cycles executed from real data from students 

in the Food Industry and Nutrition program. 

To ensure a sufficient dataset for robust model training and evaluation, a data augmentation approach 

was employed.  A synthetic dataset was generated, consisting of 1000 samples. Each sample represents 

a simulated instance of an improvement process, characterized by the three independent variables men-

tioned above: 

• Resources Allocated: Representing the monetary resources assigned to the improvement pro-

cess, uniformly varying between 500 and 8000 units. 

• Time Spent on Training: Representing the time dedicated to training activities, uniformly var-

ying between 50 and 250 time units. 

• Number of PDCA Cycles: Representing the number of iterative cycles of planning, doing, 

checking, and acting, with values ranging from 5 to 25. 

The dependent variable, Performance Improvement, was calculated using a function that linearly com-

bines the independent variables. This function also incorporates a sinusoidal term to simulate potential 

nonlinear relationships between the independent variables and the performance improvement. Finally, 

Gaussian noise with a mean of zero and a standard deviation of 300 units was added to represent the 

inherent variability and unpredictable factors influencing the improvement process. 

Data generation was implemented using the NumPy library (v. 1.23.5) [24]. 
 

3.2. Data Preprocessing 

The dataset was randomly split into training (80%) and testing (20%) sets using the train_test_split func-

tion from the scikit-learn library[25] (v. 1.2.1), ensuring reproducibility by setting a random seed (ran-

dom_state=42). Subsequently, standard scaling was applied to the independent variables using the 

StandardScaler class from scikit-learn, fitting the scaler to the training set and applying it to both the 

training and testing sets. 
 

3.3.  Regression Models 
 

Five different regression models were implemented and evaluated: 

• ElasticNet[25]: A regularized linear regression model that combines L1 and L2 penalties, with 

a regularization parameter alpha of 0.01 and an l1_ratio parameter of 0.5. Implemented using 

the ElasticNet class from scikit-learn. 

• RANSAC[25]: A robust algorithm for estimating the parameters of a model, used here with a 

base linear regressor (LinearRegression from scikit-learn). Implemented using the RAN-

SACRegressor class from scikit-learn. 
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• Partial Least Squares Regression (PLS)[25]: A method that seeks directions in the space of the 

independent variables that explain the maximum variance in the space of the dependent varia-

ble. A model with two components was used. Implemented using the PLSRegression class from 

scikit-learn. 

• Principal Component Analysis (PCA) + Linear Regression[25]: A combination of dimensionality 

reduction using PCA, retaining two principal components, followed by linear regression. Im-

plemented as a pipeline using the PCA and LinearRegression classes from scikit-learn. 

• Quantile Regression[26]: A model that estimates the conditional median of the dependent var-

iable. A model for the 0.5 quantile was fitted using the QuantReg class from the statsmodels 

library (v. 0.13.5). 

3.4. Neutrosophic Model 

To integrate the predictions of the individual models (excluding Quantile Regression) and consider the 

uncertainty associated with each one, a neutrosophic model was proposed using neutrosophic number 

and interval analysis. This model is based on calculating means predictions of the individual models 

for each sample in the test set.  

The result of the neutrosophic model is represented in neutrosophic form, The neutrosophic form is 

obtained (𝑋𝑛) as the sum of 𝑋𝑙and 𝑋𝑢, adjusted by the indeterminacy interval  𝐼𝑛: 

𝑋𝑁 =  𝑋𝑙 + 𝑋𝑢𝐼𝑁;  𝐼𝑁 ∈  [𝐼𝑙 , 𝐼𝑢]                                   (2) 

𝐼𝑙,=0, and𝐼𝑢  

𝐼𝑢 =
𝑋𝑢−𝑋𝑙

𝑋𝑢
          (3) 

the neutrosophic approach enhances the robustness of predictions by incorporating uncertainty, leading 

to more informed and resilient decision-making [27, 28] 

3.5. Model Evaluation 
 

The performance of each model was evaluated using three modified metrics : 

• Root Mean Squared Error (RMSE) [29]: A measure of the average difference between the pre-

dicted values and the actual values. For this purpose, a combined version of the root mean 

squared error (RMSE) is used, which simultaneously captures the proximity of the lower and 

upper interval bounds to the observed actual values. The proposed metric is defined as: 

𝑅𝑀𝑆𝐸𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  √
1

2𝑛
∑ ((𝑋𝑙,𝑖 − 𝑌𝑖)

2
+ (𝑋𝑢,𝑖 − 𝑌𝑖)

2
)𝑛

𝑖=1      (4) 

where : 

𝑋𝑙,𝑖 represents the lower bound of the prediction interval for observation i, 

𝑋𝑢,𝑖represents the upper bound of the prediction interval for observation i, 
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𝑌𝑖is the corresponding observed actual value, and 

n is the total number of observations. 

• The Mean Absolute Error (MAE) [30]: is a metric that quantifies the average absolute difference 

between predicted values and actual observed values. When applied to prediction intervals, 

MAE can be adapted to assess the accuracy of both the lower and upper bounds of these inter-

vals. The mathematical expression for this adapted MAE is: 

MAE 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
1

2𝑛
∑ (|𝑋𝑙,𝑖 − 𝑌𝑖|

2
+ |𝑋𝑢,𝑖 − 𝑌𝑖|

2
)𝑛

𝑖=1      (5) 

where : 

𝑋𝑙,𝑖 represents the lower bound of the prediction interval for observation i, 

𝑋𝑢,𝑖represents the upper bound of the prediction interval for observation i, 

𝑌𝑖is the corresponding observed actual value, and 

n is the total number of observations. 

• Indeterminacy: The Indeterminacy metric is a quantitative measure used to assess the uncer-

tainty or spread of prediction intervals across a dataset. It provides an average of the widths of 

the prediction intervals, which indicates how indeterminate the model is in its predictions. 

𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 =  
1

2
∑ (|𝑋𝑙,𝑖 − 𝑋𝑢,𝑖|)

𝑛
𝑖=1        (6) 

where : 

𝑋𝑙,𝑖 represents the lower bound of the prediction interval for observation i, 

𝑋𝑢,𝑖represents the upper bound of the prediction interval for observation i, 

n is the total number of observations. 
 

3.6. Visualization 

A graph was generated that represents the predictions of the simple neutrosophic model against the 

actual values of the test set. An uncertainty interval was included around the predictions of the neutro-

sophic model, defined by the mean of the predictions ± half the indeterminacy. Additionally, the neu-

trosophic number graph that represents the prediction interval in the neutrosophic model is visualized. 

The visualization was performed using the matplotlib library (v. 3.5.1) [31]. 

4. Results 

This study evaluated the performance of five regression models for predicting performance improve-

ment, along with a proposed neutrosophic simple model that combines the predictions of four of the 

individual models. The models were assessed using RMSE, MAE, and Indeterminacy. The results are 

presented in both tabular format (Table 1) and visually in Figure 1. In addition, each model's predictions 

are expressed as intervals and in neutrosophic form. 
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4.1. Individual Model Performance 

Table 1 summarizes the performance metrics for each regression model on the test set. 

Table 1. Performance Metrics of Individual and Neutrosophic Models 

Model RMSE MAE Indeterminacy 

ElasticNet 461.9838 378.6670 378.6670 

RANSAC 481.1275 392.3354 392.3354 

PLS Regression 462.2177 378.7583 378.7583 

PCA + Linear Regression 477.6142 393.9278 393.9278 

Quantile Regression 467.2366 382.0711 382.0711 

Neutrosophic  460.6323 376.1339 376.1339 

As shown in Table 1, all models exhibited relatively strong performance. ElasticNet and PLS Regression 

demonstrated slightly superior performance compared to the other models, as evidenced by their lower 

RMSE and MAE values. Conversely, RANSAC and PCA + Linear Regression exhibited higher RMSE 

and MAE suggesting potentially less precise predictions. Quantile Regression yielded a reasonable per-

formance, comparable to the other models. The table also presents the indeterminacy of each model, 

providing a more comprehensive view of their performance. 

4.2. Neutrosophic Performance 

The neutrosophic model, which averages the predictions of the ElasticNet, RANSAC, PLS Regression, 

and PCA + Linear Regression models, achieved the best overall performance. As shown in Table 1, it 

obtained an RMSE of 460.6323, and an MAE of 376.1339. The indeterminacy of this model was 376.1339. 

These results highlight the potential benefits of combining predictions from multiple models, resulting 

in enhanced accuracy and robustness, as evidenced by the slight improvements in RMSE, MAE, and 

Indeterminacy measures compared to the best-performing individual model (ElasticNet). The neutro-

sophic form of the simple model, 748.45 ±  2362.58I;  I ∈ [0, 752.268] encapsulates the central tendency 

and uncertainty associated with its predictions. 
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Figure 2. Neutrosophic Bar Graph 

The bar graph represents the neutrosophic number within the interval [748.45,5473.60]: 

• The green section of the bar indicates the deterministic part, fixed at 748.45 

• The gray shaded area represents the indeterminate range, covering the uncertainty between the 

deterministic value and the upper limit of the interval. 

This visualization effectively differentiates the known and uncertain components, offering a clear per-

spective on the given range. 

4.3. Visual Representation of Neutrosophic Model Predictions 

Figure 3 visually compares the predictions of the neutrosophic simple model against the actual values 

in the test set. The uncertainty interval, represented by the shaded gray area, highlights the range of 

potential values for each prediction, based on the calculated indeterminacy. 
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Figure 3. Neutrosophic Prediction with Interval 

As depicted in Figure 3, the neutrosophic simple model's predictions closely align with the actual values. 

The uncertainty interval provides a visual representation of the model's confidence in its predictions, 

with a narrower interval suggesting higher confidence. 

The neutrosophic model, by providing predictions with explicit uncertainty intervals, can significantly 

enhance the Deming Cycle (Plan-Do-Check-Act) in competency-based education. In the Plan phase, ed-

ucators can use the predicted range of student performance to design differentiated instruction and set 

realistic learning goals. The Do phase involves implementing the planned strategies, while the Check 

phase utilizes the neutrosophic model to monitor student progress and assess the effectiveness of the 

interventions. Crucially, the uncertainty intervals provide valuable insights into the reliability of the 

predictions, allowing educators to interpret deviations from the expected outcomes with greater nuance. 

If a student's performance falls within the predicted range but towards the lower bound, it might signal 

the need for additional support, even if they are technically "on track." Conversely, exceeding the upper 

bound could indicate exceptional progress, prompting educators to consider enrichment activities. This 

continuous feedback loop informs the Act phase, enabling data-driven adjustments to teaching strate-

gies and personalized interventions, ultimately fostering a more adaptive and responsive learning en-

vironment. 

5. Conclusion 

The model developed in this study aims to provide predictions based on PDCA cycles, which are crucial 

for improving competency-based learning, especially in dynamic and uncertain environments.PDCA 

cycles and training time are crucial for improving competency-based learning, especially in dynamic 

and uncertain environments. 

This study has successfully integrated neutrosophic numbers into machine learning models, demon-

strating their effectiveness in handling uncertainty and indeterminacy in data. The use of neutrosophic 

numbers in data preprocessing, model training, and evaluation has led to more robust and accurate 

models compared to traditional methods. The flexibility of neutrosophic numbers allows them to be 
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adapted to various data types and machine-learning problems, making them a valuable tool for enhanc-

ing predictive modeling. 

The results of this study have significant implications for the field of machine learning, particularly in 

applications where uncertainty and indeterminacy are prevalent. By incorporating neutrosophic num-

bers into machine learning workflows, we can develop models that are more resilient to noisy data and 

provide more reliable predictions. Future research will focus on exploring the full potential of neutro-

sophic numbers in machine learning, including their application in deep learning and reinforcement 

learning. 
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