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Abstract. Various set concepts are widely recognized for effectively a ddressing u ncertainty, i ncluding fuzzy 
sets, neutrosophic sets, plithogenic sets, rough sets, and soft sets. These concepts have been further extended 
through hyperstructures (based on powersets) and superhyperstructures (based on n-th powersets, which are sets 
with repeated power set structures) [5,12–14,32]. These extensions are commonly referred to as HyperUncertain, 
SuperUncertain, and SuperHyperUncertain Sets/Logics/Probabilities/Statistics, and they were introduced by 
Smarandache in 2016-2017 [32] as parts of HyperStructures, SuperStructures, and SuperHyperStructures respectively. 
This paper recalls these concepts along with concrete examples.
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1. Introduction

1.1. Uncertain Set

Various types of uncertain sets, such as Fuzzy Set [43], Intuitionistic Fuzzy Set [1], Vague
Set [18], Soft Set [22], Rough Set [24], Neutrosophic Set [31], and Plithogenic Set [35], are 

well-known. For instance:• A fuzzy set generalizes classical sets by allowing elements to have membership degrees
within [0, 1], representing partial truth [43].

• A neutrosophic set extends fuzzy sets by incorporating truth, indeterminacy, and falsity
degrees, providing a more nuanced uncertainty model [31].

• A plithogenic set further incorporates multiple attributes, contradictions, and degrees
of membership to model complex, contradictory, and multi-valued data [34].

• A soft set is a parameterized family of subsets that models uncertainty by associating
attributes with their corresponding approximate elements [22].
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• A rough set approximates a set using a pair of lower and upper approximations, cap-
turing uncertainty due to incomplete information [24].

These concepts have been extended to areas like graph theory and topology, leading to
various mathematical and applied investigations.

In recent years, these uncertain sets have been generalized into HyperFuzzy, HyperVague,
HyperSoft, HyperRough, HyperNeutrosophic, and HyperPlithogenic Sets by utilizing hyper-
structures (based on power sets) [5,32]. Furthermore, they have been expanded into SuperHy-
perFuzzy, SuperHyperVague, SuperHyperSoft, SuperHyperRough, SuperHyperNeutrosophic,
and SuperHyperPlithogenic Sets by employing superhyperstructures, which are repeated ap-
plications of the power set concept [5].

1.2. Our Contribution

This paper revisits the concepts of HyperFuzzy, HyperSoft, HyperRough, HyperNeutro-
sophic, and HyperPlithogenic Sets, as well as SuperHyperFuzzy, SuperHyperSoft, SuperHyper-
Rough, SuperHyperNeutrosophic, and SuperHyperPlithogenic Sets, as defined in works such
as [5, 12–14], providing detailed examples. These sets are also referred to as HyperUncertain
Sets and SuperHyperUncertain Sets. This study aims to raise awareness among researchers
and contribute to further exploration of HyperUncertain Concepts and SuperHyperUncertain
Concepts.

2. Preliminaries and definitions

In this section, we present a brief overview of the definitions and notations used throughout
this paper. We will specifically cover fundamental concepts related to graphs, including fuzzy
graphs, intuitionistic fuzzy graphs, Turiyam Neutrosophic graphs, and neutrosophic graphs.

2.1. SuperHyperstructure

Mathematical structures can be systematically extended into Hyperstructures and Super-
Hyperstructures using the concepts of the power set and n-th powerset. The n-th powerset
represents an iterative extension of the powerset concept, where each iteration generates the
powerset of the previous level [17, 29, 37]. The definitions and examples of n-th powersets,
hyperstructures, and superhyperstructures are provided below.

Definition 2.1 (Set). [20] A set is a collection of distinct, well-defined objects, referred to
as elements. For any object x, it can be determined whether x is an element of a given set. If
x belongs to a set A, this is denoted as x ∈ A. Sets are often represented using curly braces.
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Definition 2.2 (Subset). [20] A set A is called a subset of a set B if every element of A is
also an element of B. This is denoted as A ⊆ B. Formally:

A ⊆ B ⇐⇒ (∀x ∈ A)(x ∈ B).

If A ⊆ B and A 6= B, then A is called a proper subset of B, denoted as A ⊂ B.

Definition 2.3 (Empty Set). [20] The empty set, denoted by ∅, is the unique set that contains
no elements. Formally:

∅ = {x | x 6= x}.

For any set A, the empty set is a subset of A:

∅ ⊆ A.

Definition 2.4 (Base Set). A base set S is the foundational set from which complex structures
such as powersets and hyperstructures are derived. It is formally defined as:

S = {x | x is an element within a specified domain}.

All elements in constructs like P(S) or Pn(S) originate from the elements of S.

Definition 2.5 (Powerset). [28] The powerset of a set S, denoted P(S), is the set of all
subsets of S, including the empty set and S itself. Formally,

P(S) = {A | A ⊆ S}.

Example 2.6 (Powerset of a Set). Let S = {a, b}. The powerset P(S) is:

P(S) = {∅, {a}, {b}, {a, b}}.

Definition 2.7 (n-th powerset). (cf. [29, 37]) The n-th powerset of H, denoted Pn(H), is
defined recursively as:

P1(H) = P (H), Pn+1(H) = P (Pn(H)) for n ≥ 1.

Similarly, the n-th non-empty powerset of H, denoted P ∗
n(H), is defined as:

P ∗
1 (H) = P ∗(H), P ∗

n+1(H) = P ∗(P ∗
n(H)).

Example 2.8 (n-th Powerset of a Set). Let H = {a, b}. The first powerset P1(H) is:

P1(H) = {∅, {a}, {b}, {a, b}}.

The second powerset P2(H) is the powerset of P1(H), given by:

P2(H) = {∅, {∅}, {{a}}, {{b}}, {{a, b}}, {∅, {a}}, . . . ,P1(H)}.

To establish a formal foundation for the concepts of Hyperstructures and Superhyperstruc-
tures, we present the following definitions and propositions.
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Definition 2.9 (Classical Structure). (cf. [29, 37]) A Classical Structure is a mathematical
framework defined on a non-empty set H, equipped with one or more Classical Operations
that satisfy specified Classical Axioms. Specifically:

A Classical Operation is a function of the form:

#0 : H
m → H,

where m ≥ 1 is a positive integer, and Hm denotes the m-fold Cartesian product of H.
Common examples include addition and multiplication in algebraic structures such as groups,
rings, and fields.

Definition 2.10 (Hyperoperation). (cf. [27, 39–41]) A hyperoperation is a generalization of a
binary operation where the result of combining two elements is a set, not a single element.
Formally, for a set S, a hyperoperation ◦ is defined as:

◦ : S × S → P(S),

where P(S) is the powerset of S.

Definition 2.11 (Hyperstructure). (cf. [17,29,37]) A Hyperstructure extends the notion of a
Classical Structure by operating on the powerset of a base set. Formally, it is defined as:

H = (P(S), ◦),

where S is the base set, P(S) is the powerset of S, and ◦ is an operation defined on subsets
of P(S). Hyperstructures allow for generalized operations that can apply to collections of
elements rather than single elements.

Example 2.12 (Hyperstructure). Let S = {a, b} be a base set. Its powerset is:

P(S) = {∅, {a}, {b}, {a, b}}.

Define a hyperoperation ◦ on P(S) as follows:

X ◦ Y = {x ∪ y | x ∈ X, y ∈ Y }, for X,Y ⊆ P(S).

For example:

{a} ◦ {b} = {{a, b}}, {a} ◦ ∅ = {{a}}.

This structure H = (P(S), ◦) is a hyperstructure where the operation ◦ maps pairs of subsets
to subsets of the powerset.

Definition 2.13 (SuperHyperOperations). (cf. [37]) Let H be a non-empty set, and let P(H)

denote the powerset of H. The n-th powerset Pn(H) is defined recursively as follows:

P0(H) = H, Pk+1(H) = P(Pk(H)), for k ≥ 0.
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A SuperHyperOperation of order (m,n) is an m-ary operation:

◦(m,n) : Hm → Pn
∗ (H),

where Pn
∗ (H) represents the n-th powerset of H, either excluding or including the empty set,

depending on the type of operation:

• If the codomain is Pn
∗ (H) excluding the empty set, it is called a classical-type (m,n)-

SuperHyperOperation.
• If the codomain is Pn(H) including the empty set, it is called a Neutrosophic (m,n)-

SuperHyperOperation.

These SuperHyperOperations are higher-order generalizations of hyperoperations, capturing
multi-level complexity through the construction of n-th powersets.

Definition 2.14 (n-Superhyperstructure). (cf. [29,37]) An n-Superhyperstructure further gen-
eralizes a Hyperstructure by incorporating the n-th powerset of a base set. It is formally
described as:

SHn = (Pn(S), ◦),

where S is the base set, Pn(S) is the n-th powerset of S, and ◦ represents an operation
defined on elements of Pn(S). This iterative framework allows for increasingly hierarchical
and complex representations of relationships within the base set.

Example 2.15 (SuperHyperstructure). Let S = {a, b}. The first powerset is:

P1(S) = P(S) = {∅, {a}, {b}, {a, b}}.

The second powerset is:

P2(S) = P(P(S)) = {∅, {∅}, {{a}}, {{b}}, {{a, b}}, {∅, {a}}, . . .}.

Define a superhyperoperation ◦ on P2(S) as:

X ◦ Y = {P(x ∪ y) | x ∈ X, y ∈ Y }, for X,Y ⊆ P2(S).

For example:

{{a}} ◦ {{b}} = {P({a, b})} = {∅, {a}, {b}, {a, b}}.

The structure SH2 = (P2(S), ◦) is a 2-Superhyperstructure, which incorporates the second
powerset and a higher-order operation ◦.

3. Review Result in this paper

This paper revisits the HyperUncertain and SuperHyperUncertain versions of Fuzzy Sets,
Neutrosophic Sets, Plithogenic Sets, Soft Sets, and Rough Sets.
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3.1. Fuzzy Set

The Fuzzy Set is a well-known concept used to address uncertainty in set theory. These sets
can be extended into Hyperfuzzy Sets and SuperHyperfuzzy Sets using hyperstructures and
superhyperstructures. The definition is provided below [43].

Definition 3.1 (Fuzzy Set). [43] A fuzzy set τ in a non-empty universe Y is a mapping
τ : Y → [0, 1]. A fuzzy relation on Y is a fuzzy subset δ in Y × Y . If τ is a fuzzy set in Y and
δ is a fuzzy relation on Y , then δ is called a fuzzy relation on τ if

δ(y, z) ≤ min{τ(y), τ(z)} for all y, z ∈ Y.

Example 3.2 (Fuzzy Set: Temperature Assessment). Consider a universe Y representing
daily temperatures in degrees Celsius, ranging from −30 to 50. Define a fuzzy set τ called
Hot, where:

τ(t) =


0 if t ≤ 20,

t−20
15 if 20 < t < 35,

1 if t ≥ 35.

Here, τ(t) indicates the degree of membership of temperature t in the concept “Hot.” Tem-
peratures at or below 20◦C are not considered hot (τ(t) = 0), those at or above 35◦C are fully
hot (τ(t) = 1), and intermediate values transition linearly between 0 and 1.

Definition 3.3 (HyperFuzzy Set). [19, 21, 38] Let X be a non-empty set. A hyperfuzzy set
over X is defined as a mapping:

µ̃ : X → P([0, 1]) \ {∅},

where P([0, 1]) \ {∅} represents the family of all non-empty subsets of the interval [0, 1].
For each element x ∈ X, µ̃(x) assigns a non-empty subset of [0, 1], representing the possible

membership degrees of x in the hyperfuzzy set. This definition generalizes classical fuzzy sets
by allowing the membership degree of each element to be a range (set of values) instead of a
single scalar value.

Example 3.4 (HyperFuzzy Set: Interval-Based Uncertainty). Let X be the set of daily tem-
peratures {−30,−29, . . . , 49, 50}. Define a hyperfuzzy set µ̃ called Hot-Interval, where:

µ̃(t) ⊆ [0, 1],

and each µ̃(t) is an interval representing uncertainty about how hot the day is. For instance:

µ̃(20) = [0, 0.1], µ̃(25) = [0.3, 0.5], µ̃(35) = [0.9, 1].

Thus, rather than assigning a single membership degree, we assign a set of possible degrees,
reflecting incomplete or imprecise data on temperature perception.
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Definition 3.5 (n-SuperHyperFuzzy Set). [5, 7] Let X be a non-empty set. The n-
SuperHyperFuzzy Set is a recursive generalization of fuzzy sets, hyperfuzzy sets, and super-
hyperfuzzy sets. It is defined as:

µ̃n : P̃n(X) → P̃n([0, 1]),

where:

• P̃1(X) = P̃(X), and for k ≥ 2,

P̃k(X) = P̃(P̃k−1(X)),

represents the k-th nested family of non-empty subsets of X.
• P̃n([0, 1]) is similarly defined for the interval [0, 1].
• µ̃n assigns to each element A ∈ P̃n(X) a non-empty subset µ̃n(A) ⊆ [0, 1], representing

the degrees of membership associated with A at the n-th level.

Example 3.6 (n-SuperHyperFuzzy Set: Multi-Level Uncertainty). Suppose X again repre-
sents daily temperatures, and we extend our uncertainty to multiple layers. Let

P̃1(X) = P̃(X), P̃2(X) = P̃(P̃(X)), . . . , P̃n(X) = P̃(P̃n−1(X)),

where each P̃(·) denotes the family of non-empty subsets at each level. Define

µ̃n : P̃n(X) → P̃n([0, 1]),

so that for an element A ∈ P̃n(X), µ̃n(A) is a non-empty subset of [0, 1] capturing multiple
layers of uncertainty. Concretely, if A is a second-level set describing “moderately hot” or
“extremely hot” temperature ranges, then µ̃n(A) might itself be a family of intervals in [0, 1]

that represent various degrees of membership for these subcategories. This approach models
complex, nested uncertainties about temperature evaluations across several interpretive levels.

3.2. Neutrosophic Set

This section provides the definitions of Neutrosophic Set, HyperNeutrosophic Set, and Su-
perHyperNeutrosophic Set. A Neutrosophic Set models uncertainty using three membership
functions: truth (T ), indeterminacy (I), and falsity (F ), which satisfy:

0 ≤ T + I + F ≤ 3.

[4, 16, 30, 31, 42]. These sets can be extended into HyperNeutrosophic Sets and SuperHyper-
Neutrosophic Sets using hyperstructures and superhyperstructures.

Definition 3.7 (Neutrosophic Set). [30, 31] Let X be a non-empty set. A Neutrosophic Set
(NS) A on X is characterized by three membership functions:

TA : X → [0, 1], IA : X → [0, 1], FA : X → [0, 1],
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where for each x ∈ X, the values TA(x), IA(x), and FA(x) represent the degrees of truth,
indeterminacy, and falsity, respectively. These values satisfy the following condition:

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Example 3.8 (Neutrosophic Set: Public Opinion). Imagine a public poll about a new policy,
where X is the set of all citizens. For each person x ∈ X, define:

TA(x) = degree of support for the policy,

IA(x) = degree of uncertainty,

FA(x) = degree of opposition.

Each value lies in [0, 1], and we have 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. For instance, if a
citizen is mostly supportive yet somewhat undecided, we might have

(
TA(x), IA(x), FA(x)

)
=

(0.7, 0.2, 0.1).

Example 3.9 (Neutrosophic Set: Product Quality Evaluation). Let X be a collection of
manufactured items. For each product x ∈ X, define:

TA(x) = degree of “high quality”,

IA(x) = degree of “uncertain/untested”,

FA(x) = degree of “defective”.

Suppose a certain product is partially tested but with ambiguous data. One might assign(
TA(x), IA(x), FA(x)

)
= (0.5, 0.4, 0.2), indicating moderate confidence in its quality, some

unverified aspects, and a small chance of being defective.

Definition 3.10 (HyperNeutrosophic Set). [5,10,32] Let X be a non-empty set. A mapping
µ̃ : X → P̃ ([0, 1]3) is called a HyperNeutrosophic Set over X, where P̃ ([0, 1]3) denotes the fam-
ily of all non-empty subsets of the unit cube [0, 1]3. For each x ∈ X, µ̃(x) ⊆ [0, 1]3 represents a
set of neutrosophic membership degrees, each consisting of truth (T ), indeterminacy (I), and
falsity (F ) components, satisfying:

0 ≤ T + I + F ≤ 3.

Example 3.11 (HyperNeutrosophic Set: Ranges of Public Sentiment). Let X be the set of
all citizens, and let a HyperNeutrosophic Set µ̃ map each person x ∈ X to a non-empty subset
of [0, 1]3. Instead of a single triple (T, I, F ), assign a set of possible triples. For example, a
person’s support for a policy might lie in:

µ̃(x) =
{
(0.6, 0.2, 0.2), (0.7, 0.1, 0.2)

}
⊆ [0, 1]3,

reflecting slight uncertainty in whether the person’s true stance is (T = 0.6, I = 0.2, F = 0.2)

or (T = 0.7, I = 0.1, F = 0.2), with each triple still obeying 0 ≤ T + I + F ≤ 3.
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Example 3.12 (HyperNeutrosophic Set: Product Quality with Interval Uncertainty). Let X

be a set of products, and define µ̃(x) ⊆ [0, 1]3 for each product x. Suppose a batch of items
has variable but uncertain test outcomes. We might assign:

µ̃(x) = {(T, I, F ) | T ∈ [0.6, 0.8], I ∈ [0.1, 0.3], F ∈ [0, 0.2]},

indicating a continuous range of plausible truth, indeterminacy, and falsity values for its qual-
ity. All points in that set satisfy 0 ≤ T + I + F ≤ 3.

Definition 3.13 (n-SuperHyperNeutrosophic Set). [5, 32] Let X be a non-empty set. An
n-SuperHyperNeutrosophic Set is a recursive generalization of Neutrosophic Sets, HyperNeu-
trosophic Sets, and SuperHyperNeutrosophic Sets. It is defined as:

Ãn : P̃n(X) → P̃n([0, 1]
3),

where:

• P̃1(X) = P̃(X), and for k ≥ 2,

P̃k(X) = P̃(P̃k−1(X)),

represents the k-th nested family of non-empty subsets of X.
• P̃n([0, 1]

3) is similarly defined for the unit cube [0, 1]3.
• The mapping Ãn assigns to each A ∈ P̃n(X) a subset Ãn(A) ⊆ [0, 1]3, representing the

degrees of truth (T ), indeterminacy (I), and falsity (F ) for the n-th level subsets of
X.

For each A ∈ P̃n(X) and (T, I, F ) ∈ Ãn(A), the following condition is satisfied:

0 ≤ T + I + F ≤ 3,

where T , I, and F represent the truth, indeterminacy, and falsity degrees, respectively.

Example 3.14 (n-SuperHyperNeutrosophic Set: Hierarchical Polling). Let X be a population
divided into regions, cities, and neighborhoods. Define P̃1(X) as the family of non-empty
subsets of X, P̃2(X) as the family of non-empty subsets of P̃1(X), and so on, up to P̃n(X).
An n-SuperHyperNeutrosophic Set Ãn assigns each nested subset A ∈ P̃n(X) a set of triples
in [0, 1]3. For example, at the second level (n = 2), a city-wide subset A ⊆ X might map to

Ã2(A) =
{
(0.65, 0.20, 0.15), (0.70, 0.15, 0.15)

}
,

reflecting possible truth (support), indeterminacy, and falsity (opposition) degrees about that
city’s collective opinion.
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Example 3.15 (n-SuperHyperNeutrosophic Set: Multi-Level Product Testing). Consider a
company testing components, sub-assemblies, and final products. Define X as all individ-
ual components, with P̃n(X) nesting up to n levels (e.g., combining components into sub-
assemblies, then products). The map Ãn assigns each multi-level subset A ∈ P̃n(X) a set of
(T, I, F ) triples in [0, 1]3. If a sub-assembly is tested but still uncertain, we may record:

Ãn(A) = {(0.4, 0.5, 0.2), (0.5, 0.4, 0.2)},

allowing multiple possible truth, indeterminacy, and falsity distributions for quality, each ad-
hering to 0 ≤ T + I + F ≤ 3.

3.3. Plithogenic Set

A Plithogenic Set is a mathematical framework that incorporates multi-valued degrees of
appurtenance and contradictions, making it suitable for complex decision-making processes.
Various studies have been conducted on Plithogenic Sets [3, 11, 15, 34, 35]. The definition is
presented below.

Definition 3.16 (Plithogenic Set). [34,35] Let S be a universal set, and P ⊆ S. A Plithogenic
Set PS is defined as:

PS = (P, v, Pv, pdf, pCF )

where:

• v is an attribute.
• Pv is the range of possible values for the attribute v.
• pdf : P × Pv → [0, 1]s is the Degree of Appurtenance Function (DAF).
• pCF : Pv × Pv → [0, 1]t is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all a, b ∈ Pv:

(1) Reflexivity of Contradiction Function:

pCF (a, a) = 0

(2) Symmetry of Contradiction Function:

pCF (a, b) = pCF (b, a)

Example 3.17 (Plithogenic Set: Product Evaluation). Consider a universal set S of products,
and let P ⊆ S be the subset of products currently sold in a store. Suppose we focus on a single
attribute v called “Flavor,” with possible values

Pv = {Sweet, Sour, Bitter, Salty}.
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Define the Degree of Appurtenance Function

pdf : P × Pv → [0, 1]1

that assigns to each product x ∈ P and each flavor α ∈ Pv a membership degree pdf(x, α) ∈
[0, 1]. For example, if product x is a “Lemon Candy,” we might have

pdf(x, Sour) = 0.8, pdf(x, Sweet) = 0.6, pdf(x, Bitter) = 0.0, pdf(x, Salty) = 0.0.

The Degree of Contradiction Function

pCF : Pv × Pv → [0, 1]1

measures how contradictory two flavor values are. For instance,

pCF (Sweet, Bitter) = 0.7

and

pCF (Sweet, Sweet) = 0,

reflecting that identical flavor values are not contradictory (0) and sweet versus bitter has mod-
erate contradiction (0.7). Together, these functions form a Plithogenic Set

(
P, v, Pv, pdf, pCF

)
for product evaluation.

These definitions establish the foundational framework necessary for exploring the Hyper-
Plithogenic Set and the SuperHyperPlithogenic Set. The definitions of the HyperPlithogenic
Set and the SuperHyperPlithogenic Set are presented below [5,7, 15].

Definition 3.18 (HyperPlithogenic Set). [5, 7, 15] Let X be a non-empty set, and let A be
a set of attributes. For each attribute v ∈ A, let Pv be the set of possible values of v. A
HyperPlithogenic Set HPS over X is defined as:

HPS = (P, {vi}ni=1, {Pvi}ni=1, { ˜pdf i}ni=1, pCF )

where:

• P ⊆ X is a subset of the universe.
• For each attribute vi, Pvi is the set of possible values.
• For each attribute vi, ˜pdf i : P ×Pvi → P̃ ([0, 1]s) is the Hyper Degree of Appurtenance

Function (HDAF), assigning to each element x ∈ P and attribute value ai ∈ Pvi a set
of membership degrees.

• pCF : (
⋃n

i=1 Pvi)×(
⋃n

i=1 Pvi) → [0, 1]t is the Degree of Contradiction Function (DCF).
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Example 3.19 (HyperPlithogenic Set: Interval Uncertainty in Product Ratings). Let X be
the set of all products in a large online marketplace, and P ⊆ X be the subset of currently
active items. Suppose we have attributes v1 = Quality and v2 = PriceRange. Define:

Pv1 = {Low, Medium, High}, Pv2 = {Budget, Standard, Premium}.

For each attribute vi, we introduce a Hyper Degree of Appurtenance Function:

˜pdf i : P × Pvi → P̃ ([0, 1]s),

where P̃ ([0, 1]s) is the set of non-empty subsets of [0, 1]s. For instance, for a certain product
x ∈ P ,

˜pdf1(x, Medium) = {[0.4, 0.5], [0.5, 0.7]},

meaning the Quality could be in the interval [0.4, 0.5] or [0.5, 0.7] with some uncertainty about
how well x meets medium quality. The PriceRange might similarly assign sets of possible
membership intervals. The Degree of Contradiction Function pCF still measures contradictions
between any two values from Pv1 ∪ Pv2, for example:

pCF (High, Budget) = 0.8,

indicating a strong mismatch between “High quality” and “Budget” price. Thus, the tuple(
P, {vi}2i=1, {Pvi}2i=1, { ˜pdf i}2i=1, pCF

)
constitutes a HyperPlithogenic Set capturing interval-based uncertainties in product ratings.

Definition 3.20 (n-SuperHyperPlithogenic Set). [5,7,15] Let X be a non-empty set, and let
V = {v1, v2, . . . , vn} be a set of attributes, each associated with a set of possible values Pvi .
An n-SuperHyperPlithogenic Set (SHPSn) is defined recursively as:

SHPSn = (Pn, V, {Pvi}ni=1, { ˜pdf
(n)
i }ni=1, pCF (n)),

where:

• P1 ⊆ X, and for k ≥ 2,
Pk = P̃(Pk−1),

represents the k-th nested family of non-empty subsets of P1.
• For each attribute vi ∈ V , Pvi is the set of possible values of the attribute vi.
• For each k-th level subset Pk, ˜pdf

(n)
i : Pn × Pvi → P̃([0, 1]s) is the Hyper Degree of

Appurtenance Function (HDAF), assigning to each element x ∈ Pn and attribute value
ai ∈ Pvi a subset of [0, 1]s.

• pCF (n) :
⋃n

i=1 Pvi ×
⋃n

i=1 Pvi → [0, 1]t is the Degree of Contradiction Function (DCF),
satisfying:
(1) Reflexivity: pCF (n)(a, a) = 0 for all a ∈

⋃n
i=1 Pvi ,
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(2) Symmetry: pCF (n)(a, b) = pCF (n)(b, a) for all a, b ∈
⋃n

i=1 Pvi .
• s and t are positive integers representing the dimensions of the membership degrees

and contradiction degrees, respectively.

Example 3.21 (n-SuperHyperPlithogenic Set: Multi-Level Inventory Analysis). Consider a
retail chain managing products (P1), their packaging combinations (P2), and potential dis-
tribution bundles (P3), and so on. Each Pk is formed by taking non-empty subsets of Pk−1,
leading to

Pk = P̃(Pk−1).

Let V = {v1, v2} be two attributes: v1 = DemandLevel and v2 = ShipmentSize. Suppose

Pv1 = {Low, Moderate, High}, Pv2 = {Small, Medium, Large}.

At the n-th nesting, each element of Pn might be a complex grouping of lower-level sets. A
Hyper Degree of Appurtenance Function ˜pdf

(n)
i assigns to each (x, ai) a subset in [0, 1]s. For

instance, an entire distribution bundle x ∈ Pn could be associated with

˜pdf
(n)
1 (x, High) =

{
(0.7, 0.8)

}
,

indicating it has a strong membership in “High DemandLevel.” The Degree of Contradiction
Function

pCF (n) :
2⋃

i=1

Pvi ×
2⋃

i=1

Pvi → [0, 1]t

remains reflexive and symmetric. For example,

pCF (n)(High, Low) = 0.9, pCF (n)(Small, Small) = 0.

Putting these pieces together, the n-SuperHyperPlithogenic Set

SHPSn =
(
Pn, V, {Pvi}2i=1, { ˜pdf

(n)
i }2i=1, pCF (n)

)
captures multiple hierarchical levels of inventory grouping, attribute values, and their possible
contradictions. This structure helps a large retailer navigate uncertainties in both demand
and shipment size across layered distribution networks.

3.4. Soft Set

A soft set is a mathematical structure that associates subsets of a universal set with pa-
rameters, providing a systematic framework for modeling uncertainty [22,23]. A hypersoft set
extends the concept of soft sets by mapping Cartesian products of multiple attribute domains
to subsets of a universal set [33]. A superhypersoft set further generalizes hypersoft sets by
mapping combinations of power sets of attribute domains to subsets of a universal set [2,6,36].
The definitions and concrete examples of these concepts are provided below.
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Definition 3.22 (Soft Set). [22, 23] Let U be a universal set and A be a set of attributes.
A soft set over U is a pair (F , S), where S ⊆ A and F : S → P(U). Here, P(U) denotes the
power set of U . Mathematically, a soft set is represented as:

(F , S) = {(α,F(α)) | α ∈ S,F(α) ∈ P(U)}.

Each α ∈ S is called a parameter, and F(α) is the set of elements in U associated with α.

Example 3.23 (Soft Set: Car Dealership). Let U be the set of all cars in a dealership, and let
A = {Color, Brand, FuelType} be a set of attributes. Suppose we select S = {Color, Brand} ⊆
A. A soft set (F , S) can be defined by specifying, for each attribute in S, the subset of cars
having that property:

F(Color) = {cars that are red}, F(Brand) = {cars from Toyota}.

Thus, F(Color) might include any red car in the dealership, and F(Brand) might include
every Toyota model on the lot. This soft set captures which cars match each chosen attribute.

Example 3.24 (Soft Set: Student Enrollment). Consider U to be all students at a university,
and let A = {Major, Year, Club}. Suppose we pick S = {Major, Year} ⊆ A. Define

F(Major) = {all students in Mathematics}, F(Year) = {all second-year students}.

Each attribute in S is a parameter, and F(α) identifies the subset of students satisfying α.
This helps administrators see which students share the same major or academic year.

Definition 3.25 (Hypersoft Set). [33] Let U be a universal set, and let A1,A2, . . . ,Am be
attribute domains. Define C = A1 ×A2 × · · · × Am, the Cartesian product of these domains.
A hypersoft set over U is a pair (G, C), where G : C → P(U). The hypersoft set is expressed
as:

(G, C) = {(γ,G(γ)) | γ ∈ C, G(γ) ∈ P(U)}.

For an m-tuple γ = (γ1, γ2, . . . , γm) ∈ C, where γi ∈ Ai for i = 1, 2, . . . ,m, G(γ) represents
the subset of U corresponding to the combination of attribute values γ1, γ2, . . . , γm.

Example 3.26 (Hypersoft Set: Apartment Hunting). Let U be the set of all available apart-
ments in a city. Suppose we have three attribute domains:

A1 = {1-Bedroom, 2-Bedroom}, A2 = {Downtown, Suburb}, A3 = {LowRent, HighRent}.

The Cartesian product C = A1 × A2 × A3 consists of all 3-tuples specifying (Size, Location,
RentLevel). Define G : C → P(U) by:

G(1-Bedroom, Downtown, LowRent) = {all 1-BR downtown apartments with relatively low rent}.
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Each element γ = (γ1, γ2, γ3) ∈ C maps to the set of apartments matching that combination
of features. This hypersoft set enables a real estate agency to group apartments by multiple
attributes at once.

Example 3.27 (Hypersoft Set: Course Selection). Let U be all courses offered at a university,
and let the attribute domains be

A1 = {Morning, Afternoon}, A2 = {Undergraduate, Graduate}, A3 = {In-Person, Online}.

The Cartesian product C = A1 × A2 × A3 contains all possible combinations of (TimeSlot,
Level, Mode). A hypersoft set (G, C) is defined by

G(γ) ⊆ U,

where G(γ) is the subset of courses that match each combination γ. For example,

G(Morning, Undergraduate, Online)

could be all online, morning classes offered at the undergraduate level.

Definition 3.28 (SuperHyperSoft Set). [36] Let U be a universal set, and let P(U) denote
the power set of U . Consider n distinct attributes a1, a2, . . . , an, where n ≥ 1. Each attribute
ai is associated with a set of attribute values Ai, satisfying the property Ai ∩ Aj = ∅ for all
i 6= j.

Define P(Ai) as the power set of Ai for each i = 1, 2, . . . , n. Then, the Cartesian product
of the power sets of attribute values is given by:

C = P(A1)× P(A2)× · · · × P(An).

A SuperHyperSoft Set over U is a pair (F, C), where:

F : C → P(U),

and F maps each element (α1, α2, . . . , αn) ∈ C (with αi ∈ P(Ai)) to a subset
F (α1, α2, . . . , αn) ⊆ U . Mathematically, the SuperHyperSoft Set is represented as:

(F, C) = {(γ, F (γ)) | γ ∈ C, F (γ) ∈ P(U)}.

Here, γ = (α1, α2, . . . , αn) ∈ C, where αi ∈ P(Ai) for i = 1, 2, . . . , n, and F (γ) corresponds
to the subset of U defined by the combined attribute values α1, α2, . . . , αn.

Example 3.29 (SuperHyperSoft Set: Customized Tour Packages). Let U be the set of all
available tourist destinations in a travel agency’s database. Suppose we have three distinct
attributes:

a1 = Sightseeing, a2 = Adventure, a3 = Luxury.
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Each attribute ai is linked with a set of possible values Ai. For instance,

A1 = {Museums, HistoricSites}, A2 = {Hiking, Kayaking}, A3 = {FiveStarHotels, Resorts}.

We then consider the power sets P(A1), P(A2), P(A3) and form the Cartesian product

C = P(A1)× P(A2)× P(A3).

A SuperHyperSoft Set (F, C) is defined by a mapping

F : C → P(U),

where each tuple γ = (α1, α2, α3) with αi ⊆ Ai represents a combination of chosen sightseeing
options, adventure activities, and luxury services. Then F (γ) is the subset of destinations that
satisfy the selected combination at once. For instance,

F
(
{Museums, HistoricSites}, {Hiking}, {Resorts}

)
could be all travel packages offering museum visits, hiking excursions, and resort accommoda-
tions in a single itinerary.

Example 3.30 (SuperHyperSoft Set: Laboratory Testing). Let U be the set of experimental
protocols in a research lab. Suppose there are n = 2 attributes:

a1 = EquipmentUsed, a2 = SampleType.

Then A1 might include {Microscope, Centrifuge, Spectrometer}, and A2 might include
{BloodSample, TissueSample}. We take the power sets P(A1) and P(A2):

C = P(A1)× P(A2).

A SuperHyperSoft Set (F, C) assigns to each pair

(α1, α2) ∈ P(A1)× P(A2)

a subset of laboratory protocols in P(U). For example, if α1 = {Microscope, Centrifuge}
and α2 = {BloodSample}, then

F (α1, α2) = {Protocols requiring a microscope and centrifuge on blood samples}.

This approach systematically encodes possible experimental setups and the corresponding
protocols.
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3.5. Rough Set

A Rough Set approximates a subset using lower and upper bounds based on equivalence
classes, capturing certainty and uncertainty in membership [24, 26]. The definitions are pro-
vided below.

Definition 3.31 (Rough Set Approximation). [25] Let X be a non-empty universe of dis-
course, and let R ⊆ X × X be an equivalence relation (or indiscernibility relation) on X.
The equivalence relation R partitions X into disjoint equivalence classes, denoted by [x]R for
x ∈ X, where:

[x]R = {y ∈ X | (x, y) ∈ R}.

For any subset U ⊆ X, the lower approximation U and the upper approximation U of U are
defined as follows:

(1) Lower Approximation U :

U = {x ∈ X | [x]R ⊆ U}.

The lower approximation U includes all elements of X whose equivalence classes are
entirely contained within U . These are the elements that definitely belong to U .

(2) Upper Approximation U :

U = {x ∈ X | [x]R ∩ U 6= ∅}.

The upper approximation U contains all elements of X whose equivalence classes have
a non-empty intersection with U . These are the elements that possibly belong to U .

The pair (U,U) forms the rough set representation of U , satisfying the relationship:

U ⊆ U ⊆ U.

Example 3.32 (Rough Set: Quality Control in a Factory). Suppose X is a collection of man-
ufactured items, and R is an equivalence relation indicating that two items are “indiscernible”
if they have the same measured characteristics (e.g., weight and dimensions). For a subset
U ⊆ X representing “items potentially defective,” the lower approximation U contains items
whose equivalence classes lie entirely within U (i.e., definitely defective), and the upper approx-
imation U includes items whose equivalence classes intersect with U (i.e., possibly defective).
If item x shares exactly the same measurements as other defective items, then [x]R ⊆ U and
x is in U . If item y’s measurements partially match a defective class, then [y]R ∩U 6= ∅ and y

belongs to U . This helps the factory refine which items definitely or possibly need rechecking
or further tests.
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The concept of a HyperRough Set extends the framework of the HyperSoft Set [33] to Rough
Set theory. Furthermore, this has been generalized using superhyperstructures, leading to the
notion of the SuperHyperRough Set. The formal definition is provided below.

Definition 3.33 (HyperRough Set). [5, 8, 9] Let X be a non-empty finite universe, and
let T1, T2, . . . , Tn be n distinct attributes with respective domains J1, J2, . . . , Jn. Define the
Cartesian product of these domains as:

J = J1 × J2 × · · · × Jn.

Let R ⊆ X ×X be an equivalence relation on X, where [x]R denotes the equivalence class of
x under R.

A HyperRough Set over X is a pair (F, J), where:

• F : J → P(X) is a mapping that assigns a subset F (a) ⊆ X to each attribute value
combination a = (a1, a2, . . . , an) ∈ J .

• For each a ∈ J , the rough set (F (a), F (a)) is defined as:

F (a) = {x ∈ X | [x]R ⊆ F (a)}, F (a) = {x ∈ X | [x]R ∩ F (a) 6= ∅}.

The lower approximation F (a) represents the set of elements in X whose equivalence classes
are entirely contained within F (a), while the upper approximation F (a) includes elements
whose equivalence classes have a non-empty intersection with F (a).

Additionally, the following properties hold:

• F (a) ⊆ F (a) for all a ∈ J .
• If F (a) = ∅, then F (a) = F (a) = ∅.
• If F (a) = X, then F (a) = F (a) = X.

Example 3.34 (HyperRough Set: Customer Segmentation With Composite Attributes).
Let X be the set of customers at a retail chain, and define attributes T1 = AgeGroup

(e.g., “Under30,” “30-60,” “Over60”) and T2 = SpendingLevel (e.g., “Low,” “Medium,”
“High”). Their domains are J1 and J2, and the Cartesian product J = J1 × J2 lists all
pairs (AgeGroup, SpendingLevel). Let R be an equivalence relation on X such that two cus-
tomers are indiscernible if they have the same purchase history pattern. A HyperRough Set is
formed by F : J → P(X). For instance,

F (Under30, High) = {customers under 30 who might spend at a high level}.

Its rough approximations F (a), F (a) identify which customers definitely or possibly belong
to that group, based on equivalence classes. This approach refines marketing strategies by
clarifying which customers are unequivocally in a target demographic versus those whose
purchase patterns only partially fit.
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Definition 3.35 (n-SuperHyperRough Set). [5, 8, 9] Let X be a non-empty finite universe,
and let T1, T2, . . . , Tn be n distinct attributes with respective domains J1, J2, . . . , Jn. For each
attribute Ti, let P(Ji) denote the power set of Ji. Define the set of all possible attribute value
combinations as the Cartesian product of these power sets:

J = P(J1)× P(J2)× · · · × P(Jn).

Let R ⊆ X ×X be an equivalence relation on X, where [x]R denotes the equivalence class of
x under R.

An n-SuperHyperRough Set over X is a pair (F, J), where:

• F : J → P(X) is a mapping that assigns a subset F (A) ⊆ X to each attribute value
combination A = (A1, A2, . . . , An) ∈ J , where Ai ⊆ Ji for all i.

• For each A ∈ J , the rough set (F (A), F (A)) is defined as:

F (A) = {x ∈ X | [x]R ⊆ F (A)}, F (A) = {x ∈ X | [x]R ∩ F (A) 6= ∅}.

The lower approximation F (A) represents the set of elements in X whose equivalence classes
are entirely contained within F (A), while the upper approximation F (A) includes elements
whose equivalence classes have a non-empty intersection with F (A).

Properties:

• F (A) ⊆ F (A) for all A ∈ J .
• If F (A) = ∅, then F (A) = F (A) = ∅.
• If F (A) = X, then F (A) = F (A) = X.
• For any A,B ∈ J :

F (A ∩B) ⊆ F (A) ∩ F (B), F (A ∪B) ⊇ F (A) ∪ F (B).

Example 3.36 (n-SuperHyperRough Set: Multi-Level Data Analysis). Consider a scenario
where X is a set of documents in a large digital library. Let T1, T2, . . . , Tn be attributes, such
as Topic, Author, PublicationYear, etc., each with a domain Ji. For each i, P(Ji) is the
power set of possible attribute values. The Cartesian product

J = P(J1)× P(J2)× · · · × P(Jn)

lists all combinations of chosen topics, authors, publication years, and so on. Define an equiva-
lence relation R where two documents are indiscernible if they share the same metadata (e.g.,
identical classification tags). An n-SuperHyperRough Set (F, J) assigns each combination
A = (A1, A2, . . . , An) a subset F (A) ⊆ X, and obtains rough approximations F (A) and F (A).
For instance, if

A1 = {Mathematics, Physics}, A2 = {Smith, Johnson},
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then

F (A) = {documents concerning Mathematics or Physics written by Smith or Johnson}.

Its lower approximation consists of documents whose equivalence classes lie entirely in that
set, and its upper approximation includes all documents whose equivalence classes intersect
with it. This multi-level approach enables more nuanced filtering, revealing which documents
definitely or possibly match complex criteria across multiple attributes.
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