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Abstract: The latest innovation in digital twin technology is called Cognitive Digital Twins (CDT). 

The sophisticated and autonomous activities made possible by this technology have the potential to 

revolutionize manufacturing. An overview of CDT in manufacturing is given in this paper, along 

with an examination of their main features, components, and possible uses. CDT can learn from 

data, reason about difficult circumstances, and make well-informed judgments by combining 

artificial intelligence, machine learning, and knowledge representation approaches. The advantages 

of CDT in smart manufacturing are covered in the paper. Hence, the objective of this paper is 

evaluating the smart manufacturing that adopts CDT in its operations and practices to be smart. 

Multi-Criteria Decision Making (MCDM) as CRiteria Importance Through Intercriteria Correlation 

and multi-objective optimization based on simple ratio analysis (MOOSRA) are leveraged to 

construct soft decision models. This model can trat with vague and incomplete information through 

harnessing uncertainty theory especially Triangular Neurosophic Number (TriNN). Also, 

Hypersoft set is utilized with MOOSRA to rank alternatives of smart manufacturing 

Keywords: smart manufacturing; cognitive digital twin; CRITIC technique; MOOSRA technique; 

Hpersoft set;Triangular Neurosophic Number. 

 

 

1. Introduction 

Manufacturing is one of the foremost sectors that has an immense influence on a nation's 

economy and development [1] . As well as [2] making products that meet consumer demand, is one 

of the sustainable manufacturing objectives. The notion of sustainable manufacturing (SusM) [3]has 

gained widespread support in business, particularly in industry, and is receiving more attention in 

the research community within the broader topic of sustainability.  

From the perspective[4] adopting sustainability ideas and technologies that impact manufacturing's 

performance is crucial for practitioners, policymakers, and manufacturers. 

Researchers, governments, society, and the manufacturing industrial sector have all shown a great 

deal of interest in sustainability according to [5]. This heightened emphasis on sustainability is 

motivated by the need to remain competitive in a globalized economy and adjust to quick changes in 

consumer needs. Whereby [6] linked the concept of sustainability with influential aspects such as 

environmentally: diminishing the influence on the environment by cutting back on pollution, waste 

production, and resource consumption [7]; Economically: Putting into practice economical, 
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sustainable methods that don't substantially raise manufacturing costs [8];   Ingenuity  :Putting 

expenditures on research and development to develop new environmentally friendly technology and 

procedures[9]. Socially: emphasizes the welfare of employees, local communities, and society [10]. 

Surveying prior scholars’ perspectives as[11],[12], [13] demonstrated that deploying the notion of 

sustainability in manufacturing has a favorable impact. In this context, Figure 1 compiled these 

perspectives on bolstering aspects of sustainability in manufacturing. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Materials and Methods (proposed work with more details)  

 

 

Figure 1. Sustainability in Manufacturing 

On other side, [14] stated that a significant contributor to climate change and one of the biggest 

worldwide sources of carbon emissions is the manufacturing sector. Accordingly manufacturers are 

coming under more pressure to lower their carbon impact and actively promote environmental 

goals[15]. Hence, many stakeholders have started to put pressure on firms to implement sustainable 

practices after realizing the impact on the environment. 

The sustainability of manufacturing is hampered by several obstacles, despite its significance.  These 

obstacles discussed in [16] that entailed in domestic disturbances to worldwide calamities as diseases 

(Covid 19), floods that threaten the sustainability of manufacturing.  

Scholars in [17] assumed another obstacles as accurate decision making based on predicting 

equipment failures through analyzing real-time data to avoid malfunctions that can cause 

interruptions in production and problems with quality [18]. 

To fix this obstacle, scholars in [19] utilized digital technologies as artificial intelligence (AI) and its 

subset machine learning(ML) and deep learning(DL) to enhance demand forecasts after that, 

allowing producers to maximize inventory control and production scheduling. 

Generally, deploying digital technologies, industry 4.0, and industry 5.0 enable manufacturing to be 

automated, digital and smart. These technologies [20] reduce manual labor, increasing production 

speed, and minimizing errors. 
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Smart manufacturing is a contemporary strategy that integrates cutting-edge technology like cloud 

computing, artificial intelligence, and the Internet of Things (IoT) into manufacturing processes in 

tandem with sustainable production[21]  .Manufacturing systems can now independently sense 

their surroundings, make the best judgments, and carry out jobs with accuracy thanks to this 

connection. Thus, smart manufacturing minimizes errors and waste while increasing production 

precision and efficiency[22] 

By enabling production that is more flexible, adaptive, and customized to meet the demands of 

individual customers, this transition toward smart manufacturing opens new prospects for industries 

worldwide [23]. Whereas creates a digital replica of a physical object or process by digital twins (DTs) 

enabling better understanding, optimization, and improved lifecycle management. Falekas et al.[24] 

described DTs as virtual mirrors of physical systems that allow for real-time monitoring, analysis, 

and optimization, have been developed to improve smart manufacturing. DTs can increase the 

efficiency and quality of item production, forecast equipment breakdowns, and simulate production 

processes in smart manufacturing 

Digital twins give businesses comprehensive insights into the performance and behavior of physical 

assets using data analytics and machine learning, enabling them to foresee problems and make data-

driven modifications [25].The paper emphasizes that digital twins are vital to future technology 

advancements across industries, offering potential cost savings, improved decision-making, and 

enhanced operational efficiency. Scholas [26] showcases an advanced form of a digital twin that 

integrates cognitive computing capabilities, this form entailed in cognitive digital twin (CDT). In the 

same vein [27] CDT defined as an expansion of pre-existing digital twins, cognitive digital twins 

include three levels access, analytics, and cognition. These layers include extra communication, 

analytics, and intelligence capabilities.   In light of CDT and cognitive computing, ML , DL are 

utilized to  analyze data from the physical twin and other sources to identify patterns, trends. Based 

on knowledge gained from analyzing data, it can forecast outcomes, offer suggestions, and even 

manage some physical system components on its own. Accordingly, various studies employed CDT 

in various purposes as [28] that leveraged CDT in smart manufacturing to Identify inefficiencies and 

bottlenecks in production data analysis, then suggest adjustments to improve the process. 

In this context, this paper involves CDT producing accurate results as it acts as human being, by 

incorporating human cognition through AI and Semantic Web technologies into the design of 

autonomous manufacturing. wherein CDT  [29]  aims to improve autonomous manufacturing by 

enabling manufacturing resources to think, learn, and comprehend the dynamics of industrial 

environments. 

The importance of CDT in manufacturing to be smart and sustainable is the objective of our study. 

Hence, we evaluate the role of CDT in manufacturing to be sustainable through constructing a robust 

soft decision model. The evaluation is conducted based on a set of criteria.  

To objectively evaluate and assign priority levels, the CRITIC technique is leveraged in our soft 

decision model to offer a quantitative approach by examining the correlations and differences 

between criteria. This guarantees that the criteria's weighting is objective and data-driven, reflecting 

actual significance rather than personal opinion[30]  .One major advantage of this technique, 
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particularly the suggested methodology based on CRITIC principles, lies in its objectivity and 

structured computation process. This method uses a systematic, straightforward calculation process 

to generate criteria weights, ensuring clarity and reducing complexity. Consequently, CRITIC 

method enables decision-makers to effectively prioritize criteria, which can be especially useful in 

fields where decision accuracy and consistency are crucial. This objective framework allows for 

repeatable, reliable results that are essential for robust decision-making and analysis in complex 

scenarios. 

 MOOSRA technique is a powerful multi-criteria decision-making tool that ranks alternatives based 

on performance across multiple criteria [31]. It accounts for both maximizing and minimizing 

attributes and is particularly effective in handling significant variations in criteria values. 

These MCDM techniques are combined with TriNN and Hypersoft sets to bolster decisions of 

decision makers in vague situations and incomplete information. 

 

2. Literature review 

Decision-making in smart manufacturing has advanced significantly because of automation and data 

integration technology. The ability of manufacturing systems to make decisions is being shaped by 

linked devices, data analytics, and artificial intelligence (AI), according to recent research. The move 

to data-centric, AI-driven frameworks is a significant trend that enables manufacturers to use real-

time data to make better education, predictive decisions to reduce downtime and improve 

operational efficiency,this strategy aids in the identification of bottlenecks, production optimization, 

and proactive equipment maintenance management. 

Here is a related work which focuses on smart manufacturing and decision-making. These papers 

cover topics like the use of AI, IoT, big data analytics, and decision support systems in enhancing 

decision-making capabilities within smart manufacturing: 

Implementing the Internet of Things (IoT) in smart manufacturing within sustainable supply chain 

management (SSCM) offers several issues, especially regarding scalability, energy consumption, 

security, and privacy. Although these obstacles have been highlighted in earlier research, a 

methodical strategy to overcome them in smart manufacturing settings is still developing. To 

evaluate and prioritize various IoT issues, this research presents a decision-making framework that 

integrates q-Rung Orthopair Fuzzy sets, CRITIC, and VIKOR methodologies. This paradigm 

improves resource allocation and decision-making precision in smart manufacturing by enabling 

accurate prioritizing. The model can be used to solve IoT complications in SSCM for smart 

manufacturing environments because of its reliability, which has been validated by sensitivity 

analysis and comparisons with alternative approaches [32]. 

Since they enable more customization, efficiency, and productivity, Industry 4.0 technologies like 

IoT, big data, and CPS are crucial to the growth of smart manufacturing. However, utilizing these 

technologies requires both technological innovation and a trained workforce. They go over important 

Industry 4.0 subjects and worker competencies needed for future smart factories to aid with the 

transition to intelligent production [33]. 
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Sanusi et al. [34]looked at the adoption of smart manufacturing in Indonesian SMEs and identified 

several obstacles, including a lack of funding, poor infrastructure, and a lack of skilled workers. They 

show how even little investments in automation may significantly increase productivity and cut costs 

in their case studies of South Sulawesi SMEs.The report emphasizes the importance of business and 

governmental cooperation in removing adoption hurdles, highlighting Indonesia's "Making 

Indonesia 4.0" effort. According to Sanusi et al., stakeholders should work together to encourage SME 

digital transformation in developing nations by offering financial and policy assistance. 

A digital twin-assisted model was created to maximize collaborative production in smart systems. 

Effective resource allocation and proactive equipment management are made possible by the model's 

combination of digital twin technology and predictive diagnostics using Elman neural networks and 

IVIF-TOPSIS. To improve supply chain KPIs like efficiency and adaptability and enables businesses 

to respond quickly to market demands, it also integrates a value co-creation framework [35]. 

A key component of smart manufacturing, digital twins improve output through data-driven 

optimization, simulation, and real-time monitoring. By building virtual versions of actual processes, 

digital twins facilitate flexible and responsive decision-making in the context of smart manufacturing. 

Their effects on lowering downtime, enhancing quality, and anticipating maintenance 

requirements—all crucial components of a smart manufacturing system—have been shown in earlier 

research. Digital twins support smart manufacturing's emphasis on flexibility and efficiency by 

helping producers find inefficiencies and make changes without interfering with real operations by 

mimicking production settings. 

The application of CDT in manufacturing is examined with a focus on how they can convert 

conventional digital twins into sentient, intelligent beings. Access, analytics, and cognition are the 

three levels that make up CDTs. providing a path for completely autonomous, cross-domain 

manufacturing systems that make use of knowledge graphs, semantic reasoning, and artificial 

intelligence (AI) technologies, as well as a prototype that has been evaluated using production line 

performance statistics [36]. 

3. Methodology 

3.1 preliminaries and definitions 

In this subsection, a set of definitions and preliminaries related to HyperSoft and utilized techniques 

that contributed to constructing soft decision model. 

The HyperSoft defined and proposed by Smarandache [37]:   

- Let 𝜇 be a universe of discourse, (𝜇) the power set of 𝜇, and 𝐴 a set of attributes. Then, the pair (𝐹, 

𝜇), 𝐹: 𝐴→ (𝜇) is called a Soft Set over  

- 𝐿𝑒𝑡 𝑎1, 𝑎1 , … 𝑎𝑛 𝑓𝑜𝑟 𝑛 ≥ 9 , be n distinct attributes,  

 Whose corresponding attributes are respectively the set 𝐴1 , 𝐴1 , … 𝐴𝑛 𝑤𝑖𝑡ℎ 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑓𝑜𝑟 𝑖 ≠ 𝑗, 𝑎𝑛𝑑 

𝑖,𝑗 ∈ {9,1, … 𝑛}.  

- Then the pair (𝐹: 𝐴1 × 𝐴1 × … 𝐴𝑛 → (𝜇)) is called a HyperSoft over 𝜇. 

3.2 Soft Decision Model: Procedures of Proposed Model 
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This subsection provides the techniques we use to find the weights for each criterion the techniques 

for ranking the alternatives of  smart manufacturing that adopt CDT in its operations and 

manufacturing to choose the suitable alternative with the best results. 

3.2.1 Create the decision matrix 

1. Determining the alternatives and criteria for the problem 

2. Evaluating the alternatives based on the criteria by formed expert panel  

3. Create the decision matrix according to the scales mentioned in Table 1. 

4. use Eq.1 to convert the triangular neutrosophic scale into deneutrosophic value. 

    Score(𝑄𝑖𝑗) = 
lij+mij+uij

9
  ∗ (2 + 𝑇 − 𝐼 − 𝐹)                                                    (1) 

 Where: 𝑖=1,2,3,…m; n=1,2,3,….. 𝑗; 𝑙, 𝑚, 𝑢 refer to the lover, middle, and upper values and 𝑇,𝐼, 𝐹 refer to 

truth, indeterminacy and false respectively. 

5. Combine the decision matrices of each decision maker into a single decision matrix by using 

Eq. 2. 

     𝑥𝑖=
∑ (Qij)

𝑁
𝑗=1

N
                                                                            (2)                                      

 Where Qij is the value of each criterion and N is number of decision makers. 

 

Table 1.Linguistic triangular neutrosophic scale 

Crisp Scale Explanation TriNN Scale 

1 Equally Essential <<1,1,1>;0.5,0.5,0.5>> 

2 Slightly Moderately <<1,2,3>;0.4,0.6,0.65>> 

3 slightly Essential <<2,3,4>;0.3,0.75,0.7>> 

4 Minor To Strong <<3,4,5>;0.35,0.6,0.4>> 

5 Mighty Essential <<4,5,6>;0.8,0.15,0.2>> 

6 Slightly Strong Essential <<5,6,7>;0.7,0.25,0.3>> 

7 High Strong Essential <<6,7,8>;0.9,0.1,0.1>> 

8 Very High Strong Essential <<7,8,9>;0.85,0.1,0.15>> 

9 Absolutely High Essential <<9,9,9>;0.1,0.0,0.0>> 

 

3.2.2 CRITIC Method 

6. Normalize the aggragated matrix using Eq.3, Eq.4 

 Rij=
𝑥𝑖𝑗−min(𝑥𝑖𝑗)

max(𝑥𝑖𝑗)−min(𝑥𝑖𝑗)
 for benefit criteria                                                      (3) 

 Rij=
max(𝑥𝑖𝑗)−𝑥𝑖𝑗

max(𝑥𝑖𝑗)−min(𝑥𝑖𝑗)
 for non benefit criteria                                                 (4) 

7. Calculate the standard deviation (sd) of the matrix with Eq. 5 
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      sd= √∑ (Rij−Rj̅)
𝑚
𝑖=1

m
 , R̅=

1

𝑚
∑ (Rij)𝑚
𝑖=0                                                           (5) 

8. Calculate correlation between each criteria using Eq. 6 

      cjk=
∑ (Rij−Rj̅)(Rik−Rk̅)

𝑚
𝑗=1

=√∑ (Rij−Rj̅)2
𝑚
𝑗=1

∑ (Rik−Rk̅)2
𝑚
𝑗=1

                                                            (6) 

9. Calculate the convert degree rij using Eq.7 

       rj=∑ (1 − cjk)
𝑚

𝑖=1
                                                                          (7) 

10. calculate the weight using Eq.8 

          wj=sd*(
𝑟𝑖

∑ 𝑟𝑖𝑛
𝑗=1

)                                                                          (8) 

3.2.3 MOOSRA Method 

1. Normalize the aggregated decision matrix by Eq. 9 

       Xij*=
∑ Xij𝑚
𝑗=1

=√∑ (Xij)2
𝑛
𝑖=1

                                                                          (9) 

2. Create weighted normalize decision matrix by Eq 10 

       z=𝑋𝑖j*wj                                                                                (10) 

3. Rank the alternatives by Eq. 11  

       si=
∑𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑣𝑎𝑙𝑢𝑒

∑𝑛𝑜𝑛𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑣𝑎𝑙𝑢𝑒
                                                                      (11) 

4 Real case study 

To validate the accuracy of constructed soft decision model, we communicate with manufacturing 

that adopting CDT in its operations and manufacturing. Hence, in our study four smart 

manufacturing contributed to our evaluation process to be alternatives. The evaluation is conducted 

based on five criteria and five attributes. 

4.1 identify attributes, set of criteria and alternatives. 

Herein five criteria, four alternatives and the attributes related to the criteria ae determined. 

We have 5 criteria and 4 alternatives (SM) in this study depending on decision makers’ opinions we 

use 4 attribute values (with 14 sub-attributes) for all criteria 

The criteria we identified: 

C1= production (benefit) 

C2= efficiency (benefit) 

C3= Flexibility (benefit) 

C4= complexity (non- benefit) 

C5= costs  (non- benefit) 

The attributes values are: 

A1={{A1-1=high}, {A1-2=moderate}, ({A1-3=low}} 
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A2={{A2-1=>55%},{A2-2=25-55%},{A2-3= <30%}} 

A3={{A3-1=>Acceptable},{A3-2=<Non-acceptable}} 

A4={{A4-1=high}, {A4-2=moderate}, {A4-3=low}} 

A5={{5-1=<2 million $},{5-2=2-5 million $},{A5-3=>5 million $}} 

4.2 valuating criteria and attribute values 

- Valuating Criteria Weight: CRITIC-TriNN 

We applied critic method with TriNN to obtain weight 

 

 

Table 2. Normalize aggregated matrix 

  C1 C2 C3 C4 C5 

SM1 0.376984 0.061047 1 0 0.222656 

SM2 1.178571 1 0.588235 0.612774 1 

SM3 0 0.22093 0.066176 1 0.841797 

SM4 1 0 0 0.0499 0 

 

Table 3.  Finding correlation between each criterion 

  C1 C2 C3 C4 C5 

C1 1 0.503829 0.017161 -0.36938 -0.07155 

C2 0.503829 1 0.20446 0.453134 0.806848 

C3 0.017161 0.20446 1 -0.38594 0.018747 

C4 -0.36938 0.453134 -0.38594 1 0.864689 

C5 -0.07155 0.806848 0.018747 0.864689 1 

 

Table 4. Convert the degree (rij) 

  C1 C2 C3 C4 C5 

C1 0 0.496171 0.982839 1.369376 1.071552 

C2 0.496171 0 0.79554 0.546866 0.193152 

C3 0.982839 0.79554 0 1.385939 0.981253 

C4 1.369376 0.546866 1.385939 0 0.135311 

C5 1.071552 0.193152 0.981253 0.135311 0 

 

Table 5. Final Criteria Weights 

  sd rij Cj wj wj% 

C1 0.547245 3.919938 2.145167 0.274061 27% 

C2 0.462483 2.03173 0.93964 0.120046 12% 

C3 0.471215 4.14557 1.953455 0.249569 25% 

C4 0.478491 3.437492 1.644809 0.210137 21% 
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C5 0.480523 2.381268 1.144253 0.146187 15% 

Sum 
  

7.827324 1 100% 

 

 

 

Figure 2. Weights of the criteria using CRITIC 

4.3 Ranking alternatives using (MOOSRA-Hypersoft Set) and TirNN 

Since C=C1,C2,C3,C4,C5 are contributed to ranking process for four alternatives. We deploy 

hypersoft set methodology with TriNN in MOOSRA to rank four alternatives. Hence, we are 

leveraging attributes (A1-1:A5-3), then we choose A1-1,A2-1,A3-1,A4-3,A5-1. 

Table 6. square the decision matrix 

 
A1-1 A2-1 A3-1 A4-3 A5-1 

SM1 5.867160494 2.46025034 5.653827 21.10892 4.85631 

SM2 21.77777778 4.69444444 3.853224 8.345679 2.151111 

SM3 1.867777778 2.79013717 2.065075 3.280123 2.613611 

SM4 17.36111111 2.3397668 1.877915 19.85198 5.831331 

sum 46.87382716 12.2845988 13.45004 52.5867 15.45236 

root 6.846446316 3.5049392 3.66743 7.251669 3.930949 

 

Table 7. Normalize decision matrix. 

 
A1-1 A2-1 A3-1 A4-3 A5-1 

SM1 0.856964361 0.7019381 1.541632 2.910905 1.235404 

SM2 3.180887832 1.33937971 1.05066 1.150863 0.547224 

SM3 0.272809819 0.79605865 0.563085 0.452327 0.66488 

SM4 2.535784305 0.66756274 0.512052 2.737573 1.483441 

Wj 0.274061343 0.12004614 0.249569 0.210137 0.146187 
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Table 8. Weighted normalized decision matrix 

 
A1-1 A2-1 A3-1 A4-3 A5-1 

SM1 0.234860804 0.08426496 0.384743 0.611688 0.1806 

SM2 0.871758392 0.16078736 0.262212 0.241839 0.079997 

SM3 0.074766625 0.09556377 0.140528 0.09505 0.097197 

SM4 0.694960453 0.08013833 0.127792 0.575265 0.21686 

 

Table 9. ranking the alternatives. 

 
sum of benefits sum of non-benefits Si Ranking 

SM1 0.703868797 0.79228838 0.8884 4 

SM2 1.294757686 0.32183585 4.023038 1 

SM3 0.310858812 0.19224739 1.616973 2 

SM4 0.902890927 0.79212478 1.139834 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Ranking of Alternatives 

5 Conclusion 

This paper has investigated the optimization of multi-robot collaborative systems within smart 

manufacturing through the integration of cognitive digital twins and advanced decision-making 

methodologies. We present a framework for selecting the most suitable machine for smart 

manufacturing based on several factors and criteria. The main criteria considered include Production 

(C1), Efficiency (C2), Survivability (C3), Complexity (C4), and Costs (C5). Four different machine 

alternatives were evaluated in this paper. 

The proposed MCDM techniques are working under authority of Hypersoft set and TriNN for 

selecting the most suitable alternative of smart manufacturing. By leveraging the CRITIC method to 

determine the weights of criteria and the MOOSRA technique to rank the alternatives, this study 

ensures an objective and data-driven evaluation process. The results demonstrate that the proposed 
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approach provides more reliable and actionable insights compared to traditional methods, offering a 

practical guide for managers to prioritize strategies effectively. This research reinforces the 

importance of integrating Industry 4.0 technologies to enhance efficiency, sustainability, and 

decision-making in manufacturing to be smart. The findings of the constructed soft decision model 

indicated that SM2 ia the optimal alternative otherwise SM1 is the worst alternative. 
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