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1. Introduction

In 1965, Zadeh [6] laid the foundation of fuzzy set theory by introducing the concept of

degree of membership (or truth) t and defining the fuzzy set. Building on this, Smarandache

introduced the term neutrosophic to highlight a significant extension of fuzzy logic. The term

neutrosophic derives from a combination of the French neutre (Latin neuter) (neutral), and the

Greek sophia (skill/wisdom) emphasizing knowledge that incorporates neutrality or indeter-

minacy. This neutrality represents a pivotal distinction between fuzzy and neutrosophic logic.

Unlike fuzzy sets, which involve only truth (membership) and falsehood (non-membership)

components, neutrosophic sets include an additional, independent component: indeterminacy

(or neutrality). This concept, introduced by Smarandache in 1995 (formally published in

1998), allowed the definition of neutrosophic set using three independent components (t, i, f),

corresponding to truth, indeterminacy, and falsehood, respectively.
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Smarandache’s neutrosophic set theory generalizes classical and fuzzy set theories, providing

a more flexible and comprehensive framework. It encompasses the notion of interval-valued

neutrosophic sets, further broadening its applicability. The versatility of neutrosophic sets

has led to their application across diverse fields (as documented on the website http://fs.

gallup.unm.edu/neutrosophy.htm).

In this paper, we explore the notions of inverse and direct systems within the category of

neutrosophic modules, extending the ideas presented in [2]. We also examine their fundamental

properties, providing a deeper insight into the theoretical landscape of neutrosophic module

systems.

2. Preliminaries

Definition 2.1. Let X be a nonempty set. A neutrosophic set [4] A on X is a structure

A = {⟨x, ςA(x), ϖA(x), νA(x)⟩ : x ∈ X}, (1)

where ςA : X → [0, 1] is a truth membership function, ϖA : X → [0, 1] is an indeterminate

membership function, and νA : X → [0, 1] is a false membership function. The neutrosophic

set in (1) will be simply denoted by A = (ςA, ϖA, νA).

Building on the general concept of neutrosophic sets, it is possible to describe integrate it

within the context of algebraic structures, especially modules over a ring.

Definition 2.2. Let R be a ring and let F be a R-module. A neutrosophic set F1 =

(ςF1 , ϖF1 , νF1) in F is called a neutrosophic submodule of F if the following conditions are

satisfied

(1) ςF1(0) = 1,

(2) min{ςF1(x), ςF1(y)} ≤ ςF1(x− y) for all x, y ∈ F ,
(3) ςF1(x) ≤ ςF1(r · x) for all x ∈ F and r ∈ R,
(4) ϖF1(0) = 1,

(5) min{ϖF1(x), ϖF1(y)} ≤ ϖF1(x− y) for all x, y ∈ F ,
(6) ϖF1(x) ≤ ϖF1(r · x) for all x ∈ F and r ∈ R,
(7) νF1(0) = 0,

(8) νF1(x− y) ≤ max{νF1(x), νF1(y)} for all x, y ∈ F ,
(9) νF1(r · x) ≤ νF1(x) for all x ∈ F and r ∈ R.

Definition 2.3. Given an inverse sequence of abelian groups G1
ρ←− G2

ρ←− G3 · · · (in short

{Gi}). Denote by Π the direct product of the groups Gi, and consider the map δ : Π → Π

defined as

δ(g1, g2, · · · ) = (g1 − ρg2, g2 − ρg3, g3 − ρg4, · · · ).

The kernel of δ is called the inverse limit of the sequence {Gi} and we denote it by Linv{Gi}.
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3. Some properties of neutrosophic modules

In what follows, a neutrosophic submodule F1 = (ς,ϖ, ν) of F will be denoted by (ς,ϖ, ν)F .

Definition 3.1. A function h : (ς,ϖ, ν)F → (ς ′, ϖ′, ν ′)F ′ is called a homomorphism of neu-

trosophic modules if the conditions ς1(h(x)) ≥ ς(x), ϖ1(h(x)) ≥ ϖ(x) and ν1(h(x)) ≤ ν(x)

are satisfied.

Observe that, neutrosophic modules and their morphisms form a category which we denote

by N -Mod.

Let F ,E be two R-modules and let (ς,ϖ, ν)F be a neutrosophic submodule of F . Suppose

h : F → E is an R-module homomorphism. We can define a neutrosophic module structure

on E via the map h has it follows:

ςh(y) = sup{ς(x) : h(x) = y},

ϖh(y) = sup{ϖ(x) : h(x) = y},

νh(y) = inf{ν(x) : h(x) = y}.

It is clear that (ςh, ϖh, νh)E is a neutrosophic submodule of E and the function

h : (ς,ϖ, ν)F → (ςh, ϖh, νh)E is a homomorphism of neutrosophic modules.

Conversely, let (η, θ, ν)E be a neutrosophic submodule of E and h : F → E a homomorphism

of R-modules. It is possible to define a neutrosophic module structure in F by setting

ηh(x) = η(h(x)),

θh(x) = θ(h(x)),

νh(x) = ν(h(x)).

Hence, (ηh, θh, νh)F is a neutrosophic module and h : (ηh, θh, νh)F → (η, θ, ν)E is a homomor-

phism of neutrosophic modules.

We state the following lemma.

Lemma 3.2. Let F and E be R-modules and h : F → E be a homomorphism of R-modules.

The following conditions are true

(1) If (ς,ϖ, ν)F is a neutrosophic module, then there exist modular grade functions

ςh,ϖh, νh on E such that for any modular grade function B = (α, β, γ) on E,

h : (ς,ϖ, ν)F → (α, β, γ)E is a neutrosophic homomorphism if and only if α ≥ ςh,

β ≥ ϖh, γ ≤ νh.
(2) If (α, β, γ)E is a neutrosophic module, then there exists a modular grade function

(αh, βh, γh) on F such that for every neutrosophic module (ς,ϖ, ν)F , h : (ς,ϖ, ν)F →
(α, β, γ)E is a neutrosophic homomorphism if and only if ς ≤ αh, ϖ ≤ βh, ν ≥ γh.
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Lemma 3.3. (1) Let {Fi}i∈∆, E are modules and a family of R-homomorphisms η = {hi :
Fi → E}i∈∆. If {(ςi, ϖi, νi)Fi}i∈∆ is a family of neutrosophic modules, then there exists

the smallest grade functions α = ςη = ς{hi}, β = ϖη = ϖ{hi}, γ = νη = ν{hi} such

that, for all i ∈ ∆, h̃ : (ςi, ϖi, νi)Fi → (α, β, γ)E is a neutrosophic homomorphism.

(2) Let F, {Ei}i∈∆ be modules and B = {gi : F → Ei}i∈∆ be a family of R-

homomorphisms. If {(αi, βi, γi)Ei}i∈∆ is a family of neutrosophic modules, then there

exist the largest grade functions ς = αB = α{hi}, ϖ = βB = β{hi}, ν = γB = γ{hi} such

that, for all i ∈ ∆, h : (ς,ϖ, ν)F → (αi, βi, γi)Ei is a neutrosophic homomorphism.

Proof. (1). Let α = ςλ =
∨

α∈∆
µfαα , θ = ξη =

∨
i∈∆

ξhi
i , γ = νη =

∧
α∈∆

νhi
i .

(2). Let ς = αB =
∧
i∈∆

(αi)hi
, ϖ = βB =

∧
i∈∆

(βi)hi
, ν = γB =

∨
i∈∆

(γi)hi
.

We are now in position to define submodule, quotient module, product and co-product

operations in the category of neutrosophic modules, by using the above lemma.

If (ς,ϖ, ν)F is a neutrosophic module on F and E ⊂ F is a submodule, then (ς|E , ϖ|E , ν|E)E
is called a neutrosophic submodule of (ς,ϖ, ν)F .

If (ς,ϖ, ν)F is a neutrosophic module and hc : F → F/ ∼ is a canonical homomorphism,

then (ςhc , ϖhc , νhc)F/∼ is called a quotient module of (ς,ϖ, ν)F .

Hence, for each homomorphism of neutrosophic modules h : (ς,ϖ, ν)F → (α, β, γ)E , the

neutrosophic submodules (ς|Kerh, ϖ|Kerh, ν|Kerh)Kerh and the neutrosophic quotient module

(απ, βπ, γπ)E/ Imh are obtained, where π : E → E/ Im f is a canonical homomorphism.

If {(ςi, ϖi, νi)Fi}i∈∆ is a family of neutrosophic modules, then we define the product of

this family by (ςD, ϖD, νD) ∏
i∈∆

Fi
, where D =

{
πi :

∏
i∈∆

Fi → Fi

}
i∈∆

is a family of the usual

projection maps. Moreover, the co-product of the family is defined as (ςH , ϖH , νH)∑Fi
, where

H =
{
ji : Fi →

∑
i∈∆

Fi

}
i∈∆

is a family of the usual injections.

Mind that, the category of neutrosophic modules has zero objects, sums, products, kernels

and cokernels.

Definition 3.4. A functor Φ : Λop → N−Mod (Φ : Λ→ N−Mod), where Λ is a directed set

(considered as a category), is called an inverse (resp. direct) system of neutrosophic modules,

the limit of Φ is called a limit of the inverse (resp. direct) system.

Consider an inverse system of neutrosophic modules

(ς,ϖ, ν)F =
{
(ςi, ϖi, νi)Fi , hci′i

}
i∈∆

. (2)
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Let D =
{
πi,
∏
i∈∆

Fi → Fi

}
i∈∆

be a family of projections and let (ςD, ϖD, νD) ∏
i∈∆

Fi
, the

direct product of the neutrosophic modules (ςi, ϖi, νi)Fi . Then, we obtain a neutrosophic

submodule (ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

, where lim←−Fi is a limit of an inverse system of

modules {Fi}i∈∆.

Theorem 3.5. Every inverse system (2) has a limit in the category N−Mod, which is equal

to the a neutrosophic submodule (ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

.

Proof. Our aim is to show that there exists a unique homomorphism of neutrosophic modules

θ : (α, β, γ)E → (ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

, which makes the following diagram

(α, β, γ)E (ςi, ϖi, νi)Fi

(ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

φi

θ

commutative. Observe that, for every neutrosophic module (α, β, γ)E it is true that

{φi : (α, β, γ)E → (ςi, ϖi, νi)Fi}i∈∆ is a family of homomorphism of neutrosophic modules,

providing the commutativity of the diagram

(α, β, γ)E (ςi, ϖi, νi)Fi

(ςi′ , ϖi′ , νi′)Fi′

φi

φi′

h
i,i′

Also, πi : (ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

→ (ςi, ϖi, νi)Fi is a canonical projection. We define

the map θ : E → lim←−Fi as f(x) = {φi(x)}i∈∆, for every x ∈ F , which is a module homomor-

phism. We show that θ : (α, β, γ)E → (ςD|lim←−Fi
, ϖD|lim←−Fi

, νD|lim←−Fi
)lim←−Fi

is a homomorphism

of neutrosophic modules. Since φi : (α, β, γ)F → (ςi, ϖi, νi)Fi is a homomorphism of neu-

trosophic modules for every i ∈ ∆, the conditions ςi(φi(x)) ≥ α(x), ϖi(φi(x)) ≥ β(x) and

νi(φi(x)) ≤ γ(x) are satisfied for every x ∈ E. Therefore, we obtain

ςD({φi(x)}) =
∧
i∈∆

ςi(φi(x)) ≥ α(x),

ϖD({φi(x)}) =
∧
i∈∆

ϖi(φi(x)) ≥ β(x),

νA({φi(x)}) =
∨
i∈∆

νi(φi(x)) ≤ γ(x).

Hence, θ is a homomorphism of neutrosophic modules. The uniqueness of θ follows from the

uniqueness of θ.
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It is conspicuous to show that lim←− is a functor from the category of inverse system of

neutrosophic modules to the category of neutrosophic modules.

Let us now focus on the problem of exact limit for inverse systems of exact sequences.

Definition 3.6. A sequence

· · · → (ςn−1, ϖn−1, νn−1)Fn−1

ȟn−1−−−→ (ςn, ϖn, νn)Fn

ȟn−→ (ςn+1, ϖn+1, νn+1)Fn+1 → · · ·

of neutrosophic modules is said neutrosophic exact if

(ςn|Imhn−1 , ϖn|Imhn−1 , νn|Imhn−1) = (ςn|Kerhn , ϖn|Kerhn , νn|Kerhn), for every n ∈ Z.

Remark 3.7. Observe that, given a sequence of R-modules

· · · → Fn−1
hn−1−−−→ Fn

hn−→ Fn+1 → · · · (3)

it is clear that if (3) is exact, then the induced sequence of neutrosophic modules

· · · → (ςn−1, ϖn−1, νn−1)Fn−1

hn−1−−−→ (ςn, ϖn, νn)Fn

hn−→ (ςn+1, ϖn+1, νn+1)Fn+1 → · · · (4)

is neutrosophic exact, with

ςn = χ{0}, ϖn = χ{0}, νn = 1− (ςn + ξn).

Exactness of (4) implies the exactness of (3), since the equality of two neutrosophic sets is

just the equality of their respective maps, which implies the equality of their corresponding

domains (that is, Kerhn = Imhn−1). On the other hand, the exactness of (3) does not

necessarily imply the exactness of (4). Namely, the exactness of R-modules sequences is not

derived from the exactness of sequences of a neutrosophic modules.

Example 3.8. For all n ∈ N, consider the Z-modules Fn = Z, F ′n = Z, F ′′n = Z2. Then,

F = ({Fn}n∈E , {pn+1n(m) = 3m}),

F ′ = ({F ′n}n∈E , {qn+1n(m) = 3m}),

F ′′ = ({F ′′n}n∈E , {rn+1n(m) = [m]})

are inverse systems of modules. Hence, we consider the sequence 0 → F ′
h−→ F

g−→ F ′′ → 0,

with h = {hn : F ′n → Fn : hn(m) = 2m} and g = {gn : Fn → F ′′n : gn(m) = [m]},
which is a short exact sequence of inverse systems of Z-modules. Then, the following sequence

0 → (ς ′n, ϖ
′
n, ν
′
n)F ′

n

hn−→ (ςn, ϖn, νn)Fn

gn−→ (ς ′′n, ϖ
′′
n, ν
′′
n)F ′′

n
→ 0 is a short exact sequence of

neutrosophic modules, where ςn = (χ(0))Fn , ϖn = (χ(0))Fn , νn = 1−(ςn+ϖn), ς
′
n = (χ(0))F ′

n
,

ϖ′n = (χ(0))F ′
n
, ν ′n = 1 − (ς ′n + ϖ′n), ς

′′
n = (χ(0))F ′′

n
, ϖ′′n = (χ(0))F ′′

n
, ν ′′n = 1 − (ς ′′n + ϖ′′n).

Therefore, the sequence 0→ (ς ′, ϖ′, ν ′)F
hn−→ (ς,ϖ, ν)F

g−→ (ς ′′, ϖ′′, ν ′′)F ′′ → 0 is a short exact
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sequence of inverse systems of neutrosophic modules. Nevertheless, taking the limit of this

sequence, we obtain 0→ 0→ 0→ (ς ′′, ϖ′′, ν ′′)Z2 → 0, which is not exact.

The limit of inverse system of exact sequence of neutrosophic modules is not exact, hence

we need to introduce the notion of derivative functor of inverse limit functor in N−Mod.

Consider an inverse system of neutrosophic modules as in (2). Define also the R-modules

homomorphism d :
∏
α
Fα →

∏
α
Fα as d({xα}) = {xα − pα′α(xα′)}α≺α′ . We want to show that

d is a homomorphism of neutrosophic modules. Indeed,

ςD(d({xi})) = ςD(xi − pi′i(xi′))

=
∧
i

ςi(xi − pi′i(xi′))

≥
∧
α

min{ςi(xi), ςi(pi′i(xi′))}

≥
∧
i

min{ςi(xi), ς ′i(xi′)} (∵ ςi(pi′i(xi′)) ≥ ςi′(xi′))

=
∧
i

(ςi(xi) ∧ ς ′i(xi′))

=
∧
i

ςi(xi)

= ςD(xi),

ϖD(d({xi})) = ϖD(xi − pi′i(xi′))

=
∧
i

ϖi(xi − pi′i(xi′))

≥
∧
i

min{ϖi(xi), ϖi(pi′i(xi′))}

≥
∧
i

min{ϖi(xi), ϖ
′
i(xi′)} (∵ ϖi(pi′i(xi′)) ≥ ϖi′(xi′))

=
∧
i

(ϖi(xi) ∧ϖ′i(xi′))

=
∧
i

ϖi(xi)

= ϖD(xi),
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νD(d({xi})) = νD(xi − pi′i(xi′))

=
∨
i

νi(xi − pi′i(xi′))

≤
∨
i

max{να(xi), νi(pi′i(xi′))} (∵ νi(pi′i(xi′)) ≤ νi′(xi′))

≤
∨
i

max{νi(xi), νi′(xi′)}

=
∨
i

(νi(xi) ∨ ν ′i(xi′))

=
∨
i

νi(xi)

= νD(xi).

This shows that d is a homomorphism of neutrosophic modules. Thus,

(ςD|Ker d, ϖD|Ker d, νD|Ker d)Ker d, and ((ςD)
p, (ϖD)

p, (νD)
p)Coker d

are defined.

For inverse system of R-modules {Fi, pi′i}i∈∆, we have lim←−
(1)Fi =

∏
i
/ Im d, where lim←−

(1) is

the derivative functor of lim←− [3].

If π :
∏
i
→ lim←−

(1)Fi is a canonical homomorphism, then we are able to define a neutrosophic

module by ((ςD)
π), (ϖD)

π, (νD)π)lim←−
(1)Fi

.

Definition 3.9. ((ςD)
π, (ϖD)

π, (νD)
π)lim←−

(1)Fi
is called the first derived functor of the limit of

the inverse system of neutrosophic modules (2).

Proposition 3.10. lim←−
(1) is a functor.

Proof. We are done if we show that for each morphism of neutrosophic chain

complexes ȟ =

(
ρ : H → D,

{
ȟj : (ςρ(j), ϖρ(j), νρ(j))Fρ(j)

→ (il, jl, kl)Nl

}
j∈H

)
, the map

lim←−
(1)ȟ : ((ςD)

π, (ϖD)
π, (νD)

π)lim←−
(1)Fi

→ ((αH)π, (βH)π, (γH)π)lim←−
(1)Nj

is a homomorphism of

neutrosophic modules. We have

(ςD)
π(x+ Im d) = sup

z∈Im d
ςD(x+ z)

≤ sup
z∈Im d

αD(h(x+ z))

= sup
z∈Im d

αD(h(x) + h(z))

= sup
y=h(z)

αD(h(x) + y)

≤ sup
y∈Im d

αD(h(x) + y)

= (αD)
π(lim←−

(1)h(x+ Im d)),
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(ϖD)
π(x+ Im d) = sup

z∈Im d
ϖD(x+ z)

≤ sup
z∈Im d

βD(h(x+ z))

= sup
z∈Im d

βD(f(x) + h(z))

= sup
y=h(z)

βD(h(x) + y)

≤ sup
y∈Im d

βD(h(x) + y)

= (βD)
π(lim←−

(1)h(x+ Im d)),

(νD)
π(x+ Im d) = inf

z∈Im d
νD(x+ z)

≥ inf
z∈Im d

γH(h(x+ z))

= inf
z∈Im d

γH(h(x) + h(z))

= inf
y=h(z)

γH(h(x) + y)

≥ inf
y∈Im d

γD(h(x) + y)

= (γD)
π(lim←−

(1)h(x+ Im d)).

Hence, lim←−
(1) is a functor, as stated.

We intend to investigate the properties of the functor lim←−
(1). Therefore, we introduce the

category of chain (cochain) complexes of neutrosophic modules. This category is defined in

the same lines as in [1].

Definition 3.11. A neutrosophic chain complex

(ς,ϖ, ν)F = {(ςn, ϖn, νn)Fn , ∂n}n∈Z

is an object in N -Mod along with a neutrosophic endomorphism ∂ : (ς,ϖ, ν)F → (ς,ϖ, ν)F of

degree −1 such that ∂∂ = 0.

Definition 3.12. A morphism φ : (ς,ϖ, ν)F → (α, β, γ)E of neutrosophic chain complexes

is a morphism φ = {φn : (ςn, ϖn, νn)Fn → (αn, βn, γn)En}, which has a degree 0 such that

φn−1 ◦ ∂n = ∂′nφn, where ∂ denotes the neutrosophic differential in (α, β, γ)E .
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Definition 3.13. Let (ς,ϖ, ν)F = (ςn, ϖn, νn)Fn , ∂n}n∈Z be a neutrosophic chain complex.

The condition ∂ ◦ ∂ = 0 implies that Im ∂n+1 ⊂ Ker ∂n, for n ∈ Z. Hence, we can associate a

neutrosophic graded module with (ς,ϖ, ν)F H((ς,ϖ, ν)F ) = {Hn(ς,ϖ, ν)F }, where

Hn((ς,ϖ, ν)F ) =

(
ςn|Ker ∂n

, ϖn|Ker ∂n
, νn|Ker ∂n

)
Ker ∂n(

ςn|Im ∂n+1
, ϖn|Im ∂n+1

, νn|Im ∂n+1

)
Im ∂n+1

.

H((ς,ϖ, ν)F ) is called the neutrosophic homology module of the neutrosophic complex

(ς,ϖ, ν)F .

Analogously, one can define cochain neutrosophic complex and neutrosophic cohomology

module.

Let φ,ψ : (ς,ϖ, ν)F → (α, β, γ)E be morphisms of neutrosophic chain complexes.

Definition 3.14. A neutrosophic homotopy Σ : (ς,ϖ, ν)F → (α, β, γ)E between φ and ψ is a

neutrosophic morphism of degree +1 such that ψ − φ = ∂ ◦ Σ+ Σ ◦ ∂.

The morphism φ, ψ are said to be neutrosophic homotopic, if there exists a neutrosophic

homotopy between them.

Theorem 3.15. The neutrosophic homotopy relation is an equivalence relation. Moreover,

neutrosophic homology and cohomology modules are invariant with respect of this relation.

Observe the following neutrosophic cochain complex

0→ (ςD, ϖD, νD)∏Fα

d−→ (ςD, ϖD, νD)∏Fα
→ 0.

Neutrosophic cohomology modules of this complex are Ker d and Coker d.

Lemma 3.16. lim←−
(1)(ςi, ϖi, νi)Fi = Ker d and lim←−

(1)(µα, ξα, νi)Fi = Coker d.

Proof. Obvious.

In what follows, we consider the set of natural numbers as index set of inverse systems.

Theorem 3.17. For each infinite subsequence of the inverse sequence of neutrosophic modules

(F1, ς1, ϖ1, ν1)F1

p12←−− (F2, ς2, ϖ2, ν2)F2

p23←−− · · · ,

lim←−
(1) does not change.

Proof. Let S = {i, j, k, · · · } be an infinite subsequence of natural numbers. By Lemma 3.16,

lim←−
(1) is defined by the following homomorphism of neutrosophic modules subsequence S

d
′
:
( ∧

s∈S
ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

) ∏
s∈S

Fs

→
( ∧

s∈S
ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

) ∏
s∈S

Fs

.
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We also define two module homomorphisms h0, h1 :
∏
s∈S

Fs →
∏
s∈S

Fs as

h0(xi, xj , xk, · · · ) = (p1i(xi), p2i(xi), · · · , pi−1i(xi), xi, pi+1j(xj), · · · , pj−1j(xj), xj , · · · ),

h1(xi, xj , xk, · · · ) = (0, 0, · · · , xi, 0, · · · , xj , 0, · · · , xk, 0, · · · ).

Moreover,

( ∧
n∈N

ςn

)
(p1i(xi), p2i(xi), · · · , pi−1i(xi), xi, pi+1j(xj), · · · , pj−1j(xj), xj , · · · )

= ς1(p1i(xi)) ∧ · · · ∧ ςi−1(pi−1i(xi)) ∧ ςi(xi) ∧ ςi+1(pi+1j(xj)) ∧ · · · ∧ ςj(xj) ∧ · · ·

≥ [µi(xi) ∧ · · · ∧ ςi(xi) ∧ ςi(xi)] ∧ [ςj(xj) ∧ · · · ∧ ςj(xj)] ∧ · · ·

= ςi(xi) ∧ ςj(xj) ∧ · · ·

=
∧
s∈S

ςs(xs),

( ∧
n∈N

ξn

)
(p1i(xi), p2i(xi), · · · , pi−1i(xi), xi, pi+1j(xj), · · · , pj−1j(xj), xj , · · · )

= ϖ1(p1i(xi)) ∧ · · · ∧ϖi−1(pi−1i(xi)) ∧ϖi(xi) ∧ϖi+1(pi+1j(xj)) ∧ · · · ∧ϖj(xj) ∧ · · ·

≥ [ϖi(xi) ∧ · · · ∧ϖi(xi) ∧ϖi(xi)] ∧ [ϖj(xj) ∧ · · · ∧ϖj(xj)] ∧ · · ·

= ϖi(xi) ∧ϖj(xj) ∧ · · ·

=
∧
s∈S

ϖs(xs),

( ∨
n∈N

νn

)
(p1i(xi), p2i(xi), · · · , pi−1i(xi), xi, pi+1j(xj), · · · , pj−1j(xj), xj , · · · )

= ν1(p1i(xi)) ∨ · · · ∨ νi−1(pi−1i(xi)) ∨ νi(xi) ∨ νi+1(pi+1j(xj)) ∨ · · · ∨ νj(xj) ∨ · · ·

≥ [νi(xi) ∨ · · · ∨ νi(xi) ∨ νi(xi)] ∨ [νj(xj) ∨ · · · ∨ νj(xj)] ∨ · · ·

= νi(xi) ∨ νj(xj) ∨ · · ·

=
∨
s∈S

νs(xs)

( ∧
n∈N

ςn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = ς1(0) ∧ · · · ∧ ςi(xi) ∧ ςi+1(0) ∧ · · · ∧ ςj(xj) ∧ · · ·

= ςi(xi) ∧ ςj(xj) ∧ · · ·

=
∧
s∈S

ςs(xs)
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( ∧
n∈N

ϖn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = ϖ1(0) ∧ · · · ∧ϖi(xi) ∧ϖi+1(0) ∧ · · · ∧ϖj(xj) ∧ · · ·

= ϖi(xi) ∧ϖj(xj) ∧ · · ·

=
∧
s∈S

ϖs(xs)

( ∨
n∈N

νn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = ν1(0) ∨ · · · ∨ νi(xi) ∨ νi+1(0) ∨ · · · ∨ νj(xj) ∨ · · ·

= νi(xi) ∨ νj(xj) ∨ · · ·

=
∨
s∈S

νs(xs).

Then, ȟ0, ȟ1 :

( ∧
s∈S

ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

)
∏
s∈S

Fs

→
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨

n∈N
νn

)
∏

n∈N
Fn

are homomor-

phisms of neutrosophic modules. Observe that, the following diagram is commutative:

( ∧
s∈S

ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

)
∏
s∈S

Fs

( ∧
n∈N

ςn,
∧

n∈N
ϖn,

∨
n∈N

νn

)
∏

n∈N
Fn

( ∧
s∈S

ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

)
∏
s∈S

Fs

( ∧
n∈N

ςn,
∧

n∈N
ϖn,

∨
n∈N

νn

)
∏

n∈N
Fn

d
′

d

That is, {ȟ0, ȟ1} are morphisms of neutrosophic cochain complexes. Now, we define

two homomorphisms g0, g1 :
∏

n∈N
Fn →

∏
s∈S

Fs as g0(x1, x2, x3, · · · ) = (xi, xj , xk, · · · ),

g1(x1, x2, x3, · · · ) = (xi+pii+1(xi+1)+· · ·+pij−1(xj−1), xj+pjj+1(xj+1)+· · ·+pjk−1(xk−1), · · · ).
Moreover,

( ∧
s∈S

ςs

)
(xi, xj , xk, · · · ) = ςi(xi) ∧ ςj(xj) ∧ · · · ≥

∧
n∈N

ςn(xn),( ∧
s∈S

ϖs

)
(xi, xj , xk, · · · ) = ϖi(xi) ∧ ξj(xj) ∧ · · · ≥

∧
n∈N

ϖn(xn),( ∨
s∈S

νs

)
(xi, xj , xk, · · · ) = νi(xi) ∨ νj(xj) ∨ · · · ≤

∨
n∈N

νn(xn),
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Therefore, we have( ∧
s∈S

ςs

)
(xi + pii+1(xi+1) + · · ·+ pij−1(xj−1), xj + · · ·+ pjk−1(xk−1), · · · )

= ςi(xi + pii+1(xi+1) + · · ·+ pij−1(xj−1)) ∧ ςj(xj + · · ·+ pjk−1(xk−1)) ∧ · · ·

≥ min{ςi(xi), ςi(pii+1(xi+1)), · · · , ςi(pij−1(xj−1))} ∧min{ςj(xj), · · · , ςj(pjk−1(xk−1))} ∧ · · ·

≥ min{ςi(xi), ςi+1(xi+1), · · · , ςj−1(xj−1)} ∧min{ςj(xj), ςj+1(xj+1), · · · , ςk−1(xk−1)} ∧ · · ·

=
∧

m∈M
(xm)

≥
∧
n∈N

(xn)

( ∧
s∈S

ϖs

)
(xi + pii+1(xi+1) + · · ·+ pij−1(xj−1), xj + · · ·+ pjk−1(xk−1), · · · )

= ϖi(xi + pii+1(xi+1) + · · ·+ pij−1(xj−1)) ∧ϖj(xj + · · ·+ pjk−1(xk−1)) ∧ · · ·

≥ min{ϖi(xi), ϖi(pii+1(xi+1)), · · · , ϖi(pij−1(xj−1))} ∧min{ϖj(xj), · · · , ξj(pjk−1(xk−1))} ∧ · · ·

≥ min{ϖi(xi), ξi+1(xi+1), · · · , ϖj−1(xj−1)} ∧min{ϖj(xj), ϖj+1(xj+1), · · · , ϖk−1(xk−1)} ∧ · · ·

=
∧

m∈M
(xm)

≥
∧
n∈N

(xn)

( ∨
s∈S

νs

)
(xi + pii+1(xi+1) + · · ·+ pij−1(xj−1), xj + · · ·+ pjk−1(xk−1), · · · )

≤ max{νi(xi), νi(pii+1(xi+1)), · · · , νi(pij−1(xj−1))} ∨max{νj(xj), · · · , νj(pjk−1(xk−1))} ∧ · · ·

≤ max{νi(xi), νi+1(xi+1), · · · , νj−1(xj−1)} ∨max{νj(xj), νj+1(xj+1), · · · , νk−1(xk−1)} ∧ · · ·

=
∧

m∈M
νn(xn)

≤
∧
n∈N

νn(xn).

Thus, g0, g1 :
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨

n∈N
νn

) ∏
n∈N

Fn

→
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨

n∈N
νn

) ∏
n∈N

Fn

are homo-

morphisms of neutrosophic modules. Define now D :
∏

n∈N
Fn →

∏
n∈N

Fn as

D(x1, x2, x3, · · · ) =
(
x1 + p12(x2) + · · ·+ p1i−1(xi−1), x2 + p23(x3) + · · ·+ p2i−1(xi−1), · · · ,

xi−1, 0, xi+1 + pi+1i+2(xi+2) + · · ·+ pi+1j−1(xj−1), xi+2 + · · ·+ pi+2j−1(xj−1), 0, · · ·
)

which is a module homomorphism. Hence, we have
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( ∧
n∈N

ςn

)
(x1 + p12(x2) + · · ·+ p1i−1(xi−1), x2 + p23(x3) + · · ·+ p2i−1(xi−1), · · · , xi−1, 0, · · · )

= ς1(x1 + p12(x2) + · · ·+ p1i−1(xi−1)) ∧ ς2(x2) + p23(x3) + · · ·+ p2i−1(xi−1)) ∧ · · ·

∧ ςi−1(xi−1) ∧ ςi(0) ∧ ςi+1(xi+1 + pi+1i+2(xi + 2) + · · ·+ pi+1j − 1(xj−1)) ∧ · · ·

≥ min{ς1(x1), ς1(p12(x2)), · · · , ς1(p1i−1(xi−1))}∧

min{ς2(x2), ς2(p23(x3)), · · · , ς2(p2i−1(xi − 1))} ∧ ςi−1(xi−1)∧

min{ςi+1(xi+1), ςi+1(pi+1i+2(xi+2)), · · · , ςi+1(pi+1j − 1(xj−1))} ∧ · · ·

≥ min{ς1(x1), ς2(x2), · · · , ςi−1(xi−1)} ∧min{ς2(x2), ς3(x3), · · · , ςi−1(xi−1)}∧

ςi−1(xi−1) ∧ ςi+1(xi+1) ∧ · · ·

=

i−1∧
k=1

ςk(xk) ∧
i−1∧
k=2

µk(xk) ∧ · · ·

=
∧
n∈N

ςn(xn),

( ∧
n∈N

ξn

)
(x1 + p12(x2) + · · ·+ p1i−1(xi−1), x2 + p23(x3) + · · ·+ p2i−1(xi−1), · · · , xi−1, 0, · · · )

= ϖ1(x1 + p12(x2) + · · ·+ p1i−1(xi−1)) ∧ϖ2(x2) + p23(x3) + · · ·+ p2i−1(xi−1)) ∧ · · ·

∧ϖi−1(xi−1) ∧ϖi(0) ∧ϖi+1(xi+1 + pi+1i+2(xi + 2) + · · ·+ pi+1j − 1(xj−1)) ∧ · · ·

≥ min{ϖ1(x1), ϖ1(p12(x2)), · · · , ϖ1(p1i−1(xi−1))}∧

min{ϖ2(x2), ϖ2(p23(x3)), · · · , ξ2(p2i−1(xi − 1))} ∧ϖi−1(xi−1)∧

min{ϖi+1(xi+1), ϖi+1(pi+1i+2(xi+2)), · · · , ϖi+1(pi+1j − 1(xj−1))} ∧ · · ·

≥ min{ϖ1(x1), ξ2(x2), · · · , ϖi−1(xi−1)} ∧min{ϖ2(x2), ξ3(x3), · · · , ϖi−1(xi−1)}∧

ϖi−1(xi−1) ∧ϖi+1(xi+1) ∧ · · ·

=

i−1∧
k=1

ϖk(xk) ∧
i−1∧
k=2

ϖk(xk) ∧ · · ·

=
∧
n∈N

ϖn(xn),
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( ∨
n∈N

νn

)
(x1 + p12(x2) + · · ·+ p1i−1(xi−1), x2 + p23(x3) + · · ·+ p2i−1(xi−1), · · · , xi−1, 0, · · · )

= ν1(x1 + p12(x2) + · · ·+ p1i−1(xi−1)) ∨ ν2(x2) + p23(x3) + · · ·+ p2i−1(xi−1))

∨ · · · ∨ νi−1(xi−1) ∨ νi(0) ∨ νi+1(xi+1 + pi+1i+2(xi + 2) + · · ·+ pi+1j − 1(xj−1)) ∨ · · ·

≥ max{ν1(x1), ν1(p12(x2)), · · · , ν1(p1i−1(xi−1))}∨

max{ν2(x2), ν2(p23(x3)), · · · , ν2(p2i−1(xi − 1))} ∨ νi−1(xi−1)∨

max{νi+1(xi+1), νi+1(pi+1i+2(xi+2)), · · · , νi+1(pi+1j − 1(xj−1))} ∨ · · ·

≥ max{ν1(x1), ν2(x2), · · · , νi−1(xi−1)}∨

max{ν2(x2), ν3(x3), · · · , νi−1(xi−1)} ∨ νi−1(xi−1) ∨ νi+1(xi+1) ∨ · · ·

=

i−1∨
k=1

νk(xk) ∨
i−1∨
k=2

νk(xk) ∨ · · ·

=
∨
n∈N

νn(xn).

Therefore, D :
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨

n∈N
νn

) ∏
n∈N

Fn

→
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨

n∈N
νn

) ∏
n∈N

Fn

is a homo-

morphism of neutrosophic modules. By some calculation, One can show that D is a neu-

trosophic chain homotopy between ȟ0 ◦ g0 and ȟ1 ◦ g1 homomorphisms. Then, the following

cohomology modules of neutrosophic cochain complexes are quasi isomorphic (see [1]).

0→
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨
n∈N

νn

) ∏
n∈N

Fn

d−→
( ∧

n∈N
ςn,

∧
n∈N

ϖn,
∨
n∈N

νn

) ∏
n∈N

Fn

→ 0

0→
( ∧

s∈S
ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

) ∏
s∈S

Fs

d−→
( ∧

s∈S
ςs,
∧
s∈S

ϖs,
∨
s∈S

νs

) ∏
s∈S

Fs

→ 0

By the fact that lim←−
(1) is the first cohomology module, we are done.

Remark 3.18. Since lim←−(ςn, ϖn, νn)Fn = Ker d and pn+1n(xn+1) = xn are satisfied for each

{xn} ∈ lim←−Fn, one obtains

ςn(xn) = ςn(pn+1n(xn+1)) ≥ ςn+1(xn+1),

ϖn(xn) = ϖn(pn+1n(xn+1)) ≥ ϖn+1(xn+1),

νn(xn) = νn(pn+1n(xn+1)) ≤ νn+1(xn+1),

that is, for each {xn} ∈ Ker d, {ςn(xn)} is a decreasing sequence, {ϖn(xn)} is a decreasing

sequence and {νn(xn)} is an increasing sequence.
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Theorem 3.19. For every {x′′n} ∈ Ker d, if lim
n→∞

ς ′′n(x
′′
n) = 0 or lim

n→∞
ϖ′′n(x

′′
n) = 0 or

lim
n→∞

ν ′′n(x
′′
n) = 1 and the following diagram

↓ ↓ ↓
0 → (ς ′2, ϖ

′
2, ν
′
2)F ′

2
→ (ς2, ϖ2, ν2)F2 → (ς ′′2 , ϖ

′′
2 , ν
′′
2 )F ′′

2
→ 0

0 → (ς ′1, ϖ
′
1, ν
′
1)F ′

1
→ (ς1, ϖ1, ν1)M1 → (ς ′′1 , ϖ

′′
1 , ν
′′
1 )F ′′

1
→ 0

is a short exact sequence of inverse system of neutrosophic modules, then the sequence

0→ lim←−(ς
′
n, ϖ

′
n, ν
′
n)F ′

n
→ lim←−(ςn, ϖn, νn)Fn → lim←−(ς

′′
n, ϖ

′′
n, ν
′′
n)F ′′

n
→ lim←−(ς

′
n, ϖ

′
n, ν
′
n)Mn

→ lim←−(ςn, ϖn, νn)Fn → lim←−(ς
′′
n, ϖ

′′
n, ν
′′
n)F ′′

n
→ 0,

is exact.

Proof. For an inverse system of neutrosophic modules {(ςn, ϖn, νn)Fn}n∈N one has that

C ′ = 0
0−→ (ς ′A, ϖ

′
A, ν

′
A)

∏
n∈N

Fn

d−→ (ς ′A, ϖ
′
A, ν

′
A)

∏
n∈N

Fn

0−→ 0
0−→ · · ·

is a cochain complex of neutrosophic modules.

H0(C) = lim←−((ςn, ϖn, νn)Fn)Fn ,

H1(C) = lim←−
(1)((ςn, ϖn, νn)Fn)Fn ,

Hk(C) = 0, k ≥ 2

(5)

are neutrosophic cohomology modules of this complex. analogously, for the inverse system of

modules {(ς ′n, ϖ′n, ν ′n)M ′
n
)} and {(ς ′′n, ϖ′′n, ν ′′n)F ′′

n
)}, we can establish the following neutrosophic

cochain complexes

C ′ = 0
0−→ (ς ′A, ϖ

′
A, ν

′
A)

∏
n∈N

F ′
n

d−→ (ς ′A, ϖ
′
A, ν

′
A)

∏
n∈N

F ′
n

0−→ 0
0−→ · · ·

C ′′ = 0
0−→ (ς ′′A, ϖ

′′
A, ν

′′
A)

∏
n∈N

F ′′
n

d−→ (ς ′′A, ϖ
′′
A, ν

′′
A)

∏
n∈N

F ′′
n

0−→ 0
0−→ · · ·

Observe that, cohomology modules of this complexes have the form of (5). By the hypothesis

of this theorem, the following sequence

0→ C ′ → C → C ′′ → 0

is a short exact sequence of cochain complexes of neutrosophic modules. Mind that in general,

the following sequence of cohomology modules of this sequence

0→ H0(C ′)→ H0(C)→ H0(C ′′)
∂−→ H1(C)→ H1(C ′′)→ H2(C ′′)→ · · ·

is not exact. This is so, since ∂ is often not a homomorphism of neutrosophic modules. By the

fact that H0(C ′′) = Ker d′′ and lim
n→∞

ς ′′n(x
′′
n) = 0 ( lim

n→∞
ϖ′′n(x

′′
n) = 0, lim

n→∞
ν ′′n(x

′′
n) = 1), the grade

function ς ′′(ϖ′′, ν ′′) of a neutrosophic module (ς ′′, ϖ′′, ν ′′)H0(c′′) is equal to the grade function
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ς ′′(ϖ′′, ν ′′) is equal to the grade function indicated in (2). Thus, ∂ is a homomorphism of

neutrosophic modules. This means that the sequence of neutrosophic homology modules

0→ H0(C ′)→ H0(C)→ H0(C ′′)
∂−→ H1(C)→ H1(C ′′)→ H2(C ′)→ · · ·

is exact. By (5), we obtain the following exact sequence of neutrosophic modules

0 → lim←−(ς
′
n, ϖ

′
n, ν
′
n)F ′

n
→ lim←−(ςn, ϖn, νn)Fn → lim←−(ς

′′
n, ϖ

′′
n, ν
′′
n)F ′′

n
→ lim←−(ς

′
n, ϖ

′
n, ν
′
n)Fn →

lim←−(ςn, ϖn, νn)Fn → lim←−(ς
′′
n, ϖ

′′
n, ν
′′
n)F ′′

n
→ 0.

Let us now investigate the necessary conditions for which the derivative functor lim←−
(1) is

equal to zero.

Theorem 3.20. Let the following be an inverse systems of neutrosophic modules

(ς1, ϖ1, ν1)F1

φ1←− (ς2, ϖ2, ν2)F2

φ2←− · · · . (6)

If every homomorphisms φn is a neutrosophic epimorphism, then lim←−
(1)(ςn, ϖn, νn)Fn = 0.

Proof. The proof follows from the fact that

d :
∞∏
n=1

(ςn, ϖn, νn)Fn →
∞∏
n=1

(ςn, ϖn, νn)Fn

is a neutrosophic epimorphism.

Definition 3.21. Consider the inverse system of neutrosophic modules (6). If there exists

m ≥ n, for every integer n, such that for all i ≥ m

Im((ςi, ϖi, νi)Mi → (ςn, ϖn, νn)Fn) = Im((ςm, ϖm, νm)Fm → (ςn, ϖn, νn)Fn)

then it is said that the inverse system (6) satisfies the Mittag-Leffler condition.

Theorem 3.22. If the inverse system in (6) satisfies the Mittag-Leffler condition, then

lim←−
(1)(ςn, ϖn, νn)Fn = 0.

Proof. Let us denote F ′n = Imφi
n, for large i. By the hypothesis of the theorem, the homo-

morphism φn|F ′
n+1

carries the module F ′n+1 to F ′n. Then, φn|F ′
n+1

is an epimorphism. Thus,

for large i, the homomorphisms

φn : (ςn|F ′
n+1

, ϖn|F ′
n+1

, νn|F ′
n+1

)F ′
n+1
→ (ςn|F ′

n
, ϖn|F ′

n
, νn|F ′

n
)F ′

n

are epimorphisms. Therefore, by Theorem 3.20, we have lim←−
(1)(ς ′n, ϖ

′
n, ν
′
n)F ′

n
= 0. Now,

ς ′n = ςn|F ′
n
, ϖ′n = ϖn|F ′

n
, ν ′n = νn|F ′

n
. Observe the following sequence of the inverse system of

neutrosophic quotient modules

(ς̃1, ϖ̃1, ν̃1)F1/F ′
1
← (ς̃2, ϖ̃2, ν̃2)F2/F ′

2
← · · · . (7)
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For every n, there exists m > n such that the homomorphism Fm/F
′
m → Fn/F

′
n is a zero

homomorphism. Then, lim←−
(1)(ςn, ϖn, νn)Fn/F ′

n
= 0. This implies that the limit of inverse

system in (7) is equal to 0. Hence, lim←−
(1)(ςn, ϖn, νn)Fn/F ′

n
= 0. Now, let us see on the

following short exact sequence of inverse systems in the category of N -Mod

0→ {(ς ′n, ϖ′n, ν ′n)F ′
n
} → {(ςn, ϖn, νn)Fn} → {(ςn, ϖn, νn)Fn/F ′

n
} → 0. (8)

Granting that (Fn/F
′
n) = 0. By utilizing Theorem 3.20 to the sequence (8), we obtain the

following exact sequence

0→ lim←−
(1)(ς ′n, ϖ

′
n, ν
′
n)F ′

n
→ lim←−

(1)(ςn, ϖn, νn)Fn → lim←−
(1)(ςn, ϖn, νn)Fn/F ′

n
→

lim←−
(1)(ς ′n, ϖ

′
n, ν
′
n)F ′

n
→ lim←−

(1)(ςn, ϖn, νn)Fn → lim←−
(1)(ςn, ϖn, νn)Fn/F ′

n
→ 0.

(9)

Since lim←−
(1)(ς ′n, ϖ

′
n, ν
′
n)F ′

n
= 0, lim←−

(1)(ςn, ϖn, νn)Fn/F ′
n

= 0 and lim←−
(1)(ςn, ϖn, νn)Fn/F ′

n
= 0,

respectively. Sequence (9) becomes

0→ lim←−
(1)(ς ′n, ϖ

′
n, ν
′
n)F ′

n
→ lim←−

(1)(ςn, ϖn, νn)Fn → 0→ 0→ lim←−
(1)(ςn, ϖn, νn)Fn → 0→ 0.

This proves that lim←−
(1)(ςn, ϖn, νn)Fn = 0.

4. Direct system of neutrosophic modules

In this section we present some basic properties of direct systems of neutrosophic modules.

Let

(ς,ϖ, ν)F =
{
(ςi, ϖi, νi)Fi , p

i′i
}
i∈∆

(10)

be a direct system of neutrosophic modules, where (ςB, ϖB, νB)⊕
i
Fi is a neutrosophic module

and π : ⊕
i
Fi → lim−→

i

Fi a canonical epimorphism. Moreover, one can consider the neutrosophic

module
(
(ςB)π, (ϖB)π, (νB)π

)
lim−→
i

Fi
.

Theorem 4.1. Every direct system in the representation (10) has a limit in the category of

N-Mod which is equal to the neutrosophic module
(
(ςB)π, (ϖB)π, (νB)π

)
lim−→
i

Fi
.

Proof. It suffices to demonstrate that, there exists a unique homomorphism of neutrosophic

modules ψ :
(
(ςB)π, (ϖB)π, (νB)π

)
lim−→
i

Fi
→ (α, β, γ)N , making the diagram

(ςi, ϖi, νi)Fi (α, β, γ)E

(
(ςB)π, (ϖB)π, (νB)π

)
lim−→
i

Fi

φi

πi
ψ
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commutative, where φ = {φi : (ςi, ϖi, νi)Fi → (α, β, γ)E}i∈∆ is a family of homomorphisms of

neutrosophic modules providing the commutativity of the diagram

(ςi, ϖi, νi)Fi (α, β, γ)E

(ςi′ , ϖi′ , νi′)Fi′

φi

pi,i
′

li : (ςi, ϖi, νi)Fi → (ςB, ϖB, νB)⊕
i
Fi are usual injections and πi = π ◦ li. For every x ∈ lim−→

i

Fi,

there exists xi ∈ Fi such that πi(xi) = x. If πi′(xi′) = x for each xi′ ∈ Fi′ , then φi′(xi′) is equal

to φi(xi). We define the homomorphism ψ : lim−→
i

Fi → E by ψ(x) = φi(xi). We want to show

that ψ is a homomorphism of neutrosophic modules. For each x ∈ lim−→
i

Fi, let π ◦ li(xi) = x.

Here,

(ςB)π(x) = sup(∨
i
ςi)(x) = sup{∨

i
ςi(x) : πi(xi) = x},

(ϖB)π(x) = sup(∨
i
ϖi)(x) = sup{∨

i
ϖi(x) : πi(xi) = x},

(νB)π(x) = inf(∧
α
νi)(x) = inf{∧

i
νi(x) : πi(xi) = x}.

Therefore,

α(ψ(x)) = i(φi(xi)) ≥ ςi(xi), β(ψ(x)) = β(φi(xi)) ≥ ϖi(xi), γ(ψ(x)) = α(φi(xi)) ≤ νi(xi).

Since this inequality is satisfied for each xi such that πi(xi) = x, we have α(ψ(x)) ≥ (ςB)π(x),

β(ψ(x)) ≥ (ϖB)π(x), γ(ψ(x)) ≥ (νB)π(x). From the definition of ψ, it is obvious that the

above diagram is commutative. We can easily show that lim−→ is a functor from the category of

direct systems of neutrosophic modules to the category of neutrosophic modules.

We can now focus on the problem of the exact direct limit of exact sequences of direct

systems of neutrosophic modules. Let

F =
{
(ςi, ϖi, νi)Fi , p

i′i
}
i∈∆

,

F
′
=
{
(ς ′i, ϖ

′
i, ν
′
i)F ′

i
, pi

′i
}
i∈∆

,

F
′′
=
{
(ς ′′i , ϖ

′′
i , ν
′′
i )F ′′

i
, pi

′i
}
i∈∆

,

be direct systems of neutrosophic modules, and let

F
′ ȟ−→ F

g−→ F
′′

(11)

be an exact sequence.
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The following holds.

Theorem 4.2. Direct limit of the exact sequence (11),

lim−→
i

(ς ′i, ϖ
′
i, ν
′
i)F ′

i
→ lim−→

i

(ςi, ϖi, νi)Fi → lim−→
i

(ς ′′i , ϖ
′′
i , ν
′′
i )F ′′

i
,

is exact.

Proof. Since the sequence (11) is exact, then the ordinary sequence of R-modules

F ′i → Fi → F ′′i is exact for every i ∈ ∆. Hence, the sequence {F ′i}i
{hi}−−−→ {Fi}i

{gi}−−→ {F ′′i }i is
an exact sequence of direct system of ordinary modules. Then, taking the limit one obtains

the sequence

lim−→
i

F ′α

lim−→
i

hi

−−−→ lim−→α
Fi

lim−→α
gi

−−−→ lim−→
i

F ′′i , (12)

which is also exact. Therefore, the following sequence of neutrosophic modules

(
(ς ′B)π, (ϖ′B)π, (ν′B)π

)
lim−→
i

F ′
i

lim−→
i

hi

−−−−→
(
(ςB)π, (ϖB)π, (νB)π

)
lim−→
i

Fi

lim−→
i

gi

−−−→
(
(ς ′′B)π, (ϖ′′B)π, (ν′′B)π

)
lim−→
i

F ′′
i

fulfills the relations

(ςB)π|Im lim−→
i

hi
= (ςB)π|Ker lim−→

i

gi ,

(ϖB)π|Im lim−→
i

hi
= (ϖB)π|Ker lim−→

i

gi ,

(νB)π|Im lim−→
i

hi
= (νB)π|Ker lim−→

i

gi ,

which are true, since sequence (12) is exact.

Corollary 4.3. The direct limit functor preserves monomorphism and epimorphism in the

category of neutrosophic modules.

Let us see on the direct system of chain complexes. Let I be a directed set, for every i ∈ I
suppose

C(i) =
{
(ς(i)n , ϖ(i)

n , ν(i)n )
F

(i)
n
, ∂n : (ςn(i), ϖn(i), νn(i))Fn(i) → (ςn−1(i), ϖn−1(i), νn−1(i))Fn−1(i)

}
n

is a chain complex of neutrosophic modules and for every i < j, let ȟij : C(i) → C(j) be a

morphism of chain complexes and {C(i), ȟij} be a direct system of these chain complexes.

Theorem 4.4. The limit of homology modules of direct system of chain complexes of neutro-

sophic modules is quasi isomorphic to the homology modules of the limit of this direct system,

i.e., Hn

(
lim−→
i

C(i)
)
≃ lim−→

i

Hn(C(i)).
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Proof. It is proved by using Corollary 4.3. Therefore, we have

lim−→
i

Hn(C(i)) = lim−→
i

(
ς̃n(i), ϖ̃n(i), ν̃n(i)

)
Ker ∂n(i)|Im ∂n+1(i)

≈ lim−→
i

(
ςn|Ker ∂n(i)

, ϖn|Ker ∂n(i)
, νn|Ker ∂n(i)

)
Ker ∂n(i)

∣∣
lim−→
i

(
ςn|Ker ∂n(i),ϖn|Ker ∂n(i),νn|Ker ∂n(i)

)
Ker ∂n(i)

≈ Ker lim−→
i

∂n(i)| lim−→
i

∂n(i)

= Hn

(
lim−→
i

C(i)

)
.
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