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1. Introduction

In 1965, Zadeh [6] laid the foundation of fuzzy set theory by introducing the concept of
degree of membership (or truth) ¢t and defining the fuzzy set. Building on this, Smarandache
introduced the term neutrosophic to highlight a significant extension of fuzzy logic. The term
neutrosophic derives from a combination of the French neutre (Latin neuter) (neutral), and the
Greek sophia (skill/wisdom) emphasizing knowledge that incorporates neutrality or indeter-
minacy. This neutrality represents a pivotal distinction between fuzzy and neutrosophic logic.
Unlike fuzzy sets, which involve only truth (membership) and falsehood (non-membership)
components, neutrosophic sets include an additional, independent component: indeterminacy
(or meutrality). This concept, introduced by Smarandache in 1995 (formally published in
1998), allowed the definition of neutrosophic set using three independent components (¢, 1, f),

corresponding to truth, indeterminacy, and falsehood, respectively.
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Smarandache’s neutrosophic set theory generalizes classical and fuzzy set theories, providing
a more flexible and comprehensive framework. It encompasses the notion of interval-valued
neutrosophic sets, further broadening its applicability. The versatility of neutrosophic sets
has led to their application across diverse fields (as documented on the website http://fs.
gallup.unm.edu/neutrosophy.htm).

In this paper, we explore the notions of inverse and direct systems within the category of
neutrosophic modules, extending the ideas presented in [2]. We also examine their fundamental
properties, providing a deeper insight into the theoretical landscape of neutrosophic module

systems.

2. Preliminaries

Definition 2.1. Let X be a nonempty set. A neutrosophic set [4] A on X is a structure

A= {<.73,§A(37),WA(IL’),I/A($)> RS X}7 (1)

where ¢4 : X — [0,1] is a truth membership function, w4 : X — [0,1] is an indeterminate
membership function, and v4 : X — [0,1] is a false membership function. The neutrosophic

set in will be simply denoted by A = (¢4, @4, v4).

Building on the general concept of neutrosophic sets, it is possible to describe integrate it

within the context of algebraic structures, especially modules over a ring.

Definition 2.2. Let R be a ring and let F' be a R-module. A neutrosophic set F} =
(Sp,@wr,,vr,) In F is called a neutrosophic submodule of F' if the following conditions are
satisfied
(1) < (0) =1,
min{sp, (z),sp, (y)} < sp(z —y) forall z,y € F,
sy () <sp(r-x) forall x € Fand r € R,
@wr (0) =1,
min{wp, (z),wr, (y)} <wp (x —y) foral z,y e F,

W N

wp, (x) <wp (r-x) forallz € F and r € R,
VF1 (0) = 0,
vi (z —y) < max{vp (z),vr (y)} forall z,y € F,

-~ ot
S N e N N N N N

~~ N /N /N /N /N A/~
0] D

Ne)

v, (r-x) <vp(x) forallze FandreR.

Definition 2.3. Given an inverse sequence of abelian groups G LGy, LGy (in short
{G;}). Denote by II the direct product of the groups G;, and consider the map ¢ : II — II
defined as

0(91,92, ) = (91 — P92, 92 — pg3: 93 — PG~ - )-
The kernel of § is called the inverse limit of the sequence {G;} and we denote it by L, {G;}.
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3. Some properties of neutrosophic modules

In what follows, a neutrosophic submodule F; = (s, @, v) of F' will be denoted by (s, w0, v)p.

Definition 3.1. A function h : (¢,w,v)p — (¢/,@’,')ps is called a homomorphism of neu-
trosophic modules if the conditions ¢;(h(z)) > <(z), wi(h(z)) > w(z) and vi(h(z)) < v(z)

are satisfied.

Observe that, neutrosophic modules and their morphisms form a category which we denote
by N-Mod.

Let F,E be two R-modules and let (s, w,v)r be a neutrosophic submodule of F. Suppose
h : F — FE is an R-module homomorphism. We can define a neutrosophic module structure

on E wvia the map h has it follows:

(y) = sup{s(z) : h(z) =y},
@ (y) = sup{w(z) : h(z) =y},
Jly) = inf{u(z) + h(z) = ).

It is clear that (gh, wh, Vh) g is a mneutrosophic submodule of FE and the function
h:(s,@,v)r = (", @" ") g is a homomorphism of neutrosophic modules.
Conversely, let (1,0, v)g be a neutrosophic submodule of E' and h : F' — E a homomorphism

of R-modules. It is possible to define a neutrosophic module structure in F' by setting

Hence, (1", 6", v")r is a neutrosophic module and h : (n*, 0", V") — (1,0, v)E is a homomor-

phism of neutrosophic modules.

We state the following lemma.

Lemma 3.2. Let F' and E be R-modules and h : F' — E be a homomorphism of R-modules.

The following conditions are true

(1) If (s,wo,v)p is a neutrosophic module, then there exist modular grade functions
P vh on E such that for any modular grade function B = (o, f,7) on E,
h: (s, v)r — (a,B,7)E is a neutrosophic homomorphism if and only if o > <",
B>wh, vy <

(2) If (a,B,7)E is a neutrosophic module, then there exists a modular grade function
(a”, 8", A4") on F such that for every neutrosophic module (s,@,v)p, h: (s,@,v)p —

(o, B,7)E is a neutrosophic homomorphism if and only if ¢ < o', w < P, v > A"
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Lemma 3.3. (1) Let {F;}ica, E are modules and a family of R-homomorphismsn = {h; :
Fi = E}ien. If{(si, i, Vi) F, }ien is a family of neutrosophic modules, then there exists
the smallest grade functions o = " = ¢hi}, g = @ = @lhi} o = 1 = plhi} gych
that, for alli € A, h (Si,wi, Vi), — (o, B,7)E s a neutrosophic homomorphism.

(2) Let F,{E;}icn be modules and B = {g; : F — Ei}ien be a family of R-
homomorphisms. If {(a, Bi, Vi) E; }iea is a family of neutrosophic modules, then there
exist the largest grade functions ¢ = ap = agy,y, @ = B = Bp,), V = VB = V{n,} such

that, for alli e A, h: (s,w,v)r — (q, Bi,Vi)E, 15 a neutrosophic homomorphism.

Proof. (1). Let a =¢* = \/ ple,0=¢1=\/ €l y=v1= A M.

aEA i€EA aEA
(2). Let s =ap= A (2i)n,@=8s= A Bin,v=78=V (Vi) 0
€A €A IEA

We are now in position to define submodule, quotient module, product and co-product

operations in the category of neutrosophic modules, by using the above lemma.

If (¢, w, v)F is a neutrosophic module on F' and E C F'is a submodule, then (¢|g, @w|g, V|E)E

is called a neutrosophic submodule of (¢,w,v)p.
If (¢,w,v)F is a neutrosophic module and h. : F' — F/ ~ is a canonical homomorphism,
then (¢"e, e, I/hE)F/N is called a quotient module of (s, w,v)p.

Hence, for each homomorphism of neutrosophic modules h : (¢,w,v)r — (o, 3,7)g, the
neutrosophic submodules (<|Ker s @|Ker by ¥|Ker h)Kerr, @and the neutrosophic quotient module

(@™, B™,9")E/1mn are obtained, where 7 : ' — E/Im f is a canonical homomorphism.

If {(si, @i, Vi)F, };cn is a family of neutrosophic modules, then we define the product of

this family by (¢p,w@p,vp) 1] F,, Where D = {m ]I F — FZ} A is a family of the usual
1€

i€EA 1EA
projection maps. Moreover, the co-product of the family is defined as (¢, !, v# )5~ F;» Where
H = {ji cF— Y FZ} is a family of the usual injections.
ieA €A

Mind that, the category of neutrosophic modules has zero objects, sums, products, kernels

and cokernels.

Definition 3.4. A functor ® : A°> - N — Mod (® : A — N — Mod), where A is a directed set
(considered as a category), is called an inverse (resp. direct) system of neutrosophic modules,

the limit of ® is called a limit of the inverse (resp. direct) system.

Consider an inverse system of neutrosophic modules

c e = {6 mmnte) ?
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Let D = {777;, I F — FZ} A be a family of projections and let (¢p,w@p,vp) ] ;> the
i€A S ieA

direct product of the neutrosophic modules (;,w;,v;)r,. Then, we obtain a neutrosophic

submodule (<plimr,, @D|limF;; VD|limF, )limF,, where @FZ is a limit of an inverse system of
— — e

modules {F;}ica.

Theorem 3.5. Fvery inverse system has a limit in the category N — Mod, which is equal

to the a neutrosophic submodule (Sp|iimF,, @D limF, > VD [limF, ) limF; -
— — — =

Proof. Our aim is to show that there exists a unique homomorphism of neutrosophic modules

0: (o, 3,7)E — (§D|1<iLan th(iI_nFi’ 1/D|£i£1pi)1<i£1pi, which makes the following diagram

(a,B,7)E > (i, @iy Vi) Fy

| _—

(§D|£iLnFiawD|LiiniaVD|£1£1F,L-)1(i_Fi

commutative.  Observe that, for every neutrosophic module («,f,7v)g it is true that
{@; : (,8,7)E — (Si,wi, Vi)F, tiea is a family of homomorphism of neutrosophic modules,

providing the commutativity of the diagram

D;
(a7 57 7)E E— (gia TWi, Vi)FZ‘

QOZ./J i
5

(Cz‘u Wit Vi’)FZ.,

Also, 7 : (§D|1<iLnFi7 WD|1<iLnF,-7 VD|1<iLnF¢)LiLnFi — (i, @i, V) F, is a canonical projection. We define
the map 0 : E — WmF; as f(z) = {¢i(z)}ica, for every x € F, which is a module homomor-
phism. We show that 0 : (o, 3,7)g — (gD\@Fi,wD\@Fi,1/D|1<i£1Fi)@Fi is a homomorphism
of neutrosophic modules. Since @; : (o, 5,7)r — (S, i, Vi) F, is a homomorphism of neu-
trosophic modules for every i € A, the conditions ¢;(p;(z)) > a(x), wi(pi(z)) > B(z) and
vi(pi(x)) < y(x) are satisfied for every x € E. Therefore, we obtain

so{ei(@)}) = N si(pi(x)) = a(x),

1E€EA

@p({pi(@)}) = )\ @ipi(@) > B(x),
1EA

val{pi(@)}) = \/ vilei(x)) < 7(2).
1EA

Hence, 6 is a homomorphism of neutrosophic modules. The uniqueness of  follows from the

uniqueness of 6.
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It is conspicuous to show that @1 is a functor from the category of inverse system of

neutrosophic modules to the category of neutrosophic modules.

Let us now focus on the problem of exact limit for inverse systems of exact sequences.

Definition 3.6. A sequence

h'nfl hn
e (g’nflv Wn—1, an].)anl - (g’na Wny VTL)Fn — (§n+1a Wn+1, Vn+1)Fn+1 —
of neutrosophic modules is said neutrosophic exact if
(Snltm hn—1> @nlim hy_1s Valim hn_1) = (SnlKer hn s @nlKer hns VnlKer hn ) for every n € Z.
Remark 3.7. Observe that, given a sequence of R-modules
hnfl hn
o= By —— Fy =S Fpa — (3)

it is clear that if is exact, then the induced sequence of neutrosophic modules

hn— H
e (gn—lv Wn—1, Vn—l)Fn_l —1> (§n7 TWny Vn)Fn — (§n+1a Wn+1, Vn—i—l)Fn_H — (4)

is neutrosophic exact, with

Sn =X{0}» @n=X{0}s Yn=1— (G +E)

Exactness of implies the exactness of , since the equality of two neutrosophic sets is
just the equality of their respective maps, which implies the equality of their corresponding
domains (that is, Kerh,, = Imh,_1). On the other hand, the exactness of does not
necessarily imply the exactness of . Namely, the exactness of R-modules sequences is not

derived from the exactness of sequences of a neutrosophic modules.
Example 3.8. For all n € N, consider the Z-modules F,, = Z, F| = Z, F!! = Zs. Then,

F = ({Fn}neEa {anrln(m) = 3m})7
E/ = ({F;z}nEEu {Qn-‘rln(m) = 3m}),

E// = ({Fylll}neEa {Tn-‘rln(m) = [m]})

are inverse systems of modules. Hence, we consider the sequence 0 — F’ LN F3 P 0,
with h = {hy, : F, = F, : hy(m) = 2m} and g = {g, : Fr, = F] : gn(m) = [m]},

which is a short exact sequence of inverse systems of Z-modules. Then, the following sequence

0 = (sp, @, V) Fn == (Sny @y Vn) B, —= (Sps @y Vp)Fr — 0 is a short exact sequence of

neutrosophic modules, where ¢, = (x(0))r,, @n = (X(0))Fs ¥n = 1= (sn+@n), 5 = (X(0) £,
/

w, = (X)), v, = 1= (s, + @), 5, = (x(0)Fr, @, = (x(0)pr, vy = 1= (5 + @,).

— m g —
Therefore, the sequence 0 — (¢, @, V) —5 (¢, @, V) 2 (", @, V") g — 0 is a short exact
) q S ) I S ) I S F
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sequence of inverse systems of neutrosophic modules. Nevertheless, taking the limit of this

sequence, we obtain 0 — 0 — 0 — (¢, ", ")z, — 0, which is not exact.

The limit of inverse system of exact sequence of neutrosophic modules is not exact, hence
we need to introduce the notion of derivative functor of inverse limit functor in N — Mod.

Consider an inverse system of neutrosophic modules as in . Define also the R-modules
homomorphism d : HF — HF as d{za}) = {za — P'a(Tar) ta<ar- We want to show that

dis a homomorphlsm of neutrosophlc modules. Indeed,

sp(d({z:})) = sp(xi — pii(xy))
= /\ Gi(wi — piri ()
> /\ min{;(x;), si(piri(xir)) }

o

> A\ min{si(z:), 5/ (xi)} (- silprils)) = o (@)

%

= /\(ci(xi) Ai(zir))
= /\Q(ﬂfz)

= ¢p(xi),

wp(d({z:})) = wp(xi — piri(xir))
= /\ wi(z; — piri(zir))

i

> /\min{Wi(wi), @i(piri(wsr))}
> /\min{wi(xi)awg(xi’)} (. wilpri(zi)) > wi(zir))
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vp(d({zi})) = vp(xi — pri(zi))
=\ vi(wi — pri(zs))

)

< \/maX{Va(ﬂfi), vi(piri(zi))} (o vilpii(zi)) < vie(2i))

7

< \/ max{v;(z;),vi'(xy)}

= \/(Vi(ﬂfi) Vvi(zi))
= \/ Z/Z(iL‘Z)

= vp(x;).

This shows that d is a homomorphism of neutrosophic modules. Thus,

(sD|Kerd> @D |Ker ds VD|Kerd)Kerd, and ((sp)?, (wp)?, (vD)P)coker d

are defined.
For inverse system of R-modules {F}, py; }iea, we have @(I)Fi = [[/Imd, where @(1) is
i
the derivative functor of lim [3].

Ifr:]]— @1(1)}7} is a canonical homomorphism, then we are able to define a neutrosophic
module by ((sp)"), (@)™ (D) Doz,

Definition 3.9. ((s<p)™, (@wp)™, (vD)™)ym) g is called the first derived functor of the limit of
<_ T

the inverse system of neutrosophic modules .
Proposition 3.10. @(1) is a functor.

Proof. We are done if we show that for each morphism of neutrosophic chain
complexes h = <p:H%D,{ij:(gp(j),wp(j),vp(j))pp(j)H(ilvjl,kl)Nl}jeH) the map

tim Wk (p)" (@) (D) Nyt 5, = (@)™, (Bit)™ (1) Dy, 15 & homomorphism of

neutrosophic modules. We have

(sp)™(z +Imd) = sup <p(x+ 2)
z€lmd

< sup ap(h(r + z))
z€lmd

= sup ap(h(x) + h(2))

z€lmd

= sup ap(h(z) +y)
y=h(z)

< sup ap(h(z)+y)
yelmd

= (ap)"(limWh(z +Imd)),
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(wp)™(z +Imd) = sup wp(x+ z)
z€lmd

< sup Bp(h(z + 2))
z€Imd

= sup ﬁD(f($)+h(Z))

z€Imd

= sup fp(h(z) +y)
y=h(z)

< sup Bp(h(z)+y)
yElmd

= (8p)" (limh(z + Im d)),

(vp)"(z +1Imd) = i?fdl/D(ac + 2)
zelm

> inf yg(h(z + 2))
z€lmd

= inf u(h(z) +h(2))

= inf h(z) +
Jint n(h(z) + )

> inf yp(h(z)+y)
y€Elmd

= (30)" (imh(z + Imd)).

Hence, @1(1) is a functor, as stated.

We intend to investigate the properties of the functor T&n(l). Therefore, we introduce the

category of chain (cochain) complexes of neutrosophic modules. This category is defined in

the same lines as in [1].
Definition 3.11. A neutrosophic chain complex

(g, w, V)F = {(Cn, TWn, Vn)Fnyain}nEZ

is an object in N-Mod along with a neutrosophic endomorphism 0 : (s, @, v)r — (s, @, V) of

degree —1 such that 90 = 0.

Definition 3.12. A morphism @ : (¢,w,v)r — (a,,7)g of neutrosophic chain complexes

is a morphism @ = {@,, : (Sn, @n, Vn)F, — (On, BnsTn)E, }, which has a degree 0 such that

@n_1 0 0y = 0Py, where 0 denotes the neutrosophic differential in (o, 3,7)g.

S. Jafari, E. Lax, N. Rajesh and F. Smarandache, On the the category of neutrosophic submodules



Neutrosophic Sets and Systems, Vol. 80, 2025 6@

Definition 3.13. Let (s,@,v)r = (S, @n, Vn)F,, On Jnez be a neutrosophic chain complex.
The condition 0 o & = 0 implies that Im Ont1 C Ker On, for n € Z. Hence, we can associate a
neutrosophic graded module with (¢, w,v)r H((s,w,v)r) = {Hn(s,w,v)F}, where

<§"|Kora’ wn|Kcra’ V”|Kora) Ker 5o
Hn((§7w7V)F) = =

(gn ’Im 8n+1 » Wn |Im 8n+1 ) Vn|Im 8".;_1)

Im Op 41

H((s,w,v)p) is called the neutrosophic homology module of the neutrosophic complex

(s,@,V)F.

Analogously, one can define cochain neutrosophic complex and neutrosophic cohomology

module.

Let $,v : (s,w,v)r — («, 8,7)r be morphisms of neutrosophic chain complexes.

Definition 3.14. A neutrosophic homotopy ¥ : (s, @, v)r — (o, 8,7)E between @ and ¥ is a
neutrosophic morphism of degree +1 such that ) — 3 =00X + X 0.

The morphism %, 1) are said to be neutrosophic homotopic, if there exists a neutrosophic

homotopy between them.

Theorem 3.15. The neutrosophic homotopy relation is an equivalence relation. Moreover,

neutrosophic homology and cohomology modules are invariant with respect of this relation.
Observe the following neutrosophic cochain complex
0 = (sp, @D, vD)[ . 4, (sp,@wp,vp)[1F, — 0.
Neutrosophic cohomology modules of this complex are Ker d and Coker d.
Lemma 3.16. @(1)(%7%7%)& = Kerd and @(1)(MQ,§a,yi)Fi = Cokerd.

Proof. Obvious.

In what follows, we consider the set of natural numbers as index set of inverse systems.

Theorem 3.17. For each infinite subsequence of the inverse sequence of neutrosophic modules

(Flvgl,WLVl)Fl <—pi2— (F27§2’w27y2)F2 (233_ e

hén(l) does not change.

Proof. Let S = {i,j,k,---} be an infinite subsequence of natural numbers. By Lemma

@1(1) is defined by the following homomorphism of neutrosophic modules subsequence S

d/:(/\cs,/\ws,\/vs)HFS%(se/\scs,/\ws,\/l/s)HFs-

seS ses ses SES s€S s€S s€S
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We also define two module homomorphisms hg, hy : [[ Fs — [] Fs as
ses ses

hO(xiaxjvxkv : ) = (pli(xi)vp%(xi)v T apifli(fi)afiapwrlj(mj)a e 7pj—1j($j)75'3j, : ")7
h1($i,$j,$k,"‘) = (0,0, >$i707"' axj>0>"' 7xk’707"')'

Moreover, ( A <n> (pri(i), p2i(i), - s Dim1i(@a)s @iy Pigrj (x5), - pj—15(x5), Tj, )
neN

= q1(p1a(xi)) A AGim1(pic1i(2i)) A Gi(@a) A Gipr (Pis1j () A - Agilag) A
> [pi(wi) A Ailws) Asi(za)] Alsg () A Agglag) A -

= Gi(xi) Ngj(zj) A---

= )\ (=),

seS

< é\N€n> (pri(xi)s p2i(i), - s Die1i(@4)s @iy Pigrs (x5), - pj—15(25), T4, +)

= w1(p1i(®i)) A+ Awic1(pi—1i (i) A @i (@) A wig1 (it (i) A Awj(ag) A- -
2 [wixi) A~ ANwi(@s) Awi(a:)] Alwg(@;) A Awg(ag)] A

= wz(l‘z) A\ wj(xj) JARER

= /\ ws(ﬂfs)v

ses

< V Vn> (P1i(x4), p2i (i), - -+, pie1i(Xs), iy Digrs (25), - pj—15(xf), T4, )
neN

= vi(p1i(xi)) V-V vic1(pi—1i(@i)) V vi(@i) V vig1 (pigg (@) V- Vi) Ve
> i) V- V() V()] V [vi(zg) Ve V()] Ve

= VZ(IEl) V l/j($]’) AV

= \/ vs(zs)

seS
(/\ gn) (0707 axi707"' ,xj,o,):§1(0)/\/\§Z($Z)/\§Z+1(O)/\/\§](Q?])/\
= Gi(@s) Agjlag) A

= /\ ss(ws)

sES
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(/\ wn> (0,0,~-- ,xi, 0,00 ,xj,O,---):wl(O)/\---/\wi(xi)/\wi+1(0)/\-~-/\wj(a:j)/\---
neN

(\/ Vn> (0,0,-~- , i, 0,0 ,xj,O,---):1/1(0)\/-~-\/ui(xi)vyz-+1(0)\/~--\/1/j(a:j)\/---
neN

= vi(xi) V() V-

= \/ vs(xs).

seS

Then, hg, b1 : </\ Ssy, N\ @s, V I/S) — ( A sn, N\ @n, V I/n) are homomor-
seS  seS ses I Fs neN neN neN 1 Fn
neN

seS
phisms of neutrosophic modules. Observe that, the following diagram is commutative:

</\ Csy /\ Ws, v Vs> — < /\ Sns /\ W, v Vn)
seS  seS seS 1 Fs nenN neN neN 1 Fa
seS nenN

il la

(/\ Sss /\ Ws, \/ Vs) — ( /\ Sns /\ Wns \/ Vn>
s€S seS seS 1 Fs neN nenN nenN I Fn
seS neN

That is, {izo,ﬁl} are morphisms of neutrosophic cochain complexes. Now, we define

two homomorphisms go,g1 @ [[ Fn — [I Fs as go(z1, 22,23, ) = (4,25, Tk, ),
neN seS
g1(w1, 22,03, -+ ) = (Ti+piir1(Tiz1)+- - +pi—1(wi-1), Ti+pjie1(Tje1)+ - +pjp—1(Tr—1), )

Moreover,
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Therefore, we have

< A <s> (@i + piip1(Tigr) + - + pij—1(Tj—1),  + -+ pjg—1(@p—1), )
seS

= Gi(@i + piit1(Tig1) + -+ pij—1(xj—1)) Agj(xj + -+ pjp—1(Tp—1)) A -+
> min{;(x;), G (pii+1(@it1)), -+ 5 Si(pij—1(2j-1))} Amin{s;(z;), -, G (Pjk—1(Tp—1))} A~

> min{s;(2;), Siv1(zit1), -+, g—1(xj—1)} Amin{q;(z;), Gir1(zj1), -+ s e—1(Tp—1)} A+

</\ ws) (@5 + piirr(@ipr) + - Fpij1(zjo1), 25+ - + pjp—1(Tr—1), )
seS

= @i(x; + piit1(Tig1) + -+ pij—1(xj-1)) ANwj(r; + -+ pjp—1(Tp—1)) A - -
> min{w@; (i), @i (piit1(zi+1)), - @i(pij—1(zj—1))} Amin{w;(2;), -, & (Pjr—1(zp—1))} A+ -

> min{w@; (@), {1 (Tiv1), -+, wj—1(zj-1)} Amin{w;(z)), @)1 (zj41), - @e—1(@p—1)} A+

<\/ Vs) (w5 + piiv1(wig1) + -+ pij—1(xj—1), 25 + - + pjp—1(Th—1), )
sesS

< max{v;(zi), vi(pii+1(zit1)), - vi(pi-1(25-1)) } V max{v;(a)), - v (pjr—1(@p-1))} A -
< max{v;(z;), vit1(it1), - vj—1 (i)} V max{v; (@), visi (@), v (@e-) P A -
= /\ Vn(xn)

meM
< /\ Un(2p).

neN
Thus, Gg,G; : ( A sns N\ @n, V I/n) — ( A sns A\ @n, V un) are homo-

neN  neN neN nl;[NFn neN  neN neN ngN n
morphisms of neutrosophic modules. Define now D : [[ F,, — ][ F, as
neN neN

D(z1, 20,23, ) = (21 + pra(z2) + - + pric1(i—1), T2 + pag(@3) + -+ + pai—1(Tiz1), -,
Ti-1,0,Zig1 + Piprit2(Tipe) + - + Pip1j—1(Tj-1), Tigo2 + - + Pig2j—1(zj-1),0, )

which is a module homomorphism. Hence, we have
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< A €n> (x1 + pr2(x2) + - - + pric1(xi—1), 2 + pas(x3) + - - + p2i—1(zi=1), -+ ,2i-1,0,--+)
neN

=q1(z1 +pra(w2) + - +pric1(wic1)) Aca(z2) +paz(3) + -+ pai1(wi1)) A=+
AGi—1(@i-1) AGi(0) A Gi1 (@i1 + pitrira(i +2) + - + pivry — L(wj—1)) A+

> min{c (1), c1(p12(22)), -+ ;1 (Pri—1(wi-1)) A

min{ca(72), s2(pa3(x3)), - -+, 2(P2i—1(wi — 1))} AGi—1(xi—1)A
min{§i11(@i+1), Sit1 Pitriv2(Tiv2)), -+ s Sipr(pivry — L@j—1)) A -

> min{si(z1),s2(22), -, Gi—1(wi—1)} Amin{c(w2),3(x3), -, si—1(@i—1)}A

Gi1(Ti—1) AGip1(Tig1) A -+

/;\ /\Mk xk
AN

( A fn) (z1 + pra(x2) + -+ - + pric1(@iz1), x2 + pas(xs) + - - - + p2i—1(xi—1), -+ ,i-1,0,---)
neN

= w1(z1 + p12(@2) + -+ + pri—1(@i—1)) A @2(@2) + pas(ws) + -+ + pric1(@iz1)) A -+
A @i—1(2i-1) A@i(0) A @it1(Tig1 + Pirrira (i +2) + -+ + i1y — L(wj—1)) A -

> min{w (z1), w1 (p12(x2)), - -+ , @1 (Pri—1(Ti=1)) I

min{ws(z2), @2(p23(@3)), -+ &2(P2i-1(zi — 1))} A wi-1(zi-1)A
min{w@;i1(i+1), Tir1 Piv1i+2(Tiv2)), - @iv1 (Pir1; — L(@j—)) A

= min{w1(21),&2(22), -+, @wi—1(@i—1)} A min{wa(22), &3(23), -+ wim1 (i) PA

wWi— 1( ) N Wiyl (l'z—i-l)

i—1 i—1

/\ wk $k /\ /\ wk $k
k=1 k=2

= N\ @l

neN
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< V Vn> (x1 + pra(z2) + - - + pric1(Ti—1), x2 + pas(z3) + - - - + p2ic1(zi=1), -+ ,2i-1,0,--+)
neN

=vi(x1 + pra(z2) + - + pri—1(ziz1)) V va(xe) + pas(xs) + -+ - + pai—1(xi-1))
Vo Vi (wi—1) V v(0) V vigr (i + pigrive (@i +2) + - + iy — Lzj—1)) V-
> max{v(z1),v1(p12(x2)), - -, v1(Pri—1(Ti=1))}V

max{ve(z2), va(p23(z3)), -+ s va(p2i—1(xi — 1))} Vvi1(wi1)V

maX{Vi+1(UCi+1), Vi+1(pi+1i+2(xi+2))a T 7Vi+1(pi+1j - 1(%’—1))} Vo
> max{v(z1), va(x2), -, Vic1(xi—1)}V
max{va(z2),v3(z3), -, Vi—1(®i—1)} V vic1(@i—1) V Vig1(2ig1) V - - -
i1 i1
=\ wilar) v \/ wilan) v -
k=1 k=2
= Un(2p)
neN

Therefore, D : ( A sns N\ @n, V yn) - — ( A sns A\ @n, V Z/n) 1 r is a homo-

neN neN neN neN neN neN n
neN neN

morphism of neutrosophic modules. By some calculation, One can show that D is a neu-
trosophic chain homotopy between hg o g and h; o g7 homomorphisms. Then, the following

cohomology modules of neutrosophic cochain complexes are quasi isomorphic (see [1]).

0—></\gn,/\wn,\/un>Han(é\Ngn,/\wn,\/yn)HFn%O

neN neN neN nEN neN neN nEN
_ P _
0— /\997/\@57\/7/8 F—> /\§S7/\ws-)\/ys F_>O
seS  seS ses SQS s seS  seS s€S SI;IS s

By the fact that @1(1) is the first cohomology module, we are done.

Remark 3.18. Since @(gn,wn, vn)r, = Kerd and ppi1n(7n11) = o, are satisfied for each
{zn} € lmF;,, one obtains

gn(xn) = gn(pn—&-ln(wn—i—l)) > §n+1(xn+1)7
wn(xn) = wn(pn+1n(xn+l)) > wn-ﬁ-l(xn-‘rl)v
Un(Tn) = Vn(Pnt1n(Tnt1)) < vnp1(Tnt1),

that is, for each {x,} € Kerd, {c,(z,)} is a decreasing sequence, {w,(7,)} is a decreasing

sequence and {v,(z,)} is an increasing sequence.
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Theorem 3.19. For every {x”} € Kerd, if lim ¢”(z!) = 0 or lim @(z!) = 0 or
n—oo

n—o0

lim v)/(z) =1 and the following diagram
n—00
\ ) A
0 = (@@n)r = (2@ wn)n — (9 @, — 0
0 — (gi’wgvyi)F{ = (L,w,v)m — (q/»w/l/ayi/)Fl” — 0
is a short exact sequence of inverse system of neutrosophic modules, then the sequence

0— L gn? n7 Vn F' — L(wanvyn - L §n, n7 Vn F” - L §n, n7 n
— L gmwnvyn)Fn - 1L(gnﬂ n’ ?,;)Ff[ — 0’

18 ezact.
Proof. For an inverse system of neutrosophic modules { (s, @n, Vn)F, }nen one has that

! 76 / / / E / / / 676
C"=0= (a4, @a:¥a) [T F, — (S4, @4 V) [ B, 0=
nenN neN

is a cochain complex of neutrosophic modules.
H(C) = hm(($n. %, 1))
HY(C) = 1" (60, @, v0) ) s (5)
H*C)=0,k>2

are neutrosophic cohomology modules of this complex. analogously, for the inverse system of
modules {(<},, @, vy,) v )} and {(<),, @, v, )Fr)}, we can establish the following neutrosophic

cochain complexes

e

/ / / / / / 6 n 6
(Sar@a,va) 11 7, = (Sa,@asVa) 1 72, = 0= -+
neN neN

\Lo\

C'=0

1 n 6 " " E " 1 6 n 6
C"=0-= (¢4, @™ A,VA)HF;;—>(§AawA7VA)1‘[F;;—>0—>“'
nenN neN

Observe that, cohomology modules of this complexes have the form of . By the hypothesis

of this theorem, the following sequence
0-C" —-C—C"=0

is a short exact sequence of cochain complexes of neutrosophic modules. Mind that in general,

the following sequence of cohomology modules of this sequence
0 — H(C') — HY(C) — H(C") & HY(C) — HY(C") — H2(C") —

is not exact. This is so, since 0 is often not a homomorphism of neutrosophic modules. By the
fact that H°(C”) = Kerd” and hm Szl =0 ( hm o (xl) =0, hm vl(zl) = 1), the grade

function ¢" (=", ") of a neutrosophlc module (¢” ,w V) oy s equal to the grade function
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(@, V") is equal to the grade function indicated in (2)). Thus, @ is a homomorphism of

neutrosophic modules. This means that the sequence of neutrosophic homology modules
0— HO(C") — H(C) — H(C") & HY(C) = HY(C") = HX(C') = -

is exact. By , we obtain the following exact sequence of neutrosophic modules

0 — m(giww;wyiz)}% — @(gmwann)Fn — @(Cgawza’/ﬁ)m — @(ginwvlwy;l)ﬂz —

I'Ln(%,men)Fn — @(CZ,WZ,VZ)F/J — 0. g

Let us now investigate the necessary conditions for which the derivative functor @(1) is
equal to zero.

Theorem 3.20. Let the following be an inverse systems of neutrosophic modules
(glawlvl/l)Fl & (CQ,WQ,VQ)FQ ﬁ Ut (6)
If every homomorphisms @, is a neutrosophic epimorphism, then Liéﬂ”(gm TWn,y Vn)F, = 0.

Proof. The proof follows from the fact that

%) 00
E: H(gTL,wTL’Vn)Fn — H(gnawTUVn)Fn
n=1 n=1

is a neutrosophic epimorphism.

Definition 3.21. Consider the inverse system of neutrosophic modules @ If there exists

m > n, for every integer n, such that for all i > m

Im((gia TWi, Vi)Mi — (gna W, Vn)Fn) = Im((gm, Wmy Vm)Fm — (gna TWny Vn)Fn)

then it is said that the inverse system @ satisfies the Mittag-Leffler condition.

Theorem 3.22. If the inverse system in @ satisfies the Mittag-Leffler condition, then
l'&n(l)(gmwm Vn)Fn =0.

Proof. Let us denote F!, = Im ¢’ , for large i. By the hypothesis of the theorem, the homo-
morphism ¢y, P, carries the module F; ; to F},. Then, PnlF is an epimorphism. Thus,

for large ¢, the homomorphisms

@n : (snlrr, s @nle, s vnle, e, = (aley, @nl ey valey)Fy

+1’ +1’

are epimorphisms. Therefore, by Theorem we have @n(l)(g’l,w%,m’l) ;= 0. Now,

Sp = SnlFy, @y, = @Walp;, V), = Vn|p;. Observe the following sequence of the inverse system of

neutrosophic quotient modules

(é\ia{ﬂ\/’lvﬁi)Fl/Fl/<—(§E,527172)F2/F2/(_ (7)
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For every n, there exists m > n such that the homomorphism F,,/F} — F,/F) is a zero
homomorphism. Then, T&n(l)(gn,wn,un) F,/rr = 0. This implies that the limit of inverse
system in is equal to 0. Hence, l'&n(l)(gn,wn,un)pn/pé = 0. Now, let us see on the

following short exact sequence of inverse systems in the category of N-Mod

0— {(gm n7 n)F’} - { gmmen)Fn} - {<§mwm Vn)F /F’} — 0. (8)

Granting that (F,,/F)) = 0. By utilizing Theorem to the sequence (), we obtain the

following exact sequence

O—>L(1 Shs Ty Uy ) F, —>L (Sns @ns Vn) Fy —>L(1) (Sn> @ns Vn) Fp Fr, — o)
@1(1 §n;w F’ — L gmwnv’/n F, — L (cnawnaVn)Fn/F;L — 0.

Since L gnv n? n F’ = O L (gmwnvyn)Fn/Fﬁ = 0 and 1.&n(l)(gnﬂﬂnvV’rl)Fn/FT/L = 67
respectively. Sequence @ becomes

0— L ((SA-o 78 = @(1)(§n,wn, vn)E, —+0—0— @1(1)(%, @y Vn)E, — 0 — 0.

This proves that @n(l Sny @y Vn)E, = 0.

4. Direct system of neutrosophic modules

In this section we present some basic properties of direct systems of neutrosophic modules.
Let

(?,ﬁay)f: {(giawiayi)Fiapii}, (10)
1EA
be a direct system of neutrosophic modules, where (¢, w?, 184 £ is a neutrosophic module
and m: @ F; — li_I)nE a canonical epimorphism. Moreover, one can consider the neutrosophic
i i
B B B
module ((g )™ ()™, (v )”)hmF_.

Theorem 4.1. Every direct system in the representation has a limit in the category of

N-Mod which is equal to the neutrosophic module ((<5)™, (=?)™, (WP)™), ..

Proof. It suffices to demonstrate that, there exists a unique homomorphism of neutrosophic
modules ¢ : ((¢&)7, (@?)7, (VB)”)hm » = (@, B,7)N, making the diagram

@,
(§i7 Wi, Vi)Fi —_ (

(B, (=), (VBV)Lm Fi

i

a7577)E
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commutative, where @ = {®; : (s, @i, vi)r, = (o, 5,7)E}iea is a family of homomorphisms of

neutrosophic modules providing the commutativity of the diagram

728
(Sis @i, Vi) r, — (o, B,7)E

(Cz", Wi, Vi’)Fi,

I; : (si, @i, Vi) R, — (B, @B vy F, are usual injections and m; = 7w ol;. For every z € 1i_r>n F;,
i i
there exists x; € F; such that m;(z;) = x. If my(z;) = x for each zy € Fr, then ¢y (x;) is equal
to ¢i(zi). We define the homomorphism ¢ : lim F; — E by ¢(2) = ¢;(z;). We want to show
i

that ¢ is a homomorphism of neutrosophic modules. For each z € h_r)n F;, let wol;(z;) = x.
i

Here,
(¢7)" (@) = sup(v &) (#) = sup{V si(2) : mi(x:) = x},
(@) (2) = sup(V @i)(x) = sup{V @;(x) : mi(wi) =},
WBY(2) = inf({x\ vi)(x) = inf{/i\ vi(x) : mi(z;) = z}.
Therefore,

a(z)) =i(pi(xi) > ci(zi), BW(x)) = Bpi(zi) > wi(zi), Y(W(x)) = alpi(z:)) < vi(xi).

Since this inequality is satisfied for each ; such that m;(x;) = x, we have a(y(z)) > (¢%)™(z),
B(ap(x)) > (wB)™(x), v(1(x)) > (¥P)™(x). From the definition of 1, it is obvious that the
above diagram is commutative. We can easily show that hﬂ is a functor from the category of

direct systems of neutrosophic modules to the category of neutrosophic modules.

We can now focus on the problem of the exact direct limit of exact sequences of direct

systems of neutrosophic modules. Let

.

F= {(%, @i, Vi) Fy D' Z}, )
€A

U

-/ / ! —i'7
F:{(%’Wsz’)th } )
B i€EA

=/ " "noon —i'q
F :{(gi,wi,l/i)Fy,p } s
v €A

be direct systems of neutrosophic modules, and let

/ =

FLFLT (11)

be an exact sequence.
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The following holds.

Theorem 4.2. Direct limit of the exact sequence ,

. !/ / / . : " " /1
h_gn(gi’ Wi VZ)F[ — h_I)n(giv Wiy Vi)Fi — 11_1)11(% y WiV )Fi”a
i i i

15 exact.

Proof. Since the sequence (|11)) is exact, then the ordinary sequence of R-modules
F! — F; — F! is exact for every i € A. Hence, the sequence {F}; Ahad {F;}i oid, {F!"}; is
an exact sequence of direct system of ordinary modules. Then, taking the limit one obtains
the sequence

lim F/, —— lim F; = lim F, (12)
A T

which is also exact. Therefore, the following sequence of neutrosophic modules

((g/B)ﬂ'7 (w/B)ﬂ'7 (I//B)Tr)li_l;n P g ((<B)7l', (wB)Tr7 (]/B)ﬂ')lim - AN ((g//B)ﬂ'7 (w//B)ﬂ'7 (V//B)Tr)l'

fulfills the relations
(gB)Trhmli_I}lhi = (gB)Tr’Kerli_gngi,
1 1
(WB)Whmh_@hi = (wB)W’Kerli_I}lgi,
7 7
(VB)W|Imli_I}1hi = (VB)”!Kerlgllgi7
1 1

which are true, since sequence ([12)) is exact.

Corollary 4.3. The direct limit functor preserves monomorphism and epimorphism in the

category of neutrosophic modules.

Let us see on the direct system of chain complexes. Let I be a directed set, for every i € [

suppose

C(@) = {(6, @, 1) 0, B snli)s (@), v (D)) — (S22 B-10), 1D o)

is a chain complex of neutrosophic modules and for every i < j, let fLZ-j : C(1) = C(j) be a

morphism of chain complexes and {C(i), h;;} be a direct system of these chain complexes.

Theorem 4.4. The limit of homology modules of direct system of chain complexes of neutro-

sophic modules is quasi isomorphic to the homology modules of the limit of this direct system,

ie., Hn<li%>n0(i)> = liy 1, (C(7).
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Proof. 1t is proved by using Corollary Therefore, we have

li_gn H,(C(i) = h_I_>n (gn(z)a @n (i), ,V\’;(i))Ke@n(i)\Img

n+1(i)
~ 1 (Snlkerd. (1) @nlkerd, 15 Vnlker g, (1) ker . (1]
1y Ker 9, (i) @nlKer @, (i) VnlKer @, oL _ _ _
5 er On (1) er 9n (i) er On (1)) Ker 9, (i) lim (%\Kcranu)an|Kcrow,u)”’n'Keran(i))Kerm(i)
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