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Abstract  

This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and 

intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued 

Heptapartitioned Neutrosophic Graphs (SVHNG) and investigate their characteristics through 

comprehensive proofs and illustrative examples. 
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1. Introduction 

Graph theory is a fundamental branch of mathematics that studies the relationships between objects, 

represented as vertices or nodes, and the connections between them represented as edges (West, 2001; 

Bondy & Murty, 2008 [1,2]). It provides a powerful tool for modeling and analyzing complex systems, 

networks, and relationships in various fields, including computer science, physics, biology, and social 

sciences (Newman, 2010; Barabási, 2016 [3,4]). By representing systems as graphs, researchers and 

practitioners can gain insights into their structure, behavior, and evolution, and develop efficient 

algorithms and techniques for solving complex problems. 

For every solution, classical MCDM requires exact accurate numbers as decision data. Nevertheless, as 

decision theory develops and is used more often, we see that: (1) Most choice problems are ambiguous 

by nature, which prevents decision-makers (DMs) from providing evaluation values in a binary fashion. 

Examples include ranking universities' overall strength or evaluating urban modernization. (2) 

Cognitive elements and personal thought patterns frequently cause ambiguity and confusion in practical 

decision-making. As a result, it gets harder and harder to apply traditional MCDM theory and techniques 

to real-world decision issues. 

In 1965, Zadeh presented FS theory to address this hazy phenomenon. Uncertain membership in sets 

results from what we try to represent lacking distinct and well-defined bounds, as the FS theory 

acknowledges. The unit interval [0,1] defines the thesis range, or the domain of study, thereby 

expressing this association as a fuzzy set. Such phenomena can be examined and dealt with by defining 

suitable affiliation functions and applying operations and transformations to fuzzy sets. This theory has 
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wide-ranging applicability in many socioeconomic fields and offers a convincing explanation for the 

ubiquity of fuzzy occurrences in the objective world. 

When assessing things or phenomena, the DMs frequently come across a neutral state distinct from an 

affirmative or negative position. This condition, the DM's hesitate degree, represents the 

unpredictability of decision-making processes and may be impacted by several DM-specific 

characteristics. Several academics have examined and improved traditional FS theory to deal with this 

ambiguity, suggesting novel FS expansions.  

First, the interval fuzzy set, created by researcher Turksen in 1986, expresses the degree of connectivity 

using interval numbers. The concept of a hesitant fuzzy set was also made by Torra in 2010, which 

permits the degree of attachment to exist as multiple possible values within a fuzzy set. Interestingly, 

the degree of reluctance of the decision subject is not directly represented by either interval fuzzy sets 

or hesitate fuzzy sets. Rather, they statistically characterize uncertainty in decision events by broadening 

the range of potential values for the degree of attachment. 

Second, unlike standard fuzzy sets, the IFSs, developed by scholar Atanassov in 1986, integrate 

affiliation and unaffiliated degree information. For the first time, they provide a hesitate degree, 

considering the total affiliation, unaffiliated, and hesitate degrees. IFSs somewhat describe uncertainty 

in decision events. For example, the intuitionistic fuzzy set can represent a company's vote on whether 

to invest in a project when a panel of ten DMs is composed of seven in favor, two against, and one 

abstaining.  

It is crucial to remember that the reluctance of decision subjects cannot be fully captured by interval 

fuzzy sets, IFSs, or hesitate fuzzy sets. Each cannot adequately capture the unpredictability of choice 

occurrences. One or more of the previously stated classical fuzzy extension sets are the foundation for 

most of the following fuzzy extension sets. These additional sets improve the capacity to describe 

fuzziness and uncertainty created by superposing and fusing the original classical fuzzy extension sets. 

Nevertheless, their internal systems have grown more intricate, which has decreased their usefulness 

and application. 

Neutrosophic sets, introduced by Smarandache in 1998, are a mathematical framework that extends the 

concept of fuzzy sets to manage indeterminate and inconsistent information (Smarandache, 1998 [5]). 

Neutrosophic sets are characterized by three membership functions: truth (T), indeterminacy (I), and 

falsehood (F), which satisfy the condition T + I + F ≤ 3 (Wang et al., 2010 [6]). This framework provides 

a powerful tool for modeling and analyzing complex systems, particularly when data is uncertain, 

imprecise, or incomplete. 

Fuzzy graphs are a mathematical framework that combines graph theory with fuzzy set theory, 

introduced by Zadeh in 1965 [7]. Fuzzy graphs model complex systems where object relationships are 

uncertain or imprecise (Rosenfeld, 1975 [8]). In a fuzzy graph, each edge is assigned a membership 

value between 0 and 1, representing the degree of connection or relationship between the vertices (Yeh 

& Bang, 1975 [9]). This framework provides a powerful tool for modeling and analyzing complex 

networks, particularly when data is uncertain or incomplete. 

Intuitionistic fuzzy graphs are a mathematical framework that combines graph theory with intuitionistic 

fuzzy set theory, introduced by Atanassov in 1986 [10]. Intuitionistic fuzzy graphs are used to model 

complex systems where relationships between objects are uncertain, imprecise, or incomplete 

(Atanassov, 1999 [11]). In an intuitionistic fuzzy graph, each edge is assigned two membership values: 

a membership value and a non-membership value, which satisfy the condition that the sum of the two 

values is less than or equal to 1 (Sharma, 2014 [12]). This framework provides a powerful tool for 

modeling and analyzing complex networks, particularly when data is uncertain or incomplete. 
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Introduced by Smarandache in 1998, neutrosophic graphs are a mathematical paradigm that blends 

neutrosophic set theory and graph theory. Complex systems with ambiguous, imperfect, or incomplete 

interactions between items are modeled using neutrophilic graphs (Smarandache, 2010 [13]). The 

degree of truth, indeterminacy, and untruth of the link between the vertices is represented by the 

neutrosophic number allocated to each edge in a neutrosophic network (Broumi et al., 2016 [14]). This 

paradigm offers a potent tool for modeling and analyzing complicated networks, especially when data 

is ambiguous or lacking. 

 

Further research on neutrophilic graphs has been done in [15–18]. Interval NGs were first introduced 

by Broumi et al. [19] and have since been further examined in [20–21]. In a variety of hybrid 

environments, including neutrosophic soft graphs [22], bipolar SVN graphs [23], rough neutrosophic 

diagraphs [24], neutrosophic soft, rough graphs [25], and others, NGs have been further investigated. 

In several settings, recent developments in graph theory have been illustrated in [26]. 

 

The concept of heptapartitioned neutrosophic sets was introduced by Florentin Smarandache [27]. A 

single-valued heptapartitioned neutrosophic set (SVHNS) is a mathematical framework that extends the 

concept of neutrosophic sets to manage more complex and uncertain information. In an SVHNS, each 

element is assigned seven membership values: truth (T), indeterminacy (I), falsehood (F), unknown 

truth (UT), unknown indeterminacy (UI), unknown falsehood (UF), and unknown (U), which satisfy 

certain conditions (Broumi et al., 2016 [28]). This framework provides a powerful tool for modeling 

and analyzing complex systems, particularly when data is uncertain, imprecise, or incomplete. 

 

The Single Valued Heptapartitioned Neutrosophic (SVHN) graph is obtained for this study, and its 

fundamental characteristics are established. 

 

2. Preliminaries 

This section offers a few current definitions pertinent to the article's primary findings. 

 

Definition 2.1 [29] Neutrosophic Set A on Y is defined as follows: 

    𝑩 = {< 𝒚, 𝜶𝑩(𝒚), 𝜸𝑩(𝒚), 𝜹𝑩(𝒚) >, 𝒚 ∈ 𝒀} where 𝜶𝑩, 𝜷𝑩, 𝜸𝑩 ∶ 𝑩 → [𝟎, 𝟏] and 𝟎 ≤ 𝜶𝑩(𝒙) +
 𝜷𝑩(𝒚) + 𝜸𝑩(𝒚) ≤ 𝟑.Here, 𝜶𝑩(𝒚) is the degree of membership, 𝜷𝑩(𝒚)is the degree of indeterminacy 

and 𝜸𝑩(𝒚) is the degree of non-membership. Here, 𝜶𝑩(𝒙) and 𝜸𝑩(𝒚) are dependent on neutrosophic 

elements and 𝜷𝑩(𝒚) is an independent neutrosophic element. 

 

Definition 2.2 [30] Assume that Y is a universe. A QNS, B on Y with separate neutrosophic components 

is an example of an object of this sort. 

𝑩 = {< 𝒚, 𝜶𝑩(𝒚), 𝑪𝑩(𝒚), 𝑼𝑩(𝒚), 𝜸𝑩(𝒚) >, 𝒚 ∈ 𝒀} 

    𝑎𝑛𝑑 𝟎 ≤ 𝜶𝑩(𝒚) +  𝑪𝑩(𝒚) + 𝑼𝑩(𝒚) + 𝜸𝑩(𝒚) ≤ 𝟒 Here, 𝜶𝑩(𝒚) is the truth membership,  𝑪𝑩(𝒚) is 

contradiction membership, 𝑼𝑩(𝒚) is ignorance membership and 𝜸𝑩(𝒚) is a false membership.  

 

Definition 2.3 [32,33] The set P must not be empty. Every element of P has a PNS over P defined by  

 a truth-membership function 𝜶𝑩(𝒚), a contradiction membership function 𝑪𝑩(𝒚) an ignorance 

membership function 𝑮𝑩(𝒚) unknown membership function 𝑼𝑩(𝒚) and a falsity membership function 

𝜸𝑩(𝒚) such that for each 𝒑 ∈  𝑷, 𝟎 ≤ 𝜶𝑩(𝒚) +  𝑪𝑩(𝒚) + 𝑮𝑩(𝒚) + 𝑼𝑩(𝒚) + 𝜸𝑩(𝒚)  ≤ 𝟓. 
 

Definition 2.4 [31] Let the universe R be non-empty. In the neutrosophic set Heptapartitioned (HNS) 

every element has a B over R. Here an absolute truth-membership function. 𝟎 ≤ 𝜶𝑩, a relative truth 

membership function 𝑀𝐵 , a contradiction membership function 𝐶𝐴, an ignorance membership function 

𝐼𝐴,  an unknown membership function 𝑈𝐴,  an absolute falsity membership function 𝐹𝐴 and a relative 

falsity membership function  𝐾𝐴  such that for each 𝑝 ∈  𝑅, 𝑇𝐴, 𝑀𝐴, 𝐶𝐴, 𝐼𝐴, 𝑈𝐴, 𝐹𝐴, 𝐾𝐴 ∈ [0,1] and  

𝑩 = [ 𝒑, 𝜶𝑩(𝒑), 𝑴𝑩(𝒑), 𝑪𝑩(𝒑), 𝜷𝑩(𝒑), 𝑼𝑩(𝒑), 𝜸𝑩(𝒑), 𝑲𝑩(𝒑): 𝒑 ∈  𝑹 ] 𝟎 ≤ 𝜶𝑩(𝒑) +  𝑴𝑩(𝒑)
+ 𝑪𝑩(𝒑) + 𝑰𝑩(𝒑) + 𝑼𝑩(𝒑) + 𝜸𝑩(𝒑) + 𝑲𝑩(𝒑)  ≤ 𝟕. 



Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                                                       731 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________________ 
Hanaa fathi, M. Myvizhi, Ahmed Abdelhafeez, Mohamed Refaat Abdellah, Mohamed Eassaa, Mohamed S. Sawah, Hussam 

Elbehiery, Single-Valued Neutrosophic Graph with Heptapartitioend Structure 

 

3. Single valued Heptapartitioned Neutrosophic Graphs  

Definition 3.1. Let 𝔙 = {𝓋𝑖 , 𝑖 = 1,2 … . 𝑛} Be an unchanging collection of vertices and ℰ =

{(𝓋𝑖 , 𝓋𝑗), 𝑖, 𝑗 = 1,2 … . 𝑛} Be the collection of vertices' edges of 𝔙. A Single Valued Heptapartitioned 

Neutrosophic Graph of 𝒢̃ = (𝔙, ℰ) is defined by 𝒢 = (𝐻1, 𝐻2), where (𝑖) 𝑇𝐻1
: 𝔙 → [0,1], 𝑀𝐻1

: 𝔙 →

[0,1], 𝐶𝐻1
: 𝔙 → [0,1], 𝐼𝐻1

: 𝔙 → [0,1], 𝑈𝐻1
: 𝔙 → [0,1], 𝐹𝐻1

: 𝔙 → [0,1], 𝐾𝐻1
: 𝔙 → [0,1] represents the 

absolute truth, relative truth, contradiction, ignorance, unknown, absolute falsity, relative falsity 

membership functions of the vertices 𝓋𝑖 ∈  𝔙 accordingly, such that 0 ≤ 𝑇𝐻1
(𝓋𝑖) + 𝑀𝐻1

(𝓋𝑖) +

𝐶𝐻1
(𝓋𝑖) + 𝐼𝐻1

(𝓋𝑖) + 𝑈𝐻1
(𝓋𝑖) + 𝐹𝐻1

(𝓋𝑖) + 𝐾𝐻1
(𝓋𝑖) ≤ 7,for every 𝓋𝑖 ∈  𝔙(𝑖 = 1,2 … . 𝑛); 

(𝑖𝑖) 𝑇𝐻2
: ℰ ⊆ 𝔙 × 𝔙 → [0,1], 𝑀𝐻2

: ℰ ⊆ 𝔙 × 𝔙 → [0,1], 𝐶𝐻2
: ℰ ⊆ 𝔙 × 𝔙 → [0,1], 𝐼𝐻2

: ℰ ⊆ 𝔙 × 𝔙 →

[0,1], 𝑈𝐻2
: ℰ ⊆ 𝔙 × 𝔙 → [0,1], 𝐹𝐻2

: ℰ ⊆ 𝔙 × 𝔙 → [0,1], 𝐾𝐻2
: ℰ ⊆ 𝔙 × 𝔙 → [0,1] specified by 

𝑇𝐻2
(𝓋𝑖 , 𝓋𝑗) ≤ min{𝑇𝐻1

(𝓋𝑖), 𝑇𝐻1
(𝓋𝑗)} , 𝑀𝐻2

(𝓋𝑖 , 𝓋𝑗) ≤ min{𝑀𝐻1
(𝓋𝑖), 𝑀𝐻1

(𝓋𝑗)} , 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗) ≤

min{𝐶𝐻1
(𝓋𝑖), 𝐶𝐻1

(𝓋𝑗)} , 𝐼𝐻2
(𝓋𝑖 , 𝓋𝑗) ≥ max{𝐼𝐻1

(𝓋𝑖), 𝐼𝐻1
(𝓋𝑗)} , 𝑈𝐻2

(𝓋𝑖 , 𝓋𝑗) ≥

max{𝑈𝐻1
(𝓋𝑖), 𝑈𝐻1

(𝓋𝑗)} , 𝐹𝐻2
(𝓋𝑖 , 𝓋𝑗) ≥ max{𝐹𝐻1

(𝓋𝑖), 𝐹𝐻1
(𝓋𝑗)} , 𝐾𝐻2

(𝓋𝑖 , 𝓋𝑗) ≥

max{𝐾𝐻1
(𝓋𝑖), 𝐾𝐻1

(𝓋𝑗)}. 

We know that both 𝐻1 and 𝐻2 is the SVHN set over 𝔙 and ℰ Accordingly. 

Example 3.1. Let 𝒢̃ = (𝔙, ℰ) is a graph, where 𝔙 = {𝓋1, 𝓋2, 𝓋3, 𝓋4} and ℰ =

{(𝓋1, 𝓋2), (𝓋2, 𝓋3), (𝓋3, 𝓋4), (𝓋4, 𝓋1)}. Here 𝐻1 is an SVHN vertex set of 𝔙 and 𝐻2 is an SVHN edge 

set of ℰ specified by the following table values. 

Table 1 

              

                                        

 

 

Table 2 

 

 

 

 

 

 

 

The above table is shown in the following diagram. 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.4 0.5 0.7 0.2 

𝑀𝐻1
 0.7 0.8 0.3 0.2 

𝐶𝐻1
 0.4 0.3 0.4 0.2 

𝐼𝐻1
 0.3 0.4 0.3 0.6 

𝑈𝐻1
 0.1 0.2 0.6 0.7 

𝐹𝐻1
 0.3 0.4 0.2 0.4 

𝐾𝐻1
 0.2 0.1 0.1 0.1 

   (𝓋1,𝓋2)   (𝓋2, 𝓋3)   (𝓋3, 𝓋4)     (𝓋4, 𝓋1,) 

𝑇𝐻2
 0.4 0.5 0.1 0.1 

𝑀𝐻2
 0.6 0.4 0.3 0.2 

𝐶𝐻2
 0.3 0.1 0.1 0.1 

𝐼𝐻2
 0.4 0.5 0.8 0.8 

𝑈𝐻2
 0.6 0.8 0.9 0.9 

𝐹𝐻2
 0.3 0.5 0.6 0.6 

𝐾𝐻2
 0.2 0.1 0.1 0.4 
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                                    (0.4,0.6,0.3,0.4,0.6,0.3,0.2)  

         

                                      

 

 

 

 

                  

                      (0.1,0.3,0.1,0.8,0.9,0.6,0.1) 

           

 

 

Remark 3.1. Let 𝒢 = (𝐻1, 𝐻2) Is an SVHN graph. Afterward, the edge (𝓋𝑖 , 𝓋𝑗) is said to be an incident 

at 𝓋𝑖 and 𝓋𝑗 . 

Definition 3.2. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph. Subsequently, 

(𝑖) (𝓋𝑖 , 𝑇𝐻1
(𝓋𝑖), 𝑀𝐻1

(𝓋𝑖), 𝐶𝐻1
(𝓋𝑖), 𝐼𝐻1

(𝓋𝑖), 𝑈𝐻1
(𝓋𝑖), 𝐹𝐻1

(𝓋𝑖), 𝐾𝐻1
(𝓋𝑖) ) is called a single-valued 

heptapartitioned neutrosophic (SVHN) vertex. 

(𝑖𝑖) ((𝓋𝑖 , 𝓋𝑗), 𝑇𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝑀𝐻2

(𝓋𝑖 , 𝓋𝑗), 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝐼𝐻2

(𝓋𝑖 , 𝓋𝑗), 𝑈𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝐹𝐻2

(𝓋𝑖 , 𝓋𝑗), 

𝐾𝐻2
(𝓋𝑖 , 𝓋𝑗)) is called a single-valued heptapartitioned neutrosophic (SVHN) edge. 

Definition 3.3.  Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph. Afterwards, 𝐻 = (𝐻1
′, 𝐻2

′) is called an SVHN 

sub-graph of 𝒢 = (𝐻1, 𝐻2) if 𝐻 = (𝐻1
′, 𝐻2

′) is also an SVHN-graph such that: 

(𝑖) 𝐻1
′ ⊆ 𝐻1 i.e.,𝑇′

𝐻1𝑖
≤ 𝑇𝐻1𝑖

, 𝑀′
𝐻1𝑖

≤ 𝑀𝐻1𝑖
, 𝐶′

𝐻1𝑖
≤ 𝐶𝐻1𝑖

, 𝐼′
𝐻1𝑖

≥ 𝐼𝐻1𝑖
, 𝑈′

𝐻1𝑖
≥ 𝑈𝐻1𝑖

, 𝐹′
𝐻1𝑖

≥

𝐹𝐻1𝑖
, 𝐾′

𝐻1𝑖
≥ 𝐾𝐻1𝑖

, for every 𝓋𝑖 ∈  𝔙; 

(𝑖𝑖) 𝐻2
′ ⊆ 𝐻2 i.e.,𝑇′

𝐻2𝑖
≤ 𝑇𝐻2𝑖

, 𝑀′
𝐻2𝑖

≤ 𝑀𝐻2𝑖
, 𝐶′

𝐻2𝑖
≤ 𝐶𝐻2𝑖

, 𝐼′
𝐻2𝑖

≥ 𝐼𝐻2𝑖
, 𝑈′

𝐻2𝑖
≥ 𝑈𝐻2𝑖

, 𝐹′
𝐻2𝑖

≥

𝐹𝐻2𝑖
, 𝐾′

𝐻2𝑖
≥ 𝐾𝐻2𝑖

, for every (𝓋𝑖 , 𝓋𝑗) ∈ ℰ. 

V1 V2 

 

V4 

 

V3 

 

 

(0.1,

0.2,

0.1,

0.8,

0.9,

0.6,

0.4) 

(0.5,

0.4,

0.1,

0.5,

0.8,

0.5,

0.1) 
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Example 3.2. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph as shown in the previous example. Afterwards, 

𝐻 = (𝐻1
′, 𝐻2

′) where 𝔙′ = {𝓋1, 𝓋3, 𝓋4}; ℰ′ = {(𝓋1,𝓋3), (𝓋3,𝓋4)} specified by the following table 

values. 

 

 

 

                                

      Table 3                                                       Table 4  

                                  

 

 

 

 

 

The above table is shown in the following diagram. 

                               

   

    

 

 

 

 

                             

          

                                                  

 

 

 

Example 3.3. 𝒢1 is a SVHN-graph. 𝐻1
∗ is a partial SVHN-subgraph and 𝐻2

∗ is a SVHN-subgraph of 

𝒢1. 

 

 

 

 𝓋1 𝓋3 𝓋4 

𝑇′
𝐻1

 0.3 0.6 0.1 

𝑀′
𝐻1

 0.6 0.3 0.2 

𝐶′
𝐻1

 0.4 0.2 0.2 

𝐼′
𝐻1

 0.4 0.6 0.8 

𝑈′
𝐻1

 0.5 0.8 0.9 

𝐹′
𝐻1

 0.6 0.4 0.4 

𝐾′
𝐻1

 0.4 0.5 0.3 

   (𝓋1,𝓋3)   (𝓋3, 𝓋4) 

𝑇′
𝐻2

 0.3 0.1 

𝑀′
𝐻2

 0.2 0.2 

𝐶′
𝐻2

 0.1 0.1 

𝐼′
𝐻2

 0.8 0.9 

𝑈′
𝐻2

 0.8 0.9 

𝐹′
𝐻2

 0.7 0.5 

𝐾′
𝐻2

 0.6 0.7 

v1 

v4 

 

v3 

 (0.1,0.2,0.1,0.9,0.9,0.5,0.7) 

(0.3,0.6,0.4,0.4,0.5,0.6,0.4) 
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𝓖𝟏 : SVHN-graph 

 

 

 

 

         

 

 

 

                              

 

         

 

 𝑯𝟏
∗ : partial SVHN-subgraph 

 

(0.1,0.2,0.2,0.4,0.5,0.4,0.7) 

v1 

v2 
v3 

(0.1,0.1,0.2,0.7,0.8,0.5,0.8) 

v1 

v2 v3 

(0.2,0.2,0.4,0.6,0.6,0.8,0.7) 

(0.1,0.1,0.2,0.5,0.5,0.7,0.7) (0.3,0.1,0.3,0.6,0.7,0.7,0.5) 
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   𝑯𝟐
∗ : SVHN-subgraph of 𝓖𝟏 

 

Definition 3.4. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph of 𝒢̃ = (𝔙, ℰ). Afterward, the complement of 𝒢 =

(𝐻1, 𝐻2) is an SVHN-graph 𝒢̅ of 𝒢̃ = (𝔙, ℰ) where  

(𝑖) 𝑇̅𝐻1
(𝓋𝑖) = 𝑇𝐻1

(𝓋𝑖), 𝑀̅𝐻1
(𝓋𝑖) = 𝑀𝐻1

(𝓋𝑖), 𝐶𝐻̅1
(𝓋𝑖) = 𝐶𝐻1

(𝓋𝑖), 𝐼𝐻̅1
(𝓋𝑖) = 𝐼𝐻1

(𝓋𝑖), 𝑈̅𝐻1
(𝓋𝑖) =

𝑈𝐻1
(𝓋𝑖), 𝐹̅𝐻1

(𝓋𝑖) = 𝐹𝐻1
(𝓋𝑖), 𝐾𝐻1

(𝓋𝑖) = 𝐾𝐻1
(𝓋𝑖) ; 

(𝑖𝑖) 𝑇̅𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝑇𝐻1

(𝓋𝑖), 𝑇𝐻1
(𝓋𝑗)} − 𝑇𝐻2

(𝓋𝑖 , 𝓋𝑗), 𝑀̅𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝑀𝐻1

(𝓋𝑖), 𝑀𝐻1
(𝓋𝑗)} −

𝑀𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝐶𝐻̅2

(𝓋𝑖 , 𝓋𝑗) = min{𝐶𝐻1
(𝓋𝑖), 𝐶𝐻1

(𝓋𝑗)} − 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝐼𝐻̅2

(𝓋𝑖 , 𝓋𝑗) =

max{𝐼𝐻1
(𝓋𝑖), 𝐼𝐻1

(𝓋𝑗)} − 𝐼𝐻2
(𝓋𝑖 , 𝓋𝑗), 𝑈̅𝐻2

(𝓋𝑖 , 𝓋𝑗) = max{𝑈𝐻1
(𝓋𝑖), 𝑈𝐻1

(𝓋𝑗)} − 𝑈𝐻2
(𝓋𝑖 , 𝓋𝑗),  

𝐹̅𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐹𝐻1

(𝓋𝑖), 𝐹𝐻1
(𝓋𝑗)} − 𝐹𝐻2

(𝓋𝑖 , 𝓋𝑗), 

 𝐾𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐾𝐻1

(𝓋𝑖), 𝐾𝐻1
(𝓋𝑗)} − 𝐾𝐻2

(𝓋𝑖 , 𝓋𝑗), for every (𝓋𝑖 , 𝓋𝑗) ∈ ℰ. 

Definition 3.5. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph. Afterwards, the vertices 𝓋𝑖 and 𝓋𝑗 are called 

adjacent in 𝒢 = (𝐻1, 𝐻2) if and only if 𝑇𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝑇𝐻1

(𝓋𝑖), 𝑇𝐻1
(𝓋𝑗)} , 𝑀𝐻2

(𝓋𝑖 , 𝓋𝑗) =

min{𝑀𝐻1
(𝓋𝑖), 𝑀𝐻1

(𝓋𝑗)} , 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝐶𝐻1

(𝓋𝑖), 𝐶𝐻1
(𝓋𝑗)} , 𝐼𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝐼𝐻1
(𝓋𝑖), 𝐼𝐻1

(𝓋𝑗)} , 𝑈𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝑈𝐻1

(𝓋𝑖), 𝑈𝐻1
(𝓋𝑗)} , 𝐹𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝐹𝐻1
(𝓋𝑖), 𝐹𝐻1

(𝓋𝑗)} , 𝐾𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐾𝐻1

(𝓋𝑖), 𝐾𝐻1
(𝓋𝑗)}.   

Example 3.4. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN graph, which is specified in the following table values. 

                                   Table 5                                                       Table 6 

 

 

 

 

 

 

The above table is shown in the following diagram. 

  

 

 

 𝓋1 𝓋2 𝓋3 

𝑇𝐻1
 0.2 0.3 0.1 

𝑀𝐻1
 0.5 0.4 0.3 

𝐶𝐻1
 0.5 0.2 0.3 

𝐼𝐻1
 0.7 0.6 0.4 

𝑈𝐻1
 0.6 0.1 0.7 

𝐹𝐻1
 0.6 0.5 0.8 

𝐾𝐻1
 0.8 0.7 0.9 

   (𝓋1,𝓋2)   (𝓋2,𝓋3)   (𝓋3, 𝓋1) 

𝑇𝐻2
 0.2 0.1 0.1 

𝑀𝐻2
 0.4 0.3 0.3 

𝐶𝐻2
 0.2 0.2 0.3 

𝐼𝐻2
 0.7 0.6 0.7 

𝑈𝐻2
 0.6 0.7 0.7 

𝐹𝐻2
 0.6 0.8 0.8 

𝐾𝐻2
 0.8 0.9 0.9 

v1 v2 
(0.4,0.3,0.2,0.6,0.7,0.8,0.5) 
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Definition 3.6. In an SVHN-graph, 𝒢 = (𝐻1, 𝐻2), a vertex 𝓋𝑗 ∈ 𝔙 is called an isolated vertex if there 

exists no edge incident at 𝓋𝑗 . 

Example 3.5. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN graph, which is specified by the following table values. 

                                 Table 7                                            Table 8 

 

 

 

 

 

 

The above table is shown in the following diagram. 

 

 

 

 

 

 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.3 0.2 0.4 0.1 

𝑀𝐻1
 0.4 0.1 0.5 0.4 

𝐶𝐻1
 0.3 0.4 0.2 0.5 

𝐼𝐻1
 0.6 0.7 0.6 0.8 

𝑈𝐻1
 0.6 0.9 0.8 0.7 

𝐹𝐻1
 0.7 0.7 0.6 0.8 

𝐾𝐻1
 0.8 0.6 0.5 0.7 

  (𝓋1,𝓋2)  (𝓋2,𝓋4)  (𝓋4, 𝓋1) 

𝑇𝐻2
 0.2 0.1 0.1 

𝑀𝐻2
 0.1 0.1 0.4 

𝐶𝐻2
 0.3 0.4 0.3 

𝐼𝐻2
 0.7 0.8 0.8 

𝑈𝐻2
 0.9 0.9 0.7 

𝐹𝐻2
 0.7 0.8 0.8 

𝐾𝐻2
 0.8 0.7 0.8 

v3 v2 (0.1,0.3,0.2,0.6,0.7,0.8,0.9) 

(0.2,0.5,0.5,0.7,0.6,0.6,0.8) 

v1 
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Definition 3.7. Let 𝒢 = (𝐻1, 𝐻2) is an SVHN graph. Here 𝓋0 and 𝓋𝑛 be two vertices in 𝒢 = (𝐻1, 𝐻2). 

Then an SVHN path 𝐻1(𝓋0, 𝓋𝑛) in an SVHN-graph 𝒢 = (𝐻1, 𝐻2) is a sequence of different vertices 

𝑘0, 𝑘1 … … 𝑘𝑛 such that 𝑇𝐻2
(𝓋𝑖−1, 𝓋𝑖) > 0, 𝑀𝐻2

(𝓋𝑖−1, 𝓋𝑖) > 0, 𝐶𝐻2
(𝓋𝑖−1, 𝓋𝑖) > 0, 𝐼𝐻2

(𝓋𝑖−1, 𝓋𝑖) >

0, 𝑈𝐻2
(𝓋𝑖−1, 𝓋𝑖) > 0, 𝐹𝐻2

(𝓋𝑖−1, 𝓋𝑖) > 0, 𝐾𝐻2
(𝓋𝑖−1, 𝓋𝑖) > 0, where 0 ≤ 𝑖 ≤ 𝑛. Here 𝑛(≥ 1) is called 

the length of the path 𝐻1(𝓋0, 𝓋𝑛). The consecutive pairs (𝓋𝑖−1, 𝓋𝑖) (0 ≤ 𝑖 ≤ 𝑛) are called the edges of 

the path 𝐻1(𝓋0, 𝓋𝑛). The path 𝐻1(𝓋0, 𝓋𝑛) is called a cycle if 𝓋0 = 𝓋𝑛, where 𝑛 ≥ 3. 

Definition 3.8. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph. Afterwards, 𝒢 = (𝐻1, 𝐻2) is said to be an SVHN-

connected graph if there exists at least one SVHN path between two vertices. 

Remark 3.2. If an SVHN-graph 𝒢 = (𝐻1, 𝐻2) is not an SVHN-C-graph, then it is called an SVHN Dis-

connected graph. 

Definition 3.9. A pendant vertex is a vertex with exactly one edge incident on it in a single-valued 

neutrosophic graph 𝒢 = (𝐻1, 𝐻2). It is referred to as a non-pendent vertex otherwise. 

A pendant edge is an edge with a pendent vertex in a single-valued neutrosophic graph. 𝒢 = (𝐻1, 𝐻2) 

incident. It is referred to as a non-pendent edge otherwise.  

A support of the pendent edge is a vertex that is next to the pendent vertex in a single-valued 

neutrosophic graph. 

 

Example 3.6. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph, which is specified by the following table values. 

 

 

 

 

v1 v2 

v4 v3 

(0.2,0.1,0.3,0.7,0.9,0.7,0.8) 

(0
.1

,0
.4

,0
.3

,0
.8

,0
.7

,0
.8

,0
.8

) 
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                                Table 9                                            Table 10 

 

 

 

The above table is shown in the following diagram. 

 

          

    

        

 

 

 

          

 

 

 

          

 

      

 

 

Definition 3.10. A SVHN-graph 𝒢 = (𝐻1, 𝐻2) of 𝒢̃ = (𝔙, ℰ) is said to be a complete SVHN graph if 

𝑇𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝑇𝐻1

(𝓋𝑖), 𝑇𝐻1
(𝓋𝑗)} , 𝑀𝐻2

(𝓋𝑖 , 𝓋𝑗) = min{𝑀𝐻1
(𝓋𝑖), 𝑀𝐻1

(𝓋𝑗)} , 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗) =

min{𝐶𝐻1
(𝓋𝑖), 𝐶𝐻1

(𝓋𝑗)} , 𝐼𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐼𝐻1

(𝓋𝑖), 𝐼𝐻1
(𝓋𝑗)} , 𝑈𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝑈𝐻1
(𝓋𝑖), 𝑈𝐻1

(𝓋𝑗)} , 𝐹𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐹𝐻1

(𝓋𝑖), 𝐹𝐻1
(𝓋𝑗)} , 𝐾𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝐾𝐻1
(𝓋𝑖), 𝐾𝐻1

(𝓋𝑗)} for every 𝓋𝑖 , 𝓋𝑗 ∈ 𝔙. 

Example 3.7. Let 𝒢̃ = (𝔙, ℰ) is a graph, where 𝔙 = {𝓋1, 𝓋2, 𝓋3} and ℰ = {(𝓋1,𝓋2), (𝓋2,𝓋3), (𝓋3,𝓋1)} 

be specified by the following table values. 

 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.2 0.3 0.2 0.1 

𝑀𝐻1
 0.4 0.6 0.8 0.4 

𝐶𝐻1
 0.4 0.3 0.2 0.2 

𝐼𝐻1
 0.5 0.5 0.8 0.6 

𝑈𝐻1
 0.5 0.6 0.7 0.6 

𝐹𝐻1
 0.5 0.6 0.8 0.4 

𝐾𝐻1
 0.6 0.7 0.7 0.6 

  (𝓋1,𝓋2)  (𝓋2,𝓋3)  (𝓋3, 𝓋4) 

𝑇𝐻2
 0.2 0.2 0.1 

𝑀𝐻2
 0.3 0.5 0.3 

𝐶𝐻2
 0.3 0.2 0.1 

𝐼𝐻2
 0.6 0.8 0.8 

𝑈𝐻2
 0.7 0.7 0.7 

𝐹𝐻2
 0.7 0.9 0.8 

𝐾𝐻2
 0.8 0.8 0.8 

v1 v2 

v4 v3 

(0.2,0.3,0.3,0.6,0.7,0.7,0.8) 

(0
.2

,0
.5

,0
.2

,0
.8

,0
.7

,0
.9

,0
.8

) 

(0.1,0.3,0.1,0.8,0.7,0.8,0.8) 
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                              Table 11                                                       Table 12 

 

 

 

 

 

 

The above table is shown in the following diagram. 

 

     

      

 

 

         

 

 

 

                 

           

     

         

 

 

Definition 3.11. An SVHN-graph 𝒢 = (𝐻1, 𝐻2) of 𝒢̃ = (𝔙, ℰ) is called bipartite SVHN-graph if the 

graph 𝒢̃ = (𝔙, ℰ) is a bipartite graph. 

Example 3.8. Let 𝒢̃ = (𝔙, ℰ) be a graph, where 𝔙 = {𝓋1, 𝓋2, 𝓋3, 𝓋4, 𝓋5} and ℰ =

{(𝓋1,𝓋2), (𝓋1,𝓋3), (𝓋1,𝓋4), (𝓋1,𝓋5), (𝓋2,𝓋3), (𝓋2,𝓋4), (𝓋2,𝓋5), (𝓋3,𝓋5)} and 𝒢 = (𝐻1, 𝐻2) be an 

SVHN graph specified by the following table values. 

 

 

 𝓋1 𝓋2 𝓋3 

𝑇𝐻1
 0.3 0.2 0.1 

𝑀𝐻1
 0.4 0.4 0.2 

𝐶𝐻1
 0.4 0.3 0.3 

𝐼𝐻1
 0.5 0.4 0.5 

𝑈𝐻1
 0.6 0.4 0.2 

𝐹𝐻1
 0.4 0.7 0.4 

𝐾𝐻1
 0.2 0.5 0.8 

  (𝓋1,𝓋2)  (𝓋2,𝓋3)  (𝓋3, 𝓋1) 

𝑇𝐻2
 0.2 0.1 0.1 

𝑀𝐻2
 0.4 0.2 0.2 

𝐶𝐻2
 0.3 0.3 0.3 

𝐼𝐻2
 0.5 0.5 0.5 

𝑈𝐻2
 0.6 0.4 0.6 

𝐹𝐻2
 0.7 0.7 0.4 

𝐾𝐻2
 0.5 0.8 0.8 

  v1 

v3 v2 

(0.1,0.2,0.3,0.5,0.4,0.7,0.8) 

(0.3,0.4,0.4,0.5,0.6,0.4,0.2) 
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                                                                       Table 13 

  

 

 

 

 

 

Table 14 

 

The above table is shown in the following diagram. 

    

 

       

 

           

           

       

 

          

                       

 

          

             

 

 

 𝓋1 𝓋2 𝓋3 𝓋4 𝓋5 

𝑇𝐻1
 0.2 0.4 0.4 0.3 0.1 

𝑀𝐻1
 0.3 0.5 0.1 0.2 0.3 

𝐶𝐻1
 0.4 0.2 0.2 0.3 0.2 

𝐼𝐻1
 0.8 0.6 0.6 0.9 0.8 

𝑈𝐻1
 0.7 0.4 0.5 0.8 0.9 

𝐹𝐻1
 0.8 0.2 0.7 0.7 0.9 

𝐾𝐻1
 0.7 0.9 0.8 0.7 0.8 

  (𝓋1,𝓋2)  (𝓋1,𝓋3)  (𝓋1,𝓋4)  (𝓋1,𝓋5)  (𝓋2,𝓋3)  (𝓋2,𝓋4)  (𝓋2,𝓋5)  (𝓋3,𝓋5) 

𝑇𝐻2
 0.2 0.2 0.2 0.1 0.4 0.3 0.1 0.1 

𝑀𝐻2
 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 

𝐶𝐻2
 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 

𝐼𝐻2
 0.8 0.8 0.9 0.8 0.6 0.9 0.8 0.8 

𝑈𝐻2
 0.7 0.7 0.8 0.9 0.5 0.8 0.9 0.9 

𝐹𝐻2
 0.8 0.8 0.8 0.9 0.7 0.7 0.9 0.9 

𝐾𝐻2
 0.9 0.8 0.7 0.8 0.9 0.9 0.9 0.8 

v5 

v1 

v2 

v4 

v3 

(0
.4

,0
.1

,0
.2

,0
.6

,0
.5

,0
.7

,0
.9

) 

(0.2,0.3,0.4,0.8,0.7,0.8,0.7) 

(0
.1

,0
.3

,0
.2

,0
.8

,0
.9

,0
.9

,0
.8

) 
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Definition 3.12. Let 𝒢 = (𝐻1, 𝐻2) be an SVHN-graph. Afterwards, the degree of the vertex 𝓋 is 

specified by. 

𝑑(𝓋) = (𝑑𝑇(𝓋), 𝑑𝑀(𝓋), 𝑑𝐶(𝓋), 𝑑𝐼(𝓋), 𝑑𝑈(𝓋), 𝑑𝐹(𝓋), 𝑑𝐾(𝓋)) 

where 𝑑𝑇(𝓋) = degree of membership in the absolute truth membership vertex 𝓋 

                       = total of all edges' absolute truth memberships that are incident on it  

                       = ∑ 𝑇𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

           𝑑𝑀(𝓋) = degree of membership in the relative truth vertex 𝓋 

                       = total of all edges' relative truth memberships that are incident on it  

                       = ∑ 𝑀𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

          𝑑𝐶(𝓋) = degree of membership in the contradiction vertex 𝓋 

                       = total of all edges' contradiction memberships that are incident on it 

                       = ∑ 𝐶𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

        𝑑𝐼(𝓋) = degree of membership in the ignorance vertex 𝓋 

                       = total of all edges' ignorance memberships that are incident on it 

                       = ∑ 𝐼𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

        𝑑𝑈(𝓋) = degree of membership in the unknown vertex 𝓋 

                       = total of all edges' unknown memberships that are incident on it 

                       = ∑ 𝑈𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

        𝑑𝐹(𝓋) = degree of membership in the absolute falsity vertex 𝓋 

                       = total of all edges' absolute falsity memberships that are incident on it 

                       = ∑ 𝐹𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

       𝑑𝐾(𝓋) = degree of membership in the relative falsity vertex 𝓋 

                       = total of all edges' relative falsity memberships that are incident on it 

                       = ∑ 𝐾𝐻2
(𝓊, 𝓋)𝓊≠𝓋  

Example 3.9. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph of 𝒢̃ = (𝔙, ℰ) Be specified by the following table 

values.        

 

      Table 15 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.2 0.3 0.1 0.2 

𝑀𝐻1
 0.7 0.4 0.8 0.1 
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Table 16 

 

 

 

 

 

 

The above table is shown in the following diagram. 

 

 

         

      

         

  

           

       

 

 

    

      

 

         

Definition 3.13. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph of 𝒢̃ = (𝔙, ℰ). Afterwards, 𝒢 = (𝐻1, 𝐻2) Is 

called a constant SVHN graph if the degree of each vertex is the same. i.e.,𝑑(𝓋) =
(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7), for every 𝓋 ∈  𝔙. 

Example 3.10. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph of 𝒢̃ = (𝔙, ℰ) Be specified by the following table 

values. 

 

𝐶𝐻1
 0.4 0.3 0.2 0.2 

𝐼𝐻1
 0.5 0.6 0.4 0.6 

𝑈𝐻1
 0.2 0.5 0.7 0.4 

𝐹𝐻1
 0.3 0.7 0.4 0.6 

𝐾𝐻1
 0.2 0.1 0.3 0.8 

  (𝓋1,𝓋2)  (𝓋1,𝓋3)  (𝓋1,𝓋4)  (𝓋2,𝓋3)  (𝓋2,𝓋4)  (𝓋3,𝓋4) 

𝑇𝐻2
 0.2 0.1 0.2 0.1 0.2 0.1 

𝑀𝐻2
 0.4 0.7 0.1 0.4 0.1 0.1 

𝐶𝐻2
 0.3 0.2 0.2 0.2 0.2 0.2 

𝐼𝐻2
 0.6 0.5 0.6 0.6 0.6 0.6 

𝑈𝐻2
 0.5 0.7 0.4 0.7 0.5 0.7 

𝐹𝐻2
 0.7 0.4 0.6 0.7 0.7 0.6 

𝐾𝐻2
 0.2 0.3 0.8 0.3 0.8 0.8 

v1 v2 

v4 v3 

(0.2,0.4,0.3,0.6,0.5,0.7,0.2) 

(0
.2

,0
.1

,0
.2

,0
.6

,0
.4

,0
.6

,0
.8

) 

(0.1,0.1,0.2,0.6,0.7,0.6,0.8) 

(0
.1

.0
.4

.0
.2

.0
.6

.0
.7

.0
.7

.0
.3

) 



Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                                                       743 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________________ 
Hanaa fathi, M. Myvizhi, Ahmed Abdelhafeez, Mohamed Refaat Abdellah, Mohamed Eassaa, Mohamed S. Sawah, Hussam 

Elbehiery, Single-Valued Neutrosophic Graph with Heptapartitioend Structure 

Table 17 

  

 

 

 

 

 

Table 18 

 

 

 

 

 

 

The above table is shown in the following diagram. 

 

         

   

         

 

 

           

 

 

 

          

     

         

 

Definition 3.14. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph. Afterward, the order of 𝒢 = (𝐻1, 𝐻2), described 

by 𝑂(𝒢) is specified by 𝑂(𝒢) = (𝑂𝑇(𝒢), 𝑂𝑀(𝒢), 𝑂𝐶(𝒢), 𝑂𝐼(𝒢), 𝑂𝑈(𝒢), 𝑂𝐹(𝒢), 𝑂𝐾(𝒢)),where  

𝑂𝑇(𝒢) = ∑  𝑇𝐻1𝓋∈ 𝔙  represents the 𝑇-order of 𝒢 = (𝐻1, 𝐻2) 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.2 0.2 0.4 0.2 

𝑀𝐻1
 0.3 0.2 0.2 0.2 

𝐶𝐻1
 0.5 0.6 0.4 0.7 

𝐼𝐻1
 0.2 0.4 0.3 0.4 

𝑈𝐻1
 0.3 0.2 0.3 0.1 

𝐹𝐻1
 0.5 0.5 0.3 0.5 

𝐾𝐻1
 0.6 0.4 0.3 0.6 

   (𝓋1,𝓋2)   (𝓋2,𝓋3)   (𝓋3,𝓋4)   (𝓋4,𝓋1) 

𝑇𝐻2
 0.2 0.1 0.2 0.1 

𝑀𝐻2
 0.2 0.2 0.2 0.2 

𝐶𝐻2
 0.1 0.3 0.1 0.3 

𝐼𝐻2
 0.7 0.4 0.7 0.4 

𝑈𝐻2
 0.6 0.4 0.6 0.4 

𝐹𝐻2
 0.8 0.5 0.8 0.5 

𝐾𝐻2
 0.9 0.8 0.9 0.8 

v1 v2 

v4 v3 

(0.2,0.2,0.1,0.7,0.6,0.8,0.9) 
(0

.1
,0

.2
,0

.3
,0

.4
,0

.4
,0

.5
,0

.8
) 

(0.2,0.2,0.1,0.7,0.6,0.8,0.9) 

(0
.1

,0
.2

,0
.3

,0
.4

,0
.4

,0
.5

,0
.8

) 



Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                                                       744 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________________ 
Hanaa fathi, M. Myvizhi, Ahmed Abdelhafeez, Mohamed Refaat Abdellah, Mohamed Eassaa, Mohamed S. Sawah, Hussam 

Elbehiery, Single-Valued Neutrosophic Graph with Heptapartitioend Structure 

𝑂𝑀(𝒢) = ∑  𝑀𝐻1𝓋∈ 𝔙  represents the 𝑀-order of 𝒢 = (𝐻1, 𝐻2) 

𝑂𝐶(𝒢) = ∑  𝐶𝐻1𝓋∈ 𝔙  represents the 𝐶-order of 𝒢 = (𝐻1, 𝐻2) 

𝑂𝐼(𝒢) = ∑  𝐼𝐻1𝓋∈ 𝔙  represents the 𝐼-order of 𝒢 = (𝐻1, 𝐻2) 

𝑂𝑈(𝒢) = ∑  𝑈𝐻1𝓋∈ 𝔙  represents the 𝑈-order of 𝒢 = (𝐻1, 𝐻2) 

𝑂𝐹(𝒢) = ∑  𝐹𝐻1𝓋∈ 𝔙  represents the 𝐹-order of 𝒢 = (𝐻1, 𝐻2) 

𝑂𝐾(𝒢) = ∑  𝐾𝐻1𝓋∈ 𝔙  represents the 𝐾-order of 𝒢 = (𝐻1, 𝐻2) 

Example 3.11. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph of 𝒢̃ = (𝔙, ℰ) As shown in Example 3.7. Here, 

the order of SVHN-graph 𝒢 = (𝐻1, 𝐻2) is 𝑂(𝒢) = (0.6,1.0,1.0,1.4,1.2,1.5,1.5). 

Definition 3.15. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph. Here, the size of 𝒢 = (𝐻1, 𝐻2), 

described by 𝑆(𝒢) is specified by 𝑆(𝒢) = (𝑆𝑇(𝒢), 𝑆𝑀(𝒢), 𝑆𝐶(𝒢), 𝑆𝐼(𝒢), 𝑆𝑈(𝒢), 𝑆𝐹(𝒢), 𝑆𝐾(𝒢)), where  

𝑆𝑇(𝒢) = ∑ 𝑇𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝑇-size of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝑀(𝒢) = ∑ 𝑀𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝑀-order of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝐶(𝒢) = ∑ 𝐶𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝐶-order of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝐼(𝒢) = ∑ 𝐼𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝐼-order of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝑈(𝒢) = ∑ 𝑈𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝑈-order of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝐹(𝒢) = ∑ 𝐹𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝐹-order of 𝒢 = (𝐻1, 𝐻2) 

𝑆𝐾(𝒢) = ∑ 𝐾𝐻2
(𝓊, 𝓋)𝓊≠𝓋  represents the 𝐾-order of 𝒢 = (𝐻1, 𝐻2) 

Example 3.12. Let 𝒢 = (𝐻1, 𝐻2) Be an SVHN-graph of 𝒢̃ = (𝔙, ℰ) As shown in Example 3.7. Then, 

the order of the SVHN-graph 𝒢 = (𝐻1, 𝐻2) is 𝑆(𝒢) = (0.4,0.8,0.9,1.5,1.6,1.8,2.1). 

Definition 3.16. A single valued heptapartitioned neutrosophic graph 𝒢 = (𝐻1, 𝐻2) of 𝒢̃ = (𝔙, ℰ) is 

called strong single valued heptapartitioned neutrosophic graph if  

𝑇𝐻2
(𝓋𝑖 , 𝓋𝑗) = min{𝑇𝐻1

(𝓋𝑖), 𝑇𝐻1
(𝓋𝑗)} , 𝑀𝐻2

(𝓋𝑖 , 𝓋𝑗) = min{𝑀𝐻1
(𝓋𝑖), 𝑀𝐻1

(𝓋𝑗)} , 𝐶𝐻2
(𝓋𝑖 , 𝓋𝑗) =

min{𝐶𝐻1
(𝓋𝑖), 𝐶𝐻1

(𝓋𝑗)} , 𝐼𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐼𝐻1

(𝓋𝑖), 𝐼𝐻1
(𝓋𝑗)} , 𝑈𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝑈𝐻1
(𝓋𝑖), 𝑈𝐻1

(𝓋𝑗)} , 𝐹𝐻2
(𝓋𝑖 , 𝓋𝑗) = max{𝐹𝐻1

(𝓋𝑖), 𝐹𝐻1
(𝓋𝑗)} , 𝐾𝐻2

(𝓋𝑖 , 𝓋𝑗) =

max{𝐾𝐻1
(𝓋𝑖), 𝐾𝐻1

(𝓋𝑗)} for every 𝓋𝑖 , 𝓋𝑗 ∈ 𝔙. 

Example 3.13. Let 𝒢̃ = (𝔙, ℰ) Be a graph, where 𝔙 = {𝓋1, 𝓋2, 𝓋3, 𝓋4} and ℰ =

{(𝓋1,𝓋2), (𝓋2,𝓋3), (𝓋3,𝓋4), (𝓋4,𝓋1)}. Let 𝐻1 be a SVHN subset of 𝔙 and let 𝐻2 be a single valued 

neutrosophic subset of ℰ denoted by the following table. 

Table 19 

 𝓋1 𝓋2 𝓋3 𝓋4 

𝑇𝐻1
 0.4 0.3 0.4 0.2 

𝑀𝐻1
 0.4 0.2 0.7 0.6 

𝐶𝐻1
 0.2 0.1 0.5 0.7 

𝐼𝐻1
 0.5 0.4 0.5 0.6 
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Table 20 

 

 

 

 

 

 

 

   

   

 

 

 

       

 

 

 

 

  

  

 

It is easy to see that 𝒢 is a strong single valued heptapartitioned neutrosophic graph of 𝒢̃. 

Example 3.14. When 𝒢 = 𝒢̿ if and only if 𝒢 is a strong single valued heptapartitioned neutrosophic 

graph. 

 

 

 

  

 

𝑈𝐻1
 0.6 0.7 0.5 0.6 

𝐹𝐻1
 0.8 0.5 0.6 0.5 

𝐾𝐻1
 0.7 0.5 0.5 0.6 

   (𝓋1,𝓋2)   (𝓋2,𝓋3)   (𝓋3,𝓋4)   (𝓋4,𝓋1) 

𝑇𝐻2
 0.3 0.3 0.2 0.2 

𝑀𝐻2
 0.2 0.2 0.6 0.4 

𝐶𝐻2
 0.1 0.1 0.5 0.2 

𝐼𝐻2
 0.5 0.5 0.6 0.6 

𝑈𝐻2
 0.7 0.7 0.6 0.6 

𝐹𝐻2
 0.8 0.6 0.6 0.8 

𝐾𝐻2
 0.7 0.5 0.6 0.7 

v3 v4 

v1 v2 

(0.3,0.2,0.1,0.5,0.7,0.8,0.7) 

(0.2,0.6,0.5,0.6,0.6,0.6,0.6) 

(0
.2

,0
.4

,0
.2

,0
.6

,0
.6

,0
.8

,0
.7

) 
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𝓖 : strong single valued heptapartitioned neutrosophic graph 

 

 

 

   

   

 

 

 

       

  

 

 

 

  

  

 

 

v3 v4 

v1 v2 

(0.1,0.1,0.3,0.5,0.6,0.6,0.8) 

(0.1,0.1,0.2,0.7,0.7,0.8,0.8) 

(0
.1

,0
.1

,0
.3

,0
.7

,0
.7

,0
.8

,0
.8

) 

v3 v4 

v1 v2 



Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                                                       747 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________________ 
Hanaa fathi, M. Myvizhi, Ahmed Abdelhafeez, Mohamed Refaat Abdellah, Mohamed Eassaa, Mohamed S. Sawah, Hussam 

Elbehiery, Single-Valued Neutrosophic Graph with Heptapartitioend Structure 

𝓖̅ : strong single valued heptapartitioned neutrosophic graph 

 

 

   

   

 

 

 

       

 

 

 

 

  

  

 

𝓖 = 𝓖̿ : strong single valued heptapartitioned neutrosophic graph 

Conclusion: The Single-Valued Heptapartitioned Neutrosophic (SVHN) graph is introduced in this 

study, along with definitions for its degree, order, and size, and an examination of its characteristics. 

These definitions serve as the foundation for several conclusions that are backed up by instances that 

confirm the ideas and conclusions put forth. Within the neutrosophic framework, we hope that the 

method outlined here will stimulate more investigation into SVHN graphs and their applications to 

practical issues. 
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