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Abstract. In this paper we present novel techniques for the interacting aggregating operator of the inverse
fractional function sine trigonometric neutrosophic set. Swapping the input and output variables and solving
for the original input variable in terms of the original output variable are the steps involved in determining
the inverse of a function. The innovative averaging and geometric operations of inverse fractional function
sine trigonometric neutrosophic numbers are studied using the universal aggregation function. The inverse
fractional function sine trigonometric neutrosophic set is idempotent, boundedness compatible, associative and
commutative. Four new aggregating operators are introduced: inverse fractional function sine trigonometric
neutrosophic weighted averaging, inverse fractional function sine trigonometric neutrosophic weighted geometric,
generalized inverse fractional function sine trigonometric neutrosophic weighted averaging, and generalized
inverse fractional function sine trigonometric neutrosophic weighted geometric. The aggregation functions are

frequently thought to be represented by the Euclidean distance, Hamming distance and score values.

Keywords: weighted averaging, weighted geometric, generalized weighted averaging, generalized weighted

geometric.

1. Introduction

The uncertainties have led to the development of the fuzzy set (FS) [1], intuitionistic F'S
(IFS) [2], Pythagorean FS (PFS) [3,4], neutrosophic set (NSS) [5], and Fermatean FS (FFS) [6].
For decision-makers, Zadeh’s FS [1] suggests a membership value (MV). An IFS notion was

introduced by Atanassov [2] because each object has MV 7 and non-membership value (NMV)
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¢ and meets 0 < 7+ < 1, for 7,1 € [0,1]. Yager introduced the condition that 72 +¢? < 1,
which states that PFSs are defined by their MVs and NMVs [3]. Both PFSs and IFSs have
been widely utilized and investigated in a wide range of fields. Cuong and associates 7] by
developing the concept of picture FSs (PFSs). PFSs has been found to accommodate several
more ambiguity because it is an enhanced version of IFSs. PFSs remark that the MV 7, neutral
¥, and NMV a have 0 < 7+ +a < 1; for 7,9, a € [0, 1]. ”Yes,” "abstain,” "no,” and "refusal”
are expert opinion messages that will be ensured to be transmitted via the PFS. It will also
ensure consistency between the assessment data and the actual decision environment and avoid
evaluation information from being left out. The idea has not been fully explored, despite the
fact that PiF'Ss have several uses and studies. The spherical F'S (SFS) was defined by Shahzaib
et al. [8] for certain AOs with MADM. An alternative to 0 < 7+ ¢ 4+ a < 1 is required by
the SFS: 0 < 72 4+ 2 4+ a? < 1. Various algebraic structures and aggregation techniques with
applications were studied by Palanikumar et al. [10-12]. In MADM problems, the linguistic
SFS AOs were discussed by Jin et al. [9]. SF'Ss and their applications were introduced by Rafiq
et al. in DM [13] and 72 + 92 > 1 and decision-making (DM) are troublesome. The concept
of an FFS was first proposed by Senapati and associates [6] in 2019. It is a feature of both
the MV and NMV that 0 < 73 + 42 < 1. The following contributions are made as a result
of this endeavor: Idempotency, commutativity, and associativity are only a few of the many
characteristics of algebra that have been shown. IFFSTNs have two features: HD and ED.
The purpose of this method is to calculate the ED distance between two IFFSTNs. Ibraheem
et al. [14] discussed the concept of complex NSSs using various AOs. Al-Husban et al. [15]
deals that Type-I extension Diophantine IVNS. Recently, Udhayakumar et al. discussed the
many fuzzy applications and its generalization [16-20]. Below are the major objectives of this

work:
(1) Some basic algebraic structure satisfied the IFFSTNN aggregation operators.

(2) We appeal to the weighted operator using IFFSTNNWA, IFFSTNNWG, GIFF-
STNNWA, and GIFFSTNNWG.

2. Basic concepts

Definition 2.1. [3] Let L be the universe set. The PFS E = {m, <T{x},x(m)>|x € L}, where
7,x : L — (0,1) refers the MV and NMV of € L to Z, respectively and 0 < (7(z))? +
(x(z))? < 1. For, £ = (7, x) is called the Pythagorean fuzzy number (PFN).

Definition 2.2. [6] A FFS = = {x, (r{z}, x{z})|z € L}, where 7{z} and x{z} denote MV
and NMV of u respectively, where 7,x : L — {0,1} and 0 < {r{z}}3 + {x{z}}® < 1. Here,

== <7‘, x> is represent a Fermatean fuzzy number {IFFN}.
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Definition 2.3. For any PFNs, E = (7, x), Z1 = (11, x1) and Z2 = (72, x2), 7, x denote MV
and NMV of u respectively. Then

Definition 2.4. If =, = <7’1, X1> and =y = <7'27X2> are any two PFNs. Then the interaction
AOQO is defined as

[1]

(1) B = = ! VAR +{nk? - {n}? {n}? ]
VP + a2 - a2 Dl - al?r P - (nP - (e)?
_ [\/{71}2 Rl - (0 el - (a {72}2,]
VAT Del — ba)? e
O N e A G A R u Y
(4) =8 = [\/{Z_ {Xl}Q}N — {1 {n +X1}2}N, \/z — - {Xl}Q}NJ

where N be a positive integers.

(2) =1 % Eo

3. Different AOs for IFFSTNN

Another way to define a fractional part function is as the difference between a real number
and its greatest integer value, which is found using the greatest integer function. For example, if
e is a fractional part function, then the fractional part of x is expressed as e{z} = {z} = z—|z],
where x is a real number. In the event that x is an integer, its fractional component equals
0. Therefore, x cannot be an integer in order for e{z} = % to be defined. Therefore, all
real numbers, with the exception of integers, are included in the domain of e{z} = 1 Here,

€T
0 =sinm/2.

Definition 3.1. Suppose that =, = <«971,9w1,9x1> and =9 = <97‘2,9W2,9X2> be the any two
IFFSTNNs. Then

[ {10m)E 4 {omE — {on} - {om), |
V181)E + {Bwn}t — {un}t - {Bun)
. {Ox1}e +{xa}e — {Ox1}e - {Oxa)
\ —{0adE - {om} — (om}: - 0o}
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(0r e + {Om)c — {0m )} - {07}«

—{om}e {Oxa}e — {0}t - (I}t

V101}t + {Bwa}t — [un}? - {0un}t

V{exl}l F{0xa}E — {0}t - {0x)

o= (o)) Ve - ()

{%—{971} Vo o= {0+ 0xaye
(4) =X = i/ {o— {0} } = {o1—{0m + 0x1}+ }
li/ Z_{‘gwl} } K/ {Z—{9X1} }

1
€

3.1. IFFSTNWA operator

Definition 3.2. Let £, = <07-j, Ow,, HXJ> be the IFFSTNNs, 7= 1,2, ..., 4, ¢, be the weight of
E, and ¢, > 0, @¥_,4, = 1. Then the IFFSTNWA operator {21, Zg, ..., B¢} = @b 9,Z,.

Theorem 3.3. Let 5, = <97],9w],9)<]> be the IFFSTNNs, ) =1,2,....,£. Then,

1 1Y% 1 1Y

\/2— Ok fi—qomyt}” \/z—o;f:l{z— {6} }
1 1\ ¥ 1Y
N (T I e

IFFSTNWA{E,, s, ..., Z¢} =

Proof. If 1= 2, IFFSTNWA{El, Eg} = ¢1El |_| w2£2,

where
iE = 1\/2‘ fimqomyt}", 1\/1_ (g0}
O e R
and
4o = oo fotomt ) 4 o et}

1\/{@ — {97’2}%}¢2 — {z — {01 + GXQ}%FZJ2
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We get
[ it e ey
i U G040 0 0 et G G20 M
| ey o = f- )
lelI—IwQEQ - _{2_{1_{9w1}%}¢}

{z {1 — {Bws}< }w },
{z—{z—ﬁm}i}wl}—i—{z {1 —6x2}¢ } }
—{Z—{l—exl}%}wl}'{Z—{Z—GXQ} } }
i —{Z—{9T1+9X1}%}w1 A= {02 + Oxa}e }w |
B _ 1\/1 — <>J%=1{/L - {97']}%}% 1\/2 - <>]% 1{2 - {9‘*’]}1}% ]

oo 0o} o (- ot}

Using induction j > 3, IFFSTNWA{=,, =, ..., 5}

(EEe e

If = ¢+ 1, then IFFSTNW A{Z1,Zs, ..., Z¢, Zp41}

i

e R R (R AT o
Vo {0 o o mnt)™)
J ) ) )

o O B (e )

e oY o}
oo o)) - f )™

—<>§:1{Z — {07, + HX]}%} {Z {07041 + Oxe1}e }WJr

=
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Yool 1o} (i om0
o {z—{ew]}%}w’ CNT e
) { - {97]}} ot fu- {egwxj}} }
E o ™ = tmen s ot} |

‘/ <>é+1{z—{97]}i}¢"\/ 0‘*1{1—{9%}%}%

\/OK—H{Z_ {QT]}g} <>e+1{2_ {973+6?XJ}%}%

Theorem 3.4. If 5, = <07j,0w],9xj> be the IFFSTNNs and Z, = =2, then
the IFFSTNWA{Z1,Z9,....5p} =2, 7=1,2, ..., L.

Proof. Note that, {7, 0w,,0x,} = {07,0w,0x}, y=1,2,...,¢ and Qéf:lz/)] =1.
We get, IFFSTNW A{Z,,Zs, ..., Z¢}

Vz_ok‘ oo} V“O’“— {i- (0t}

{z— {07} } {z—{97+«9x} }

B o0 0 U 2010

1\/{2 - {07’}% }@fl% B {z oy 9)(}% }@§1¢J

o f-toni b 4f- (- ),

i/{z— {97’}%} — {z— {97+9x}%}

3.2. Interaction weighted geometric(IFFSTNWG) operator

Definition 3.5. Let 5, = <97'], Ow,, 9xj> be the IFFSTNNSs, 1, be the weight of =,. Then the
IFFSTNWG operator {Z1, =g, ...,E¢} = <>] 1:;%.

Theorem 3.6. If =, = <07j,9w3,«9xj> be the IFFSTNNs. Then,

Py
\/0]:1 v —{0x,} } - <>§= {Z — {07, + 0x,}< } )
IFFSTNWG{E1,Zs,...,Z¢} =

% ~ofi- e} V R R A
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Proof. If 3y =2, then

UL A R (S RICOL

{-fean ) - - e
_ {{z om0y Y o (m vyt
spxap = || (- f et

{
e )" -

{

{

[ o)
V-l o)}

1\/0}—1 l_{HXJ} } _<>_7 1{Z {97]+0X]} }7/)
oo 1{1 o} v ofr- w

- X/OJ 1 v — {GXJ <>f 11— {97']—}-9)(]} ]
, =) =

% oo - {ew]} } R R
If = ¢+ 1, then IFFSTNWG{E, ..., ¢, Zps 1}

Hence, IFFSTNWG{Z;,Z5} = |:

IFFSTNWG{Z,, =2,

S TRV B T
S S S TR (R (R IVt
_<>f:1{z—{9¢]+exj}%} {Z By + Oyen ) V7
- |, o, {o —{z—{ewj}l} Vi fo-fo townt }m}
S Ut Ul 0 A B8 Ut Ul RV B
offe- f o o tovent)™)
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ooy =i}
(et e}
T T S e e
l\/l_oﬁl{l—{%}i} Ao tov)? }wﬂ
\/OM{Z S N E et (R RO e

\/Z B <>£+1{Z _ {gw]}%} \/ <>z+1{Z oy}t }wJ

Corollary 3.7. Let =, = <97'], Ow,, 9)(]> be the IFFSTNNs and all are equal and and 07-6x = 0.

—_

Then IFFSTNWG{Z1, =, ..., Z¢} = .

3.3. generalized IFFSTNWA (GIFFSTNWA) operator

Definition 3.8. Let £, = <97'J, 01, GXJ> be the IFFSTNNSs, v, be a weight of =,. Then, the
1/2

GIFFSTNWA operator {51,52,...,54}:{ k. 1%_]} .

Theorem 3.9. Let 5, = <97'],97'J,9X]> be the IFFSTNNs. Then GIFFSTNWA

{517527 ceey Ef} =

R e |
{ \/<> {GTJ} }l}% _ngzl{z_ {{gTjJrer}i}i}wJ }

Proof. First, we have find that

1
k e __
€

|
i/ { e }wl’ 1\/1_ {Z{{ewl}i}i}wl}
\/{ {{ony: }i}¢ - {Z {10 +6X1}1}l}w1
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In general,
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Corollary 3.10. Let E, = <07'j, Ow,, 9><J> be the IFFSTNNs and all are equal.
Then GIFFSTNWA {Z1,Z2,...,Z¢} = E.

3.4. Generalized IFFSTNWG (GIFFSTNWG) operator

Definition 3.11. Let £, = <97'j, QTJ,HXJ> be the IFFSTNNs, v,} be the weight of Z,, where
7=1,2,...,0. Then, the GIFFSTNWG{Z,,Zs,...,Z} = %{oﬁzl{xaj}%}.
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Theorem 3.12. Let =, = <HT], 07, HX]> be the collection of IFFSTNNs.
Then the GIFFSTNWG operator {21, 22, ...,Ep} =

{ K/O;C:1 {Z } {{GX”}i}i}% — O {Z - {{971 + Gxg}i}i}w] }
{ l\/l_oﬁzl {’_{{Qwﬂ}i}i} ] } { §/1—<>§“:1 {z—{{exy}i}i} ] }

Proof. Using the induction method,

1 1
< ¥y

Ok (NS} = i/oﬁl{l‘{{%}l} e e G RAO a
=1 = =

1 1
€

\/z — <>§:1{Z - {{QWJ}%}E }w] 1\/Z - Oéﬁ:l{l - {{GX]}%} }wj

1t =2, then
(nz - ot} (o fomvoant )
| e
and
(he) it} ) - {om o)}

o () o )

Murugan Palanikumar, Nasreen kausar and Tonguc Cagin, Inverse fractional function setting
sine trigonometric neutrosophic set approach to interaction aggregating operators




Neutrosophic Sets and Systems, Vol. 81, 2025

We get, {RZ;}¥1 x {RZ,}¥2
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Corollary 3.13. Let £, = <973, Ow,, 9x3> be the collection of IFFSTNNs and all are equal.
Then GIFFSTNWG {Z1,Z,,...,Z¢} =

d
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4. Conclusion:

The algebraic accessibility of ED and HD for IFFSTNNs is a significant advantage. HD of
IFFSTNNs may offer significant improvements in data analysis. The utilization of compelling
statistics illustrates the advantages of HD. We provided IFFSTNWA, IFFSTNWG, GIFF-
STNWA, and GIFFSTNWG examples and suggested models. The following subjects will be
covered in more detail later on: A more detailed treatment of the following topics will be
covered: (1) Interaction AOs establish a link between the cubic NS and IVPFS. (2) The issue
may be resolved by using complex IFFSTNWA, complex IFFSTNWG, complex GIFFSTNWA ,
and complex GIFFSTNWG. (3) The following topics will be discussed in more detail as Soft
and expert sets were explored in terms of the Diophantine vague NSS, complex vague NSS,

g-Rung interval valued NSS and complex cubic g-Rung NSS.
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