
University of New Mexico

Solving a Global-Mixed Integer Signomial Geometric Fractional
Programming Problem

J. Shirin Nejad1, M. Saraj2∗
1 zhaleshirin@gmail.com

2∗ msaraj@scu.ac.ir

1Department of Mathematics, Research Institute of Education and training, Khuzestan,
Ahvaz, Iran.

2∗Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid
Chamran University of Ahvaz, Ahvaz, Iran.

Abstract. This article addresses mixed integer fractional signomial geometric programming (MIFSGP) prob-
lems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial
programming into a nonfractional problem so that it maintains its geometric structure. Then, convex relaxation
is used to reach a mixed integer global solution. Although, in many cases, we obtain a better objective function
value with this process, designers may still be dissatisfied with the rupture between the original objective func-
tion value and the relaxed value. Therefore, we apply a spatial branch and bound algorithm to decrease that
distance to an acceptable extent and maintain the global solution. Finally, a real design problem is considered
to evaluate the efficiency and accuracy of the proposed technique.

Keywords: geometric programming, fractional programming, mixed integer programming, non-convex func-
tions, spatial branch and bound algorithm.
—————————————————————————————————————————-

1. Introduction

Fractional geometric programming (FGP) is applied to solve a class of geometric program-
ming problems to minimize the fractional objective function under definite constraints. A
few methods have been utilized in recent decades to convert a fractional signomial objective
function into a nonfractional signomial objective function to reach the optimal solution via
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common mathematical programming techniques. In a mixed integer fractional signomial geo-
metric programming problem (MIFSGP), the objective function is a quotient of two signomial
functions subject to certain constraints with integer and continuous decision variables; this
approach is an essential part of geometric programming problems in the wide scope of en-
gineering design, management and finance. For instance, Ray and Saini (2001) [10], Arora
(1989) [3], Tsai (2005) [12], and Shirinnejad et al [11] addressed a few methods to solve real
(FGP) problems in design engineering.
In a real nonfractional signomial case, the number of iterations of the solver is also significantly
reduced, and an integer solution is obtained by reformulating the problem, changing negative
power variables to positive power variables and applying our proposed approach. In this work,
first, we define a new variable for the fractional objective function. This technique formulates
an MIFGP problem by adding new constraints to a nonfractional mixed integer geometric
programming (MIGP) problem.
Since the formulated problem still contains some concave terms in the objective functions or
constraints and is sometimes more than before, this feature still results in local solutions to
the problem. In addition, the existence of integer variables generally makes the feasible region
non-convex. Therefore, applying convex relaxation in most cases will yield the lowest possible
value for the objective function of the original (MIFGP) problem. Therefore, by using a spatial
branch and bound algorithm (SBB), we find a feasible solution for the MIGP problems and
the tightest global lower bound to the local original lower bound for the objective function
simultaneously.

2. Mixed integer signomial geometric fractional programming (MISGFP) prob-
lems

A signomial function consists of a sum of positive or negative terms that are products of
power functions, i.e.,

p(x) = f (x1, x2, . . . , xn) =
T∑
t=1

σtct

n∏
j=1

x
αtj

j , (1)

Where x is a vector that contains positive variables of real or integer types. In each signomial
function, T and n represent the number of terms and variables, respectively. Ct is the absolute
value of the coefficients, and σt is the sign of the coefficient (+1 or −1). If σt = +1 in all
terms of a signomial function, the function is called a posynomial. A (MISGFP) programming
problem is defined in its typical form as follows:
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Obtain x = (x1, x2, x3, . . . , xn)
T to

Minimize f (x) =
p (x)

q (x)
, q (x) > 0,

Subject to gi (x) ≤ ξi, ξi = ±1, i = 1, 2, . . . ,m.

(2)

where p (x) , q (x) and gi (x) are signomial functions and

x = (x1, x2, x3, . . . , xn)
T ∈ X,

X is a vector of real or integer positive variables x,

0 ≤ xj ≤ xj ≤ x̄j , j = 1, 2, . . . , n.

It is assumed that the mentioned problem is feasible and has an optimal solution.

3. Strategy of reformulation

This article presents a convenient technique for converting a non-convex problem (MIS-
GFP) into a convex nonfractional mixed integer signomial geometric programming problem
(MISGP). Consider the following signomial geometric fractional programming problem:

Minimize f(x) =
p(x)

q(x)
=

∑T0
t=1 σ0tc0t

∏n
j=1 x

α0tj

j∑T ′
0

t=1 σ
′
0tc

′
0t

∏n
j=1 x

α′
0tj

j

,

Subject to gi (x) ≤ ξi, ξi = ∓1, i = 1, 2, . . . ,m.

(3)

where

gi(x) =

Ti∑
t=1

σitcit

n∏
j=1

xαit
j ,

q (x) > 0,

for x ∈ X and for all x = (x1, x2, x3, . . . , xn)
T ∈ X ⊆ R, 0 ≤ xj ≤ xj ≤ x̄j ,

j = 1, 2, . . . , n,

T0 = Number of terms in p (x) ,

T ′
0 = Number of terms in q (x) ,

c0t, c
′
0t ∈ R+,

let q(x) = xn+1, xn+1 > 0.
We have:

f (x) = x−1
n+1 ∗ p (x) ,
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To find the lower and upper bounds of xn+1, we should solve the following two sub problems:

Ln+1 := min q(x),

Subject to gi (x) ≤ ξi,

ξ = ∓1, i = 1, 2, . . . ,m, for x ∈ X.

and

Un+1 := max q(x),

Subject to gi (x) ≤ ξi,

ξ = ∓1, i = 1, 2, . . . ,m, for x ∈ X.

Therefore, problem (3) leads to the following signomial geometric programming problem, which
contains a new equality constraint, x−1

n+1 ∗ q(x) = 1.

Minimize x−1
n+1 ∗ p(x) (4)

Subject to x−1
n+1 ∗ q(x) = 1, (5)

gi (x) ≤ ξi,

ξi = ∓1, i = 1, 2, . . .m,

Ln+1 ≤ xn+1 ≤ Un+1,

x > 0,

We can replace equation (4) with two inequalities as follows:

x−1
n+1 ∗ q(x) ≤ 1, (6)

−x−1
n+1 ∗ q(x) ≤ −1. (7)

Or equivalent of(7)

xn+1 ∗ q−1(x) ≤ 1. (8)

Therefore, the original MISGFP problem is reformulated to:

Minimize x−1
n+1 ∗ p(x),

Subject to x−1
n+1 ∗ q(x) ≤ 1,

xn+1 ∗ q−1(x) ≤ 1,

gi(x) ≤ ξi,

ξi = ∓1, i = 1, 2, . . . ,m,

Ln+1 ≤ xn+1 ≤ Un+1,

x > 0.

(9)
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Where

p (x) =

T0∑
t=1

σ0tc0t

n∏
j=1

x
α0tj

j ,

q (x) =

T ′
0∑

t=1

σ′
0tc

′
0t

n∏
j=1

x
α′
0tj

j ,

gi(x) =

Ti∑
t=1

σitcit

n∏
j=1

x
αitj

j ,

q(x) > 0, ∀ x = (x1, x2, . . . , xn)
T ∈ X ⊆ R, 0 ≤ xj ≤ xj ≤ x̄j , j = 1, 2, . . . , n.

Proposition 3.1. If 0 < q (x∗) = x∗n+1, where x∗ is the optimal solution of (4), x∗n is the
optimal solution of (3),

∀x ̸= x∗,
(
x∗n+1

)−1 ∗ p (x∗) ≤
(
x∗n+1

)−1 ∗ p(x). (10)

Proof. Suppose x∗ = (x∗1, x
∗
2, . . . x

∗
n) is an optimal solution of (4); consequently,

(
x∗n+1

)−1 ∗ q (x∗) = 1,

gi(x
∗) ≤ ξi,

ξ = ∓1, i = 1, 2, . . . ,m.

Thus, x∗, is satisfied in the constraint of (3). Additionally, by replacing

q (x) = xn+1,

and

q (x∗) = x∗n+1,

in the objective function (4), we have:

x∗−1
n+1 ∗

T0∑
t=1

σ0tc0t

n∏
j=1

x
∗α0tj

j ≤ x−1
n+1 ∗

T0∑
t=1

σ0tc0t

n∏
j=1

xα0t
j∑T0

t=1 σ0tc0t
∏n

j=1 x
∗α0tj

j∑T ′
0

t=1 σ
′
0tc

′
0t

∏n
j=1 x

∗α′
0tj

j

⩽
∑T0

t=1 σ0tc0t
∏n

j=1 x
α0tj

j∑T ′
0

t=1 σ
′
0tc

′
0t

∏n
j=1 x

α′
0tj

j

.

(11)

Hence, x∗ is an optimal solution of (3).
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4. Convexification strategies

Converting to convex relaxation is an efficient tool for obtaining a global solution in non-
convex (MIGP) problems. It is applied to expand the feasible set of (4) and achieve a lower
bound on the optimal solution of the (MIGP) problems. Since the nonlinear functions in the
constraints and objective of (4) are signomial functions, each signomial function is convex if
all the terms are convex [7]. The requirements of convexification for every signomial term are
provided with the following theorem. See [8].

Theorem 4.1 (Maranas and Floudas (1995)). A positive signomial term

f(x) = c
∏n

i=1
xαi
i ,

is convex if one of the following requirements holds:

(1) αi ≤ 0, (i = 1, . . . , n).
(2) ∃ k ̸= i, αk > 0, αi ≤ 0,

∑n
i=1αi ≥ 1.

A negative signomial term
f (x) = c

∏n

i=1
xαi
i (c < 0),

is convex if αi > 0 (for i = 1, . . . , n) and∑n

i
αi ≤ 1.

Theorem 4.1 states that it is possible to convexify every positive or negative signomial term
by using power transformations; therefore, this fact is applied in this paper to convexify non-
convex signomial functions.
After utilizing power transformations to convexify a signomial term, the power transformation
functions need to be approximated by piecewise linear functions. This study used a standard
piecewise linear approximation, special order set type 2 (SOS2) (Beale and Tomlin) [5].

5. Bound assessment algorithm

The spatial branch-and-bound algorithm is one of the best-known techniques for obtain-
ing a precise or at least an ε-approximate solution to a non-convex mixed integer geometric
programming problem. The lower bound of the objective function is computed for the entire
feasible region. The SBB algorithm works in a common application of tight lower bounds esti-
mated through convex relaxation. To improve the quality of our method used to determine the
lower bounds of the MIFGP (2), we applied (using AMPL [6]), a streamlined “partial SBB”
algorithm [1, 9], to find ε-approximate solutions for every small positive ε. This algorithm
works recursively by dividing the search area along the coordinate direction that contributes
most to the difference between the lower and upper bounds on the optimal objective function
value determined in every subproblem. For a nonlinear minimization problem, the lower bound
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is usually computed by constructing and solving a convex relaxation. The upper bound can
simply be a local minimum found by an NLP solver.

At each branching step, the most reassuring node is registered, and the others are discarded.
Since our purpose is to solve an MIGFP problem with integer variables, branching may be
necessary for both continuous and integer decision variables.

6. Proposed Algorithm: The partial depth-first SBB algorithm

Input P as a non-convex MIGP problem.
Devote count while converting the non-convex problem to a convex one.

(1) Allocate o→ count and

Find x∗, through an objective function with the value S∗, which can solve P in local form.

(2) A convex relaxation R is used for the primal problem P .
(3) Find the minimum value of S to obtain the optimum solution S∗ using relaxation R.
(4) Choose branching point x̀i for the ith variable.
(5) We add a new constraint as follows to define P0 as P

xLi ≤ xi ≤ x̀i.

(6) P1 is defined as P by adding the constraint x̀i ≤ xi ≤ xUi .
(7) Pk is used as a convex relaxation for Rk, k ∈ {0, 1}.
(8) Similarly, we used x̀k as the optimum of Pk by the Sk value, k ∈ {0, 1}.
(9) Let l = (S0, S1), (the best lower bound to S∗).

(10) For Sl > S∗, the algorithm is stopped since the node cannot be further improved.
(11) For Sl < S∗, devote Sl → S and x̀l → x̀.
(12) In the case of the feasibility of x∗ in Pl, solve local Pl to find x∗i with S∗

i .
(13) ?For S∗

i < S∗, let S∗
i → S∗ and x∗i → x∗, to improve the non-convex problem solution.

(14) The global optimum is achieved if |S∗ − S| < ε. Here ε is an acceptable error.
(15) Dedicates Pl → P and x̀l → x̀ to update the ith branching variable and branching

pointx̀i.
(16) Finally, the count is increased, and the algorithm is repeated.

7. Numerical example

Example 7.1. [2] This case pertains to a design problem of a journal bearing. Its structure
is an inverse problem, where the eccentricity and attitude angle are achieved for a certain load
and speed. The volume of steel, the thickness of the intermediate layer and nickel barrier,
and the dimensions of the plated overlay of the journal bearing are assumed to be unknown.
Hence, some of these parameters of the model are known and estimated by engineers. Suppose
that x1 is the radial clearance, x2 is the fluid force, x3 is the diameter, x4 the rotation speed
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and x5 is the length-to-diameter ratio. The variables of these parameters are concentrated
between some specified lower and upper bounds.

The following mathematical programming formulation depicts the above mentioned problem
as a signomial geometric programming problem:

Minimize 0.5x21x2x4x5 + 1.1x−1
1 x−1

2 x−1
3 ,

Subject to 8.4x1x
−1
2 x−1

3 x−1
4 x5 ≤ 4.2,

0.5x2x3 + x1 + x−1
4 x−1

5 + 1.6x3x4 ≤ 1.

The above problem is a concave signomial programming problem. Upon solving the problem,
the local objective value was found to be F = 3.561. The objective function of the above
problem can be easily converted into a fractional function as follows:

0.5x31x
2
2x3x4x5 + 1.1

x1x2x3
,

Therefore, the original problem is modified by defining x6 as a new variable where x6 = x1x2x3,

Minimize 0.5x31x
2
2x3x4x5x

−1
6 + 1.1x−1

6 ,

Subject to x1x2x3x
−1
6 ≤ 1,

x−1
1 x−1

2 x−1
3 x6 ≤ 1,

8.4x1x
−1
2 x−1

3 x−1
4 x5 ≤ 4.2,

0.5x2x3 + x1 + x−1
4 x−1

5 + 1.6x3x4 ≤ 1.

The mentioned problem has seven non-convex terms for obtaining a global solution. Several
power transformations and piecewise linear approximations are applied to underestimate con-
vexified terms. Therefore, the non-convex primary programming problem is now converted to
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the folowing convex programming problem:

Minimize 0.5Z6
1y

−2
2 y−1

3 y−1
4 y−1

5 x−1
6 + 1.1x−1

6 ,

y−1
1 y−1

2 y−1
3 x−1

6 ≤ 1,

8.4k51x
−1
2 x−1

3 x−1
4 y−1

5 ≤ 4.2,

0.5y−1
2 z23 + k51x

−1
4 x−1

5 + 1.6z23y
−1
4 ≤ 1,

x−1
1 x−1

2 x−1
3 y−1

6 ≤ 1.

where

z1 = x0.51 , Z1 = L
(
x0.51

)
k1 = x0.21 , K1 = L

(
x0.21

)
z3 = x0.53 , Z3 = L

(
x0.53

)
yi = x−1

i , Yi = L
(
x−1
i

)
, i = 1, 2, 3, 4, 5, 6,

x2 ∈ Z, x1, x2, x3, x4, x5, x6 ∈ R

0.1 ⩽ x1 ⩽ 0.5,

9 ⩽ x2 ⩽ 17,

0.01 ⩽ x3 ⩽ 0.21,

0.1 ⩽ x4 ⩽ 1.7,

0.1 ⩽ x5 ⩽ 1.8,

0.1 ⩽ x6 ⩽ 0.5.

L
(
x0.51

)
, L(x0.21 ), L

(
x0.53

)
, L

(
x−1
i

)
are the piecewise linearized expressions of the non-convex

terms x0.51 , x0.21 , x0.53 and convex terms x−1
i for i = 1, 2, . . . , 6, respectively. Since x2 ∈ Z, we

choose integer break points to have an integer solution directly. By solving this program with
LINGO 18.0 software, where the tolerable error was specified as 0.001, the following solution is
obtained. A comparison of the original non-convex problem and the convex problem is shown
in Table 1. Although the optimum value of the convex problem is much better than that of
the non-convex problem and the number of iterations is much less than that of the original
non-convex problem, this inequality may not be desirable for decision makers.

Table 1. The optimal conciliation obtained solutions.

problem F x1 x2 x3 x4 x5 iteration
Non-convex(P ) F ∗ = 3.55257 0.3317 9.7297 0.1199 0.8687 1.5275 130

Convex(R) F̂ = 2.82846 0.5 9 0.1275 0.9 0.9 43

J. Shirin Nejad, M. Saraj, Solving a Global-Mixed Integer Signomial Geometric Fractional Programming
Problem

Neutrosophic Sets and Systems, Vol. 81, 2025                                                                            663



Therefore, the difference between the objectives of two problems is:

∣∣∣F ∗ − F̂
∣∣∣ = 0.72511.

Suppose the maximum difference between objectives F ∗ and F̂ is accepted for ε = 10−2. This
means that we should find a tighter relaxation when implementing the proposed Algorithm.

Applying the suggested Algorithm, the following steps are implemented to reach the mini-
mum value of ε ≤ 10−2. Therefore, the global solution of the convex problem is obtained with
an acceptable difference from that of the primary non-convex problem. The remaining steps
are presented in Table 2 as follows:

Hint: The branching variable, objective value and punching node are abbreviated as B.V.,
O.V., and P.N., respectively.

Table 2. Table 2 shows the global solution obtained after 16 iterations with
an acceptable tolerance of ε = 0.0086 as follows.

steps B.V V.v in R0 O. V F̀0 V. V in R1 O. VF̂1

∣∣∣F̀0 − F ∗
0

∣∣∣ ∣∣∣F̀1 − F ∗
0

∣∣∣ pruned node
1 x5 0.85 1.97 1.5 2.85b b1.58257 b0.7 R0

2 x5 1.5 2.875 1.52 2.895 0.67757 0.65757 R0

3 x2 8 2.895 10 2.82125 0.67757 0.73132 R1

4 x2 8 2.895 9 2.921 0.67757 0.63157 R1

5 x3 0.120 3.752271 0.2 2.41922 0.1997 1.1335 R0

6 x3 0.11 3.41 0.12 3.75227 0.14257 0.1997 R0

7 x3 0.105 3.85211 0.11 3.41 0.29954 0.14257 R0

8 x3 0.108 3.81242 0.110 3.41 0.25985 0.14257 R0

9 x3 0.109 3.43 0.110 3.41 0.12257 0.14257 R1

10 x3 0.1085 3.85 0.109 3.43 0.24743 0.12257 R0

11 x3 0.1088 3.44 0.109 3.43 0.11257 0.12257 R1

12 x4 0.7 3.44372 0.85 3.6887 0.10885 0.13613 R1

13 x4 0.76 3.4801 0.85 3.6887 0.07247 0.13613 R1

14 x4 0.756 3.54006 0.8 3.8799 0.01251 0.32733 R1

15 x1 0.45 3.5422 0.5 3.54006 0.01037 0.0125 R1

16 x1 0.43 3.54398 0.45 3.5422 0.0086 0.01037 R0
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Table 3. Comparison of the results obtained from the initial problem and the
relaxed problem.

Problem O.V x1 x2 x3 x4 x5

Original (P ) F ∗ = 3.55257 0.3317 9.729 0.1199 0.8687 1.5275

Relaxed (R) F̂ = 3.54398 0.43 9 0.1088 0.706 1.52

The results of the present algorithm indicate the effectiveness of the spatial branch and
bound technique. According to Table 3, we conclude that with the help of the proposed
algorithm, we reach a global optimum, which is very close to the solution of the original
problem and is sometimes even an integer solution to the problem of interest.

8. Conclusion

In this paper, a mixed-integer fractional geometric programming problem (MIFGP) as an
NP-hard problem is discussed. To reach a global solution, we first converted the non-convex
geometric programming problem to a convex problem to underestimate the original non-convex
problem. We used the spatial branch and bound technique to increase the consistency and
efficiency of the relaxation strategies. The results showed that implementing this algorithm
on the convexified signomial programming problem can make the lower bound of the relaxed
problem much closer to the lower bound of its non-convex programming problem.

Conflict of interest: the authors are hereby declare that there is no any conflict of interest
regarding the present article.
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