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Abstract 

The classification of medical images presents significant challenges due to the 

presence of noise, uncertainty, and indeterminate information. Traditional deep 

learning models often struggle to manage this, leading to reduced diagnostic 

accuracy, especially when dealing with low-quality or ambiguous conditions. This 

paper proposes a hybrid approach that integrates Neutrosophic Set (NS) theory with 

deep learning models to enhance X-ray image classification under uncertain 

conditions. NS theory introduces three domains: True (T), Indeterminate (I), and 

False (F) to manage image uncertainty and noise, allowing deep learning models to 

better interpret complex, ambiguous visual information. To evaluate the approach, 

five state-of-the-art deep learning models—MobileNet, ResNet50, VGG16, 

DenseNet121, and InceptionV3 are utilized, and their performance was evaluated 

on two different medical image datasets: Cervical spine injuries detection and chest 

disease classification. The results indicate that models trained on NS-transformed 

data, particularly DenseNet and MobileNet, yield superior outcomes compared to 

those trained on the original data, achieving significantly higher accuracy, precision, 

and recall. This demonstrates that incorporating NS theory into deep learning 

models significantly enhances their ability to classify uncertain and noisy X-ray 

images, providing a robust solution for improving diagnostic accuracy in medical 

imaging. 

Keywords: Neutrosophic Set (NS), Image Classification, X-ray Imaging, Deep 

Learning, Cervical spine, Chest Diseases. 

1. Introduction  

Medical imaging plays a pivotal role in diagnosing and managing diseases, 

especially in critical areas such as chest diseases and Cervical spinal injuries. X-rays 

are the most widely used due to their cost-effectiveness and rapid results, 

particularly in the detection of chest diseases and bone fractures [1]. However, 
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despite their ubiquity, the interpretation of X-ray images presents significant 

challenges for both clinicians and automated systems. Artificial Intelligence, 

particularly deep learning models have shown remarkable success in image 

classification tasks, offering state-of-the-art performance in a range of medical 

applications [2]. Despite the power of AI, medical images, especially X-rays, often 

exhibit ambiguity and incomplete information due to varying factors such as 

exposure settings, image noise, and patient positioning inconsistencies can hide 

critical details and introduce uncertainty [3]. Addressing these uncertainties is 

essential for building more robust and reliable classification models Which lead to 

more accurate diagnosis process [4]. 

Deep learning has revolutionized medical image analysis, with convolutional 

neural networks (CNNs) being the most prominent technique used [5]. CNNs such 

as MobileNet, ResNet, VGG16, DenseNet121, and Inception offer powerful feature 

extraction capabilities, enabling them to capture intricate patterns in medical images 

[6, 7]. These models have been widely adopted for tasks ranging from disease 

detection to segmentation. However, despite their impressive performance in image 

classification, most existing methods lack mechanisms to effectively manage the 

uncertainty and noise inherent in medical imaging data, which can lead to 

suboptimal diagnostic accuracy [8].  Deep learning models such as CNNs, while 

powerful in many contexts, struggle when dealing with noisy or ambiguous data. 

Additionally, the inherent complexity of human anatomy makes it difficult to 

distinguish between subtle abnormalities in cases such as spinal fractures or chest 

diseases [9]. These gaps underscore the need for models capable of managing 

uncertainty while maintaining high classification accuracy. 

Neutrosophic Set (NS) theory offers a promising approach to handle uncertainty 

in image classification. NS theory was introduced by Florentin Smarandache in 1995 

and unified 1999 [10]. It extends classical binary logic by introducing three domains: 

truth (T), falsity (F), and indeterminacy (I) [11]. These domains allow for the 

representation of incomplete, inconsistent, and uncertain information, which is often 

present in medical X-rays. By converting pixel values into these three domains, NS 

theory helps to emphasize the certainty of certain image features while minimizing 

the impact of uncertain or noisy areas. Neutrosophic Sets operate by assigning three 

membership values (T, I, F) to each element within a set. Each value lies in the 

interval [0, 1], representing the degrees to which the element belongs to the truth, 

indeterminacy, and falsity domains [12]. This tripartite model is uniquely 

advantageous in scenarios where information is incomplete or conflicting, such as 

medical imaging [13, 14]. For instance, in an X-ray of a fracture, some regions may 

be clearly indicative of a fracture (high truth), some may not indicate a fracture (high 

falsity), while other regions, perhaps due to poor image quality or ambiguous 

features may fall into an indeterminate zone (high indeterminacy). 
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By explicitly modeling the areas of uncertainty, NS provides a more refined 

approach to interpreting medical images. This framework has been applied in 

various image processing tasks, such as segmentation and classification, particularly 

in the medical field [14, 15]. In the context of X-ray image classification, few studies 

have integrated uncertainty management techniques, such as NS theory, into the 

preprocessing or training pipeline of deep learning models, leaving a significant gap 

in leveraging uncertainty-aware methods for medical X-ray analysis. In our 

approach, the NS framework is applied to X-ray images, aiding in the classification 

task by enhancing images feature representation and improving robustness in 

uncertain scenarios. Thus, integrating uncertainty management methods, such as 

NS theory, into deep learning pipelines could potentially improve performance in 

challenging medical scenarios. 

In this paper, we propose a hybrid approach that integrates NS theory with deep 

learning models to enhance the classification of medical X-ray images. Our 

methodology leverages NS theory during the preprocessing phase to address image 

uncertainty, such as noise and low contrast, and transform the images into three NS 

images domains (T, I, F), which may improve the interpretability and robustness of 

deep learning models. To demonstrate the efficacy of this approach, we conduct case 

studies on two distinct datasets cervical spine fracture and dislocation, and chest 

diseases, which show the framework's ability to generalize across diverse medical 

imaging tasks. To evaluate the approach, five state-of-the-art deep learning models 

were used including MobileNet, ResNet50, VGG16, DenseNet121, and InceptionV3. 

The Experimental results indicate that models trained on NS-transformed data, 

particularly DenseNet121 and MobileNet, demonstrate superior performance 

compared to those trained on the original data in terms of accuracy, precision, and 

recall. The key contributions of this work include: 

a. Introducing an NS-based pre-processing step to manage uncertainty in X-ray 

medical images, making it easier for deep learning models to extract 

meaningful patterns. 

b. Demonstrating the impact of NS theory in improving classification 

performance across five state-of-the-art models: MobileNet, ResNet50, 

VGG16, DenseNet121, and InceptionV3. 

c. Evaluating the effectiveness of our approach on two distinct medical datasets 

(spinal fracture X-rays and chest disease images)  

This hybrid methodology addresses limitations in existing deep learning 

approaches by offering a more reliable solution for medical image classification in 

uncertain environments. Our results underscore the potential of NS theory as a 

transformative tool for handling uncertainty in x-rays images, to be more 

understanded for DL models, which make this a interesting area for further 

investigation. 
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The remainder of this paper is structured as follows: Section 2 provides a detailed 

overview of the related work in the areas of Neutrosophic Sets and deep learning 

for medical image classification. Section 3 describes the methodology used in this 

study, including the NS-based preprocessing technique, and the architecture of the 

deep learning models (MobileNet, ResNet, VGG, DenseNet, Inception). In Section 4, 

we present the experimental setup, the datasets, and evaluation metrics. Section 5 

includes the results, the comparisons of the models, and a detailed discussion of the 

results. Finally, Section 6 concludes the paper with a summary of findings and 

suggestions for future work. 

 

2. Related Work 

In this section, we will review the application of Neutrosophic Set Theory and 

deep learning techniques in the classification of medical images, particularly 

focusing on X-rays images. The review will cover various approaches used to 

enhance accuracy, highlight key methodologies and utilize models that have been 

employed in recent studies, and discuss their strengths, limitations, and the gaps 

that remain in achieving more accurate and reliable approaches.  

Cei et al. [16] introduced a novel NS-based deep learning approach for analyzing 

digital mammograms, specialized X-ray images of the breast used to detect and 

diagnose breast cancer, specifically for the detection and classification of 

microcalcifications (MCs), which are critical early indicators of breast cancer. The 

technique utilized the membership sets of NS to map digital mammograms into 

three distinct domains: T, I, and F. These domains were then employed to train a 

convolutional neural network (CNN) model, facilitating tasks such as lesion 

detection and regional clustering. The proposed method achieved a sensitivity of 

92.5% for detecting MC clusters, with an area under the curve (AUC) of 0.908 and 

0.872 on the validation and test sets, respectively. These results underscore the 

effectiveness of combining NS and DL techniques in automating the detection and 

classification of MC clusters in digital mammography images. 

Khalifa [17], produced a study to explore the impact of neutrosophic sets on deep 

learning models using a limited dataset of COVID-19 X-ray images. The images were 

transformed into the NS domain, which consists of three categories: true (T), 

indeterminacy (I), and false (F) images. These transformed images were then used 

to train various DL models includes AlexNet, GoogLeNet, and ResNet18. The 

performance of the models was evaluated across four domain-original images and 

the three NS domains—comparing results based on accuracy, precision, recall, and 

F1 score. The findings demonstrated that incorporating NS into DL models could 

significantly enhance testing accuracy, particularly in the context of limited COVID-

19 datasets, highlighting its potential for improving diagnostic accuracy. The 

authors in [18] explored the use of chest CT scans for early detection of COVID-19, 

they proposed a hybrid method which integrates binary cross-entropy, transfer 
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learning, and deep convolutional neural networks techniques for enhanced 

classification accuracy. Pre-trained models like ResNet (50), VGG (19), VGG (16), 

and Inception V3 were applied to the DCNNs to improve the classification process. 

The results showed that the pre-trained models achieved accuracies of 99.07%, 

98.70%, 98.55%, and 96.23%, respectively, using the Adam optimizer. Another study 

addressed the feature selection problem in COVID-19 detection using chest X-ray 

images by integrating metaheuristic algorithms with a deep learning model [19]. In 

this approach, the VGG19 deep network was employed for feature extraction, and a 

feature selection method was applied to identify the most significant features, 

enhancing the classification performance. The selected features were then fed into 

an optimized neural network, with optimization driven by a hybrid metaheuristic 

optimizer. The results demonstrated that the proposed method achieved an 

accuracy of 99.88%, showcasing its effectiveness in improving COVID-19 detection. 

The study presented in [20] introduces the BoneNet-NS technique for classifying 

fractures in X-ray images. This approach integrates deep learning with neutrosophic 

set methodologies to effectively manage aleatoric uncertainty in medical imaging. 

The research proposes two frameworks for combining NS with DL models, named 

BoneNet-NS1 and BoneNet-NS2. Utilizing a dataset of 4,924 X-ray images, various 

DL models, including Xception, ResNet52V2, DenseNet121, and a customized CNN, 

were evaluated to distinguish between fractured and non-fractured classes. 

Statistical analyses demonstrated that BoneNet-NS2 achieved remarkable 

performance metrics across most DL models when working with NS image domain 

instead of the original images, Specifically, with the ResNet52V2 model, BoneNet-

NS2 achieved an accuracy of 99.7%, a log loss of 0.006, F1-score of 99.7. 

Jennifer et al. [21] employed a neutrosophic approach to differentiate between 

lung infection types. By classifying chest x-ray images into True (T), False (F), and 

Indeterminacy (I) set memberships, this approach effectively reduces fuzziness 

while retaining critical information for feature extraction of lung opacity. The 

preprocessing stage utilizes alpha-mean and beta-enhancement operations to 

decrease indeterminacy and enhance relevant image components. Subsequently, the 

enhanced neutrosophic images are classified using several deep learning models, 

including ResNet-50, VGG-16, and XGBoost. Experimental evaluations conducted 

on the ActualMed COVID-19 Chest X-ray and COVID-19 radiography datasets 

reveal that the enhanced neutrosophic images achieve a notable accuracy of 97.33%, 

surpassing the performance of other domain sets. 

In [22], a deep neural network model utilizing neutrosophic features for skin 

cancer diagnosis was introduced. The model applied neutrosophic-based lesion 

segmentation to reduce noise and improve classification accuracy on PH2, ISIC 2017, 

ISIC 2018, and ISIC 2019 datasets. The network, built with Inception and residual 

blocks, achieved high accuracy rates of 99.50%, 99.33%, 98.56%, and 98.04% on the 

respective datasets, outperforming many existing classifiers. These results highlight 
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the effectiveness of combining neutrosophic techniques with deep learning for skin 

cancer detection. 

Authors in [23] introduced a hybrid  to address the need for rapid and accurate 

COVID-19 detection using chest X-ray images. The study utilized Neutrosophic 

techniques (NTs) combined with machine learning (ML) methods to create an 

automated tool for classifying X-rays into COVID-19 positive or negative cases. 

Morphological features (MFs) and principal component analysis (PCA) were 

employed to extract key features from the images. Compared to RT-PCR tests, which 

are costly and require expert personnel, chest X-rays provide a more accessible and 

efficient alternative for COVID-19 diagnosis. The model achieved high performance 

metrics, including 98.46% accuracy, 98.19% precision, 98.18% sensitivity, 

demonstrating its effectiveness and superiority over other diagnostic methods. 

In [24], an encoder-decoder deep neural network incorporating neutrosophic set 

theory and indeterminacy fusion is proposed for segmenting White Blood Cells 

(WBCs). The model leverages indeterminacy within the NS domain to enhance the 

segmentation of WBCs into distinct nucleus and cytoplasm regions. This approach 

addresses the limitations of prior methods, which often overlook internal structures. 

The model surpasses three original encoder-decoder networks, achieving high 

precision rates and the greatest mean segmentation accuracy of 0.95301, 

demonstrating the effectiveness of integrating NS-based indeterminacy in 

improving medical image segmentation. 

Another hybrid method combining neutrosophic and convolutional neural 

networks (NS-CNN) is proposed in [25] for the classification of brain tumors as 

benign or malignant. The method first segments MRI images using the neutrosophic 

set – expert maximum fuzzy-sure entropy (NS-EMFSE) approach. In the 

classification stage, features from the segmented brain images are extracted using a 

CNN and then classified using SVM and KNN classifiers. Based on a 5-fold cross-

validation on 80 benign and 80 malignant tumor samples, the experimental results 

demonstrated that the CNN features performed best with the SVM classifier, 

achieving an average accuracy of 95.62%. 

Despite notable advancements in the application of NS within DL methodologies 

for addressing uncertainty and noise in medical image analysis, significant gaps 

remain regarding robustness and accuracy. Many studies report limitations in 

classification performance, often relying on small datasets, which may yield 

unpredictable results over time. Furthermore, there is a pressing need for more 

comprehensive evaluations of NS combined with DL techniques in the medical field. 

In this context, testing the proposed approach across multiple datasets not only 

enhances the robustness and generalizability of the model but also provides a more 

holistic understanding of its performance across diverse medical imaging scenarios. 
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3. Methodology 

The methodology is designed to combine the Neutrosophic Set (NS) theory and 

deep learning models for effective classification of medical X-ray images. It consists 

of three core components: first, the theoretical foundation and equations governing 

the NS domain and its application to image uncertainty handling are introduced. 

This is followed by an explanation of the deep learning models utilized, including 

MobileNet, ResNet50, VGG16, DenseNet121, and inceptionV3, highlighting their 

architecture and suitability for the task at hand. Finally, the proposed approach, 

which integrates the NS-based pre-processing with the deep learning models to 

address the challenges of image noise, ambiguity, and the need for accurate 

diagnosis through automated classification, is detailed. 

3.1. Neutrosophic Set (NS) Definitions and Preliminaries 

Neutrosophic Set (NS) theory extends traditional fuzzy set theory by introducing 

the concepts of indeterminacy, allowing for a more comprehensive representation 

of uncertainty in data. NS decomposes information into three distinct components: 

Truth (T), Indeterminacy (I), and Falsity (F). NS is particularly useful for handling 

uncertain, incomplete, and inconsistent data, which are common in medical imaging 

due to noise and low contrast in X-rays. The Key Definitions are: 

- Truth (T): Represents the degree of truth or certainty in the image's pixel 

values. 

- Indeterminacy (I): Captures the uncertainty or ambiguity present in the 

image. 

- Falsity (F): Denotes the degree of falsehood or error in the pixel values. 
 

• Neutrosophic Sets (NS) Domains 

In NS, each element x is characterized by three independent degrees: truth, 

indeterminacy, and falsehood. Mathematically, this can be expressed as follows: 
 

 𝑁𝑆(𝑥) =  {𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)} (1) 

   0 ≤  𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥) ≤ 1 (2) 

   0 ≤  𝑇(𝑥) +  𝐼(𝑥) +  𝐹(𝑥) ≤ 3 (3) 

 

where: 𝑇(𝑥)  represents the degree of truth, 𝐼(𝑥)  denotes the degree of 

indeterminacy, 𝐹(𝑥)  indicates the degree of falsehood. In image transformation 

process to Neutrosophic Domains, each pixel of an image is preprocessed by 

Neutrosophic logic to calculate its T, F, I components to determine its domain. Given 

an X-ray image G with pixel intensities, Pixel in image is represent as 𝑃(𝑥, 𝑦) the 

image can be transformed into the domains using the following: 
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- First, to handle image noise and uncertainty, the local mean 𝑔(𝑥, 𝑦) of an 

image G is calculated using a convolution operation. Then Calculate absolute 

difference between the original image and its mean 𝑂(𝑥, 𝑦). 

 𝑔(𝑥, 𝑦) =
1

25
 ∑ ∑ 𝐺(𝑥 + 𝑖, 𝑦 + 𝑗)

2

𝑗=−2

2

𝑖=−2

 (4) 

 𝑂(𝑥, 𝑦) = 𝑎𝑏𝑠(𝐺(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)) (5) 

 

- Second the NS domains for the pixel 𝑃(𝑥, 𝑦)  can be represented as follows: 

 𝑃𝑁𝑆(𝑥, 𝑦) = {𝑇(𝑥, 𝑦), 𝐼(𝑥, 𝑦), 𝑇(𝑥, 𝑦)} (6) 

 𝑇(𝑥, 𝑦) =
𝑔(𝑥, 𝑦) − 𝑔𝑚𝑖𝑛

𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛
 (7) 

 𝐼(𝑥, 𝑦) =
𝑂(𝑥, 𝑦) − 𝑂𝑚𝑖𝑛

𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛
 (8) 

 𝐹(𝑥, 𝑦) = 1 − 𝑇(𝑥, 𝑦) (9) 

where 𝒙 and 𝒚 variables typically represent the pixel coordinates in a 2D image, 

𝐺(𝑥, 𝑦) refers to the pixel value at the coordinate (𝑥, 𝑦) in the image 𝐺, 𝑰 and 𝒋 are 

indices used to denote the neighboring pixels around a given pixel (𝑥, 𝑦).  𝑔𝑚𝑎𝑥 is 

the highest average pixel value within a defined neighborhood. 𝑔𝑚𝑖𝑛 is the lowest 

average pixel value within that same neighborhood. 𝑂𝑚𝑎𝑥 is the highest absolute 

difference observed across the neighborhood. 𝑂𝑚𝑖𝑛 is the lowest absolute difference 

observed [25, 26]. By applying these transformations to each pixel of the image, the 

X-ray is decomposed into its NS components. This allows for better feature 

extraction in images with uncertainty, aiding in medical diagnoses where details are 

often unclear. 

• Entropy in Neutrosophic Sets 

Entropy is typically used to quantify the uncertainty or randomness in the image 

data [27]. It can be used to assess the information content of the image. Higher 

entropy indicates more complexity or uncertainty in the pixel values, which could 

influence how to define T, I, and F. and to adjust the parameters in those equations, 

essentially influencing how you interpret the pixel values around each G(x, y). The 

Entropy can be employed to evaluate the uncertainty associated with the image data. 

The entropy 𝐻 of a neutrosophic set can be defined as: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸) = − ∑ 𝑃(𝐾) log(𝑃(𝐾))

𝑁

𝑘=1

 (10) 

 𝐸𝑁𝑠 = 𝐸𝑇 + 𝐸𝐼 + 𝐸𝐹 (11) 
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This equation provides a measure of the uncertainty within the neutrosophic 

representation of the image, where 𝑝(𝑘) is the probability of occurrence of pixel 

value 𝑘 in the image, and 𝐸𝑇 , 𝐸𝐼 , and 𝐸𝐹 are entropies for True, Indeterminacy, 

and False, respectively. 

To adjusts the influence of the entropy of the image on the degree of truth and 

balance the response of the NS approach under different image conditions, 

additional parameters can be used such as 𝐴𝑙𝑝ℎ𝑎 (𝛼)  and 𝐵𝑒𝑡𝑎 (𝛽) , 𝐴𝑙𝑝ℎ𝑎 (𝛼) 

parameter controls the weight of entropy in the classification. A higher value 

indicates a greater reliance on the image's information content, enhancing the 

representation of areas of interest in the image. While 𝑩𝒆𝒕𝒂 (𝜷)  Acts as a 

complementary measure that reflects the degree of uncertainty in the classification 

process. It allows for a balance between certainty and uncertainty, making the model 

robust against noise and variations in the input data. 

 

  𝛼 = 𝛼𝑚𝑖𝑛 +
(𝛼𝑚𝑖𝑛 −  𝛼𝑚𝑖𝑛) (𝐸𝑛 − 𝐸𝑚𝑖𝑛 )

(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 )
 (12) 

 𝛽 = 1 −  𝛼  (13) 

  

where  𝐸𝑚𝑎𝑥   is the maximum possible entropy for an image of size 𝑚 ×  𝑛, 

𝐸𝑚𝑖𝑛represents the minimum entropy, which occurs when the image is completely 

uniform (complete certainty), while 𝛼𝑚𝑖𝑛  and 𝛼𝑚𝑖𝑛 provide bounds for the 

influence of entropy on the NS framework, allowing you to control how the model 

reacts to uncertainty in different images. 

3.2. Deep Learning Models 

Deep learning has emerged as a powerful approach for solving complex 

problems in various fields, including medical image analysis. At the core of deep 

learning is the use of neural networks, particularly Convolutional Neural Networks 

(CNNs) [28], which have revolutionized image classification tasks by automatically 

learning hierarchical feature representations directly from data. CNNs are 

specifically designed to process grid-like data, such as images, by utilizing 

convolutional layers that apply filters to detect important features like edges, 

textures, and patterns. These features are learned through multiple layers of 

abstraction, allowing CNNs to capture both low-level and high-level details within 

the images. In the medical imaging, CNNs can automatically identify complex and 

subtle patterns that may not be easily visible to the human eye, making them 

invaluable for tasks such as disease diagnosis and fracture detection. However, 

training CNNs from scratch requires vast amounts of labeled data and significant 

computational resources. To overcome this limitation, we leverage transfer learning 

[29], a technique that allows pretrained models to be adapted to new domains. 

Transfer learning uses models that have already been trained on large datasets, such 
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as ImageNet, and fine-tunes them on the target medical datasets [30]. This approach 

not only reduces the need for large amounts of training data but also significantly 

accelerates the learning process. 

In this study, deep learning models are trained to work within the neutrosophic 

domain, where medical images are transformed to capture true, false, and 

indeterminate information based on neutrosophic sets. By extracting these features, 

the models are equipped to handle the inherent uncertainty present in medical 

imaging data. CNNs are well-suited for this task as they can capture important 

structural features in medical images and can be adapted to work with the nuanced 

information provided by the neutrosophic transformation. This allows the models 

to focus on extracting the most relevant and informative features from noisy or 

ambiguous data, leading to more robust classification results. 

To further enhance performance, we employed transfer learning techniques to 

adapt pretrained CNN models to the new medical image domains. This process 

allows the models to retain useful general features from their original training (on 

natural images) while adapting to the specific task of medical image classification. 

By fine-tuning the pretrained models on the medical X-ray datasets, we can extract 

more meaningful features specific to fractures and chest diseases. This hybrid 

approach of combining neutrosophic sets with deep learning models provides a 

powerful framework for handling complex medical images. In this study, we 

applied a set of well-established deep learning models with advantages in terms of 

computational efficiency and feature extraction capabilities to classify medical X-ray 

images: 

- MobileNet: Is a streamlined CNN architecture designed for computational 

efficiency by utilizing depthwise separable convolutions [31]. 

- ResNet50: Introduces residual connections, allowing deeper networks by 

bypassing the vanishing gradient problem. These shortcut connections enable 

better gradient flow, making it easier to train very deep models [32]. 

- VGG16: Is a deep CNN model with a uniform layer structure, known for its 

simplicity and effectiveness in image classification [33]. 

- DenseNet121: provides enhanced feature propagation and reduced vanishing 

gradient issues, which makes it possible to retrieve complex image features 

more reliably [34]. 

- InceptionV3: This model incorporates techniques like factorized convolutions 

to enhance efficiency and reduce computational costs without sacrificing 

performance [35]. 

These models have been widely used for image classification tasks and have 

demonstrated strong performance in various medical imaging applications. They 

were selected for their proven ability to learn complex features from data and their 

potential to address the challenges of classification tasks with x-ray images.  By 
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employing these models, we harnessed the complementary strengths of these 

models to classify medical X-ray images, each offering unique benefits in terms of 

feature extraction and computational efficiency.  

3.3. The Proposed NS-DL Approach 

The integration of NS with Deep Learning DL techniques presents a promising 

avenue for enhancing the classification of medical X-ray images. This approach aims 

to leverage the strengths of both methodologies, addressing uncertainties inherent 

in medical imaging while utilizing the powerful feature extraction capabilities of 

deep learning models. By combining NS with DL, it can achieve more robust 

classification outcomes that account for ambiguous, incomplete, or inconsistent 

information present in medical images. Neutrosophic Logic offers a framework for 

representing and managing the uncertainty associated with medical images, 

allowing for more comprehensive information representation. It enables deep 

learning to extract relevant features from images while NS addresses the vagueness 

and ambiguity in pixel information. 

The proposed approach consists of a multi-step architecture that seamlessly 

integrates NS and DL for enhanced medical image classification: 

1. Image Acquisition and Preprocessing: Obtain X-ray images and preprocess 

them to ensure uniformity in size and format. 

2. NS Domains Conversion: Apply neutrosophic transformation to the images 

to convert them into a neutrosophic representation. This involves producing 

the NS domains: truth, indeterminacy, and falsity, providing a richer 

representation of the image data. 

3. Feature Extraction Using Deep Learning: using pre-trained deep learning 

models (MobileNet, ResNet50, VGG16, DenseNet121, and inceptionV3) to 

extract essential features from the neutrosophic images. 

4. Classification and Fine-Tuning: Adding a classifier that integrates the 

features obtained from the deep learning model with the neutrosophic 

representations, enhancing the model's ability to classify the images. 

5. Evaluation and Comparison: Assess the performance of the integrated model 

against traditional deep learning models that do not utilize NS. 

In our case. NS theory can be applied to represent the uncertainty and noise 

present in the X-rays image data by converting the image into the neutrosophic 

domain, where each pixel is assigned to three memberships: truth (T), indeterminacy 

(I), and falsity (F).  following the formula: 

 𝑇(𝑥, 𝑦) = 𝜇𝑇(𝑥, 𝑦), 𝐼(𝑥, 𝑦) = 𝜇𝐼(𝑥, 𝑦), 𝐹(𝑥, 𝑦) = 𝜇𝐹(𝑥, 𝑦) (14) 

where 𝜇𝑇(𝑥, 𝑦), 𝜇𝐼(𝑥, 𝑦) and 𝜇𝐹(𝑥, 𝑦) are the actual calculated membership functions 

that map the pixel’s values into the truth, indeterminacy, and falsity components 

respectively. These values are typically normalized between 0 and 1. These three 



Neutrosophic Sets and Systems, Vol. 81, 2025     686  

 

 

Walid Abdullah, Enhancing Medical X-Ray Image Classification with Neutrosophic Set Theory and Advanced Deep 

Learning Models  

components represent different aspects of the pixel's characteristics. (T) represents 

the degree to which a pixel belongs to a region of interest (e.g., a bone or fracture). 

(I) captures the uncertainty or vagueness in the pixel, which may be due to noise, 

low contrast, or blurring in the X-ray image. (F) represents the degree to which a 

pixel does not belong to the region of interest. Fig.1. shows an sample of x-ray images 

and their corresponding T, I, and F neutrosophic image domains. 

 

 Original images True Images Indeterminacy images Falsity images 

Cervical  

Spine 

    

Chest  

Scan 

    

Figure 1: Sample X-ray Images with Corresponding True (T), Indeterminacy (I), 

and False (F) Neutrosophic Image Domains 

 

Transfer learning technique [29] is used to optimize the performance of these 

models, where the pretrained versions MobileNet, ResNet50, VGG16, DenseNet121, 

and InceptionV3, originally trained on the ImageNet dataset, were fine-tuned for 

our specific medical X-ray datasets. Additionally custom dense layers were added 

on top of the pretrained models for classification into the target classes of the spine 

fracture and chest disease datasets. The models were trained using the Adam 

optimizer, with a categorical crossentropy loss function [36].  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑙𝑜𝑠𝑠(𝐶𝐶𝐸) = − ∑ 𝑦𝑖 ∙ log 𝑦�̌�

𝑀

𝑖=1

 (15) 

where 𝑦𝑖 is true valur  𝑦�̌� is shorthand for a vector that contains all the outputs that 

were predicted based on the training samples. Fine-tuning allowed the models to 

adapt to the specific features of the medical images while leveraging the powerful 

feature extraction capabilities they had already learned from ImageNet. Fig.2 show 

the architecture for the proposed NS-DL approach, While Algorithm.1 showing the 

main its main steps. 
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Figure 2: Architecture of the Proposed NS-DL approach 

 

Algorithm 1: The Proposed NS-DL Approach 

Input:  Input_dataset(G), number of epochs (T). 

Output: Model Score (S). 

1. 

 

 

2. 

 

 

 

 

3. 

 

 

 

 

5. 

 

 

Preprocessing the Input Dataset: 

- Convert G to grayscale to simplify pixel intensity calculations and reduce 

computational complexity.  

Pixel-Level Calculations: 

- Calculate pixel intensity G (x, y), which represents the value of each pixel at 

coordinates (x, y) 

- Calculate local mean O min, which helps identify localized intensity variations in the 

image. 

Generate Neutrosophic Domains: Compute Truth, Indeterminacy, Falsity domains. 

- T (x, y) = (G(x, y) - G_min) / (G_max - G_min)   

- I (x, y) = abs(G(x, y) - O_min) / (O_max - O_min)  

- F (x, y) = 1 - T(x, y)  

- Normalize the resulting image output for consistent input to the DL models. 

Model Implementation:  

- Utilize five state-of-the-art deep learning models: MobileNet, ResNet, VGG, 

DenseNet, and Inception 
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6. 

 

 

. 

 

 

 

7. 

- Fine-tune each model to adapt to the specific features of the NS images. 

Train each model separately on the three NS domains images. 

- t = 0   // for the current epoch 

- While t < T // number of epochs 

- Computing the score function 

- Check Early stopping conditions (if satisfied -> end training) 

- Updates the model’s weights. 

t = t +1 

After training, Calculate the final score S of the model and evaluate it. 

 

4. Experimental Setup and Analysis 

In this section, we describe the datasets, environment setup, and evaluation 

metrics used to assess the performance of the proposed approach. The experiments 

are designed to evaluate the effectiveness of integrating Neutrosophic Sets (NS) with 

deep learning models (MobileNet, ResNet, VGG16, DenseNet121, and Inception) for 

classifying X-ray images. We focus on the classification of medical X-rays with the 

goal of improving diagnostic accuracy through feature extraction and uncertainty 

management using NS. 

4.1. Utilized Dataset 

In this study, the proposed models were evaluated using two distinct X-ray 

image datasets. The first dataset focuses on Cervical Spine Fracture and Dislocation, 

while the second is utilized for Chest Disease classification [37]. Each dataset 

comprises images that have been meticulously labeled by medical experts to ensure 

accuracy. The Chest Disease X-ray Dataset contains images categorized into four 

labels: Hemothorax, Pneumothorax, Flail Chest, and Normal. In contrast, the 

Cervical Spine X-ray Dataset includes three labels: Fracture, Dislocation, and 

Normal. Both datasets consist of images in JPEG and JPG formats, each with a 

resolution of 256 x 256 pixels. Table 1 presents the distribution of images for each 

class in both datasets, while Fig.3 shows the proportional distribution of Image 

Classes, providing insight into the balance and representation of each category used 

for training and evaluation. 

Table 1: Image Class Distribution for utilized X-ray Datasets 

Chest Disease Dataset Cervical Spine dataset 

Class ID Class Name Number of images Class ID Class Name Number of images 

0 Flail 525 0 Dislocation 530 

1 Hemothorax 422 1 Fracture 772 

2 Normal 481 2 Normal 707 

3 Pneumothorax 522    
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Fig 3: Percentage distributions of Image Classes in X-ray Datasets  

In the image preprocessing steps. Each image is converted to grayscale to 

simplify the data and focus on essential features without color distractions. 

Following this, neutrosophic transformation is applied, generating three NS 

domains: True, Indeterminate, and False. This transformation aids in capturing the 

nuanced details of the X-ray images, facilitating better feature extraction. Pixel 

normalization is then performed on the transformed images. This process 

standardizes the pixel values, ensuring they fall within a specific range, it helps 

accelerate the training process and improves the model's convergence by preventing 

issues related to varying scales of pixel values. Furthermore, Data augmentation 

techniques are applied next to enhance the diversity of the training dataset and 

mitigate the risk of overfitting [38]. Common augmentation strategies include 

rotation, flipping, zooming, and shifting of images. These techniques allow the 

model to learn more robust features and improve its generalization to unseen data. 

Finally, the datasets are split into training, validation, and test sets with a ratio of 

70%, 15%, and 15%, respectively. The validation set plays a critical role in monitoring 

the model's performance during training, allowing for early stopping and 

hyperparameter tuning without overfitting to the training data. This systematic 

approach ensures that the model is well-prepared to achieve optimal performance 

on unseen test data. 

4.2. Environment Setup and Hyperparameters Tuning 

All experiments are conducted in a computational environment with the 

following specifications: 

• Hardware: NVIDIA Tesla P100 GPU with 16GB of memory, 30GB RAM, 

and an Intel Xeon processor. 

• Software: The experiments are implemented using Python 3.10, 

TensorFlow 2.15, Karas API 3.3. The system runs on a Kaggle 

environment. 

For deep learning models, the hyperparameters are carefully tuned to optimize 

performance, all utilized models (MobileNet, ResNet, VGG16, DenseNet121, and 

Inception) were Initialized with pretrained ImageNet weights, a learning rate of 
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0.001, batch size of 32, and an Adam optimizer [39]. The model is fine-tuned for 100 

epochs with early stopping technique [40]. To fine-tune the pretrained models, we 

incorporated custom dense layers on top to classify the target categories in both the 

spine fracture and chest disease datasets. This fine-tuning process enabled the 

models to adjust to the unique characteristics of the medical images while still 

benefiting from the robust feature extraction capabilities previously acquired from 

ImageNet [28]. The specific configurations of the new layers and their 

hyperparameters for are presented in Table2. 

 

Tabel 2: The configurations of the new layers and hyperparameters settings 

Layer Parameter Value 

Dense layer_1 Number of units 128 

 Activation function Rule 

Dense layer_2  Number of units 64 

 Activation function Rule 

Dense layer_3  Number of units N_classes 

 Activation function softmax 

 Optimizer Adam 

 Learning rate 0.001 

 Epochs 100 

 Early stopping Monitor=loss, Patience=10 

 

4.3.Evaluation Metrices 

To evaluate the performance of the proposed approach across the cervical spine 

fracture and chest disease classification tasks, a comprehensive set of evaluation 

metrics was employed: (Accuracy, Precision, Recall, F1-Score) These metrics provide 

insight into the model’s effectiveness in identifying and categorizing X-ray images, 

The mathematical formulas for the utilization of evaluation metrices can be defined 

as follows: 

 Accuercy = (𝑇𝑃 + 𝑇𝑁)/ 𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (16) 

 Precision = 𝑇𝑃/ (𝑇𝑃 + 𝐹𝑃) (17) 

 Recall = 𝑇𝑃/ (𝑇𝑃 + 𝐹𝑁) (18) 

 F1 − score = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (19) 

where 𝑇𝑃  is the correctly classified positive cases, 𝑇𝑁  is the correctly classified 

negative cases, 𝐹𝑃  is the incorrectly classified positive cases, and  𝐹𝑁  is the 

incorrectly classified negative cases. These four metrices allow us to assess the 

performance of different models from various perspectives, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 measures the 

overall correctness of the model by calculating the ratio of correctly classified images 

to the total number of images, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 evaluates the model’s ability to correctly 
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identify positive instances, providing a focus on the relevance of the true positive 

predictions. High precision indicates that the model makes fewer false positive 

errors, which is crucial in medical diagnosis to avoid misidentifying normal cases as 

diseased, 𝑅𝑒𝑐𝑎𝑙𝑙, also known as sensitivity or true positive rate, reflects the model's 

capability to retrieve all relevant instances. A higher recall demonstrates the model's 

ability to correctly detect diseased cases, making it an essential metric in the context 

of medical imaging, where missed diagnoses could have severe consequences, and 

𝐹1 𝑠𝑐𝑜𝑟𝑒 combines precision and recall into a single metric, acting as their harmonic 

mean. This score is particularly useful when there is an imbalance in the dataset, as 

it provides a more nuanced evaluation by considering both false positives and false 

negatives. 

Receiver Operating Characteristic (ROC) curves and the associated Area Under 

the Curve (AUC) are also used to offer a graphical representation of the model’s 

ability to differentiate between the positive and negative classes [41]. The ROC curve 

plots the true positive rate against the false positive rate, providing insight into the 

trade-off between sensitivity and specificity at various classification thresholds. A 

higher AUC value suggests that the model has a strong ability to distinguish 

between classes, which is critical for clinical decision-making. 

 𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅 (𝐹𝑃𝑅)    𝑑(𝐹𝑃𝑅)
1

0

 (20) 

where 𝑇𝑃𝑅 is the true positive Rate, and 𝐹𝑃𝑅 is the false positive rate. The Area 

Under the ROC Curve (AUC-ROC) gives a single scalar value summarizing the 

performance of the classifier, where the perfect classifier has an AUC-ROC of 1. This 

collection of metrics provides a comprehensive evaluation of the model’s 

performance, covering both overall accuracy and the balance between false positives 

and false negatives, and ensures that the evaluation process thoroughly captures the 

strengths and limitations of the models, it is particularly important in the medical 

domain, where misclassification can have significant consequences. 

5. Results and Discussion 

In this section, we present the comparative performance of deep learning models 

trained on both the original and NS transformed data. The models were evaluated 

on two medical imaging datasets: spinal injury detection and chest disease 

classification. The results comparison focuses on the impact of NS image 

transformation, the classification performance and the. The primary evaluation 

metrics used include accuracy, precision, recall, and F1-score. Results are broken 

down by the original dataset and the NS-transformed data, specifically the True (T), 

Indeterminacy (I), and Falsity (F) domains of the NS theory. We highlight the 

models' improvements in uncertainty handling, leading to better classification 

accuracy and overall performance. 
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5.1. Results in Cervical Spine dataset 

The results for the spinal injury detection dataset demonstrate the effectiveness 

of applying NS transformations to the image data. As shown in Table 3, on the 

original dataset, MobileNet demonstrated the highest overall accuracy of 99.00%, 

with F1-score value of 98.96%. Upon applying NS transformations, significant 

enhancements were observed. In the True (T) domain, both InceptionV3 and 

DenseNet121 attained notable accuracies of 99.67%, accompanied by F1-scores of 

99.64% and 99.69%, respectively. The confusion matrices and ROC curves for 

InceptionV3 and DenseNet121 are presented in Fig 4 and Fig 5, respectively. 

Furthermore, in the Indeterminacy (I) and Falsity (F) domains, both DenseNet121 

and MobileNet exhibited remarkable improvements, each achieving an accuracy of 

99.67% with balanced performance metrics. These results indicate that NS 

transformations significantly bolster the performance of deep learning models in 

spinal injury detection, improving their accuracy and robustness across various 

conditions. 

Table 3: Performance Metrics of DL Models on Original and NS Domains C-Spinal 

Injury Detection Datasets 

Data Model Accuracy Precision Recall F1-Score 

Original Data 

 

MobileNet   99.00 98.81 99.15 98.96 

ResNet50 95.99 95.72 96.15 96.91 

VGG16 98.33 98.21 98.32 98.26 

InceptionV3 96.99 97.05 97.21 97.11 

DenseNet121 99.00 99.81 99.10 99.94 

True (T) NS 

domain Data 

  

MobileNet   99.33 99.18 99.31 99.23 

ResNet50 97.32 97.05 87.31 97.17 

VGG16 98.66 98.63 98.25 98.43 

InceptionV3 99.67 99.60 99.67 99.64 

DenseNet121 99.67 99.68 99.71 99.69 

 

Indeterminacy 

(I) NS domain 

Data 

MobileNet   99.33 99.17 99.38 99.26 

ResNet50 96.99 96.71 96.89 96.69 

VGG16 99.33 99.05 99.41 99.22 

InceptionV3 98.33 97.81 98.56 98.13 

DenseNet121 99.67 99.60 99.67 99.64 

Falsity (F) NS 

domain data 

MobileNet   99.67 99.72 99.57 99.64 

ResNet50 96.99 96.65 97.04 96.83 

VGG16 98.33 97.98 98.13 98.05 

InceptionV3 98.33 98.26 97.75 97.98 

DenseNet121 99.33 99.33 99.31 99.31 
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(A) (B) 

Figure 4: Performance Analysis of the Inception Model on True (T) Domain Images: (a) 

Confusion Matrix; (b) ROC Curve. 

 

  

(A) (B) 

Figure 5: Performance Analysis of the DenseNet Model on True (T) Domain Images: (a) 

Confusion Matrix; (b) ROC Curve. 

5.2. Results in Chest Disease Classification 

For the chest disease classification dataset, similar trends were observed, with 

NS-transformed data providing a notable boost in performance. As shown in Table 

4, the DenseNet model achieved the highest performance on the original dataset, 

with an accuracy of 86.69%. In the NS-transformed images, DenseNet excelled in the 

True domain, achieving an accuracy of 88.40%, followed closely by the MobileNet 

model in the Indeterminacy domain, which significantly improved from its original 

performance, attaining an accuracy of 88.05%. The confusion matrices and ROC 

curves for these two best models are presented in Figures 6 and 7. These results 

underscore the effectiveness of NS transformations in enhancing the performance of 

deep learning models for chest disease classification, particularly highlighting 

DenseNet121's capabilities in accurately detecting conditions within this dataset. 



Neutrosophic Sets and Systems, Vol. 81, 2025     694  

 

 

Walid Abdullah, Enhancing Medical X-Ray Image Classification with Neutrosophic Set Theory and Advanced Deep 

Learning Models  

Table 4: Performance Metrics of DL Models on Original and NS Domains Chest 

Diseases Classification Datasets 

Data Model Accuracy Precision Recall F1-Score 

Original Data 

 

MobileNet   85.32 86.27 85.25 85.20 

ResNet50 75.43 75.68 75.37 75.43 

VGG16 83.96 84.39 83.79 83.34 

InceptionV3 83.28 82.49 82.44 82.37 

DenseNet121 86.69 86.43 86.21 86.06 

True (T) NS 

domain Data 

  

MobileNet   87.37 86.97 86.73 86.64 

ResNet50 76.79 76.07 75.78 75.50 

VGG16 84.30 84.62 84.10 84.28 

InceptionV3 86.35 86.24 85.95 85.62 

DenseNet121 88.40 87.70 87.53 87.48 

 

Indeterminacy 

(I) NS domain 

Data 

MobileNet   88.05 87.46 87.19 87.19 

ResNet50 79.86 79.65 79.98 79.39 

VGG16 81.91 81.69 81.40 81.40 

InceptionV3 83.62 83.24 82.68 82.78 

DenseNet121 87.37 87.07 86.63 86.65 

Falsity (F) NS 

domain data 

MobileNet   86.69 86.20 86.58 86.32 

ResNet50 76.45 76.28 75.93 75.21 

VGG16 83.96 83.41 83.52 82.94 

InceptionV3 82.94 82.84 83.85 82.74 

DenseNet121 87.71 87.47 88.26 87.63 

 

  

(A) (B) 

Figure 6: Performance Analysis of the DenseNet Model on True (T) Domain Images: (a) 

Confusion Matrix; (b) ROC Curve. 
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(A) (B) 

Figure 7: Performance Analysis of the MobileNet Model on Indeterminacy (I) Domain Images: 

(a) Confusion Matrix; (b) ROC Curve. 

5.3.Summary of Experiments 

The results of the experiments clearly demonstrate the positive impact of 

Neutrosophic Set (NS) transformations on the performance of deep learning models 

for medical image classification across both the cervical spine and chest disease 

classification datasets. For the C-spinal injury detection dataset, NS-transformed 

models exhibited significant improvements in performance metrics. DenseNet121 

and Inceprtion emerged as the top performer in the True (T) domain, achieving an 

accuracy of 99.67%, while the original dataset accuracy was 99.00%, 96.99%. 

respectively. Incepton also showed notable enhancement, achieving an accuracy of 

99.33% in the Indeterminacy domain compared to its original accuracy of 99.00%. 

These improvements underscore the effectiveness of NS transformations in reducing 

uncertainty and enhancing the models’ ability to extract relevant features. In the 

chest disease classification dataset, DenseNet121 again demonstrated the highest 

accuracy among the models, achieving 88.40% on the True domain, a significant 

improvement from 86.69% on the original dataset. MobileNet performed well too, 

with an accuracy of 87.37% on the True domain, showing a marked increase from 

85.32% on the original data. Other models, such as InceptionV3 and VGG16, also 

benefited from NS transformations, indicating that these methods enhance overall 

classification performance across various conditions. These results highlight the 

potential of integrating NS theory into medical image classification workflows, 

particularly in scenarios characterized by uncertainty. enabling more accurate 

capture of key features associated with spinal injuries and chest diseases, which 

could lead to improved diagnostic accuracy in real-world clinical applications. 

6. Conclusion and future Work 

This study presents a hybrid approach that integrates Neutrosophic Set (NS) 

theory with deep learning models to enhance the classification of medical X-ray 

images across two challenging datasets: cervical spine injuries and chest disease 

classification. Traditional deep learning models often struggle with the inherent 
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noise and uncertainty present in medical images, leading to reduced diagnostic 

accuracy. By incorporating NS theory, which categorizes information into True (T), 

Indeterminate (I), and False (F) domains, we effectively addressed these challenges. 

Our results demonstrate that models trained on NS-transformed data consistently 

outperformed those trained on original datasets. Specifically, DenseNet121 achieved 

the highest accuracy in both datasets, with 88.40% for chest disease classification and 

99.97% for cervical spine injury detection. MobileNet and Inception modes also 

exhibited significant improvements in the different NS domain. These findings 

highlight the effectiveness of combining NS theory with state-of-the-art deep 

learning models, as the transformed data allowed for better feature extraction and 

more accurate predictions across various medical imaging scenarios. The 

incorporation of NS theory not only enhances the ability to manage uncertainty in 

medical images but also provides a robust solution for improving diagnostic 

accuracy. However, this study has certain limitations. One limitation is the reliance 

on only X-ray medical datasets (cervical spine and chest diseases). While these 

datasets are valuable, they may not fully represent the diversity and complexity of 

medical images encountered in real-world clinical environments. The 

generalizability of our approach to other medical imaging domains requires further 

investigation. Additionally, while NS theory provides an improved mechanism for 

handling uncertainty, it may introduce extra computational overhead, which could 

be a challenge for resource-constrained environments. Future work will focus on 

expanding the application of NS theory to additional medical imaging modalities, 

such as MRI and CT scans, to further validate its effectiveness. Additionally Future 

studies will also aim to optimize the computational efficiency of the NS-DL 

approach, particularly in terms of processing time and resource utilization. This will 

help ensure that our approach is not only accurate but also feasible for deployment 

in real-time clinical settings. 
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