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Abstract. In [6], the relationship between hyperrealism and antirealism in physics is proposed. Hyperrealism-
Antirealism describes a spectrum where theories transition from being empirically grounded (realist) to specu-
lative frameworks dominated by untestable assumptions, thereby detaching from observable reality.

This paper presents a concise mathematical formalization of the spectrum of hyperrealism-antirealism in
theoretical physics and the philosophy of science. We propose a method to quantify the extent to which
a theory is “hyperreal” or “antirealist” using a ratio of testable to untestable statements. Additionally, we
provide several theorems that outline the conditions under which theories shift into hyperreal or antirealist
domains. Finally, we explore how Neutrosophic Logic [38] can capture intermediate degrees between realism
and antirealism, offering a nuanced perspective on the spectrum.
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1. Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required
for the discussions in this paper.

1.1. Physical Theory and Realism

This subsection provides an explanation of Physical Theory and Realism. Relevant defini-
tions and simple examples are presented below.

Definition 1.1 (Set). [22] A set is a collection of distinct objects, known as elements, that
are clearly defined, allowing any object to be identified as either belonging to or not belonging

Takaaki Fujita, Florentin Smarandache, and Victor Christianto, A Concise Formalization of Hyperrealism-
Antirealism in Physics Using Neutrosophic Logic

1



Neutrosophic Sets and Systems, Vol.81,�2025 700

to the set. If A is a set and x is an element of A, this membership is denoted by x ∈ A. Sets
are typically represented using curly brackets.

Definition 1.2 (Physical Theory). [6] Let T be a physical theory expressed as a formal
system with:

• A set of axioms or postulates A = {A1, A2, . . . , An}.
• A set of theorems or derived statements S = {s1, s2, . . .} obtainable from A by rules

of inference.

We assume that T is sufficiently well-defined so that each s ∈ S has a clear meaning in
principle.

Definition 1.3 (Testable vs. Untestable Statements). [6] Partition S into two subsets:

Stest = { s ∈ S : s is falsifiable or empirically verifiable in principle},

Suntest = { s ∈ S : s is not empirically testable in principle or is operationally meaningless}.

We do not distinguish here whether Suntest statements are in principle untestable or just
untestable given current technology; we treat them uniformly as “not testable.”

Example 1.4 (Quantum Field Theory (QFT)). (cf. [20, 28, 28]) A Quantum Field Theory
TQFT typically includes:

• Axioms/postulates: Field operators, canonical commutation relations, etc.
• Derived statements: Predictions about particle scattering cross-sections, decay rates,

and vacuum fluctuations.

S = {scattering amplitude relations, vacuum state expansions, renormalization group equations, etc.}.

Many statements here are testable via high-energy experiments (e.g. collider data for scattering
cross-sections). However, certain assumptions about non-perturbative vacuum structure or
extreme energy behaviors could remain untestable with current technology.

Example 1.5 (Cosmological Dark Energy Models). Consider a physical theory of Dark En-
ergy that posits a particular scalar field or exotic fluid as the driver of accelerated cosmic
expansion(cf. [7, 31,33]). The domain of statements:

S = {Hubble parameter evolution, equation of state parameter,

cosmic microwave background constraints, etc.}.

A subset of these can be tested with astrophysical data (e.g. supernova observations, cosmo-
logical distance measurements), thus belonging to Stest. More speculative claims (e.g. about
the ultimate fate of the universe beyond observable horizons or about higher-dimensional mod-
ifications) might be effectively untestable with present or near-future technology, placing them
in Suntest.
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Example 1.6 (In the Context of Quantum Gravity). A Quantum Gravity framework TQG

(cf. [15, 18]) might hypothesize:

• Stest: Low-energy quantum gravitational effects potentially observable in precise mea-
surements of graviton scattering at extremely high energies (though technologically
challenging).

• Suntest: Specific features of spacetime foam or Planck-scale discretization that may be
inaccessible to direct experimentation.

Thus, while some approximate predictions about gravitational corrections might be tested in-
directly, the deeper structure of spacetime at 10−35 meters could remain untestable in practice.

1.2. Hyperrealism-Antirealism Measure

This subsection presents the definition of the Hyperrealism-Antirealism Measure. Addition-
ally, we provide several concrete examples of Realist, Hyperrealist, and Antirealist concepts,
as discussed in [6].

Definition 1.7 (Hyperrealism-Antirealism Measure). [6] Define the Hyperrealism-Antirealism
Ratio (HAR) of the theory T as

HAR(T ) =

∣∣Suntest

∣∣∣∣Stest

∣∣ .

We say:

• T is realist or empirically grounded if HAR(T ) < 1.
• T is hyperrealist if HAR(T ) ≥ 1.
• T is antirealist in the extreme if HAR(T ) → ∞, i.e., if

∣∣Stest

∣∣ is finite (or negligible)
while

∣∣Suntest

∣∣ grows arbitrarily large.

Example 1.8 (Solid-State Physics). (cf. [5, 17]) A typical solid-state model for semiconduc-
tors or superconductors includes statements about electron band structures, doping effects,
and transport phenomena. Much of this is directly testable via laboratory measurements of
conductivity, critical temperatures, tunneling spectra, and so on. Thus,

HAR(Tsolid) =
|Suntest|
|Stest|

< 1,

since the majority of statements (e.g. doping concentration vs. conductivity) can be empirically
verified. This places standard solid-state physics squarely in the realist category.

Example 1.9 (Stoichiometric Chemical Bonding). (cf. [34]) Consider a simple chemical the-
ory focusing on stoichiometry and bond energy approximations. Most statements, such as
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predicted yields of reactions under certain conditions, are testable in a basic chemistry lab.
Hence

HAR(Tchem) =
|Suntest|
|Stest|

� 1,

reflecting a highly realist approach with strong empirical grounding.

Example 1.10 (Electromagnetism as Realist or Mildly Hyperrealist). Classical electromag-
netism (Maxwell’s equations) [16, 23, 36] is also highly testable. Most statements, such as the
inverse-square law for electric fields, can be verified. However, some advanced claims (e.g.
certain theoretical boundary conditions or idealized continuous distributions) might not be
directly testable, so

Stest > Suntest,

and typically HAR(TEM) < 1. Thus it remains primarily realist. In specialized theoretical
corners (say, extremely idealized boundary conditions or vacuum states), there may be a mild
drift toward hyperreal statements, but overall the testable component is dominant.

Example 1.11 (String Theory: Hyperrealist Domain). String Theory [41] posits that fun-
damental particles are tiny vibrating strings living in higher-dimensional spaces. Many core
aspects, such as the shape of extra dimensions or the existence of a vast “landscape” of possible
vacua, remain experimentally unverified or difficult to test.

Thus, while some statements might be in Stest (e.g., certain low-energy effective predictions),
a large fraction of the theory’s claims lie in

Suntest = {existence of extra dimensions, specific compactifications, multi-brane setups, etc.}.

If the untestable claims outnumber the testable predictions,

HAR(Tstring) =
|Suntest|
|Stest|

≥ 1,

placing String Theory in a hyperrealist regime. Whether it remains so depends on future
experimental possibilities.

Example 1.12 (Quantum Cosmology). Quantum cosmology [4] often deals with the wave-
function of the universe, decoherence at Planck epochs, and speculative boundary conditions
(e.g. Hartle–Hawking no-boundary proposal). While some broad consequences might be tested
indirectly (through cosmic microwave background patterns), many core statements (like the
initial wavefunction of the entire universe) may remain effectively untestable. Consequently,

HAR(Tqcosmo) ≥ 1

if untestable statements dominate. This places quantum cosmology in a hyperrealist regime,
at least until novel observations or conceptual breakthroughs reduce Suntest.
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Example 1.13 (Multiverse Hypotheses). Multiverse scenarios (cf. [26]) propose that our
universe is one among many, each with potentially different physical constants. While certain
anthropic arguments might be testable in a limited sense, many claims (e.g. the existence of
infinitely many parallel universes) are untestable by definition. Thus

|Suntest| � |Stest|,

and the theory’s HAR is typically ≥ 1, indicating a hyperrealist orientation.

Example 1.14 (A Fully Untestable Speculative Theory: Antirealist Limit). Consider a hy-
pothetical framework full of metaphysical claims (cf. [27]) with no empirical handle:

Suntest = {“Invisible pink unicorns cause time fluctuations,” etc.}, Stest = ∅.

Hence,

HAR(Textreme) =
|Suntest|
|Stest|

=
finite or infinite

0
→ ∞.

Such a theory is antirealist in the extreme, offering no measurable or falsifiable predictions.

Example 1.15 (“Simulation Hypothesis” without Empirical Anchors). (cf. [21,35]) A version
of the simulation hypothesis posits that our entire universe is a computer simulation run by
higher beings. If framed in a way that absolutely no test could ever falsify or confirm it (i.e.
no predicted anomalies), then

Stest = ∅, Suntest 6= ∅, HAR → ∞.

This is antirealist in the extreme, since no empirical method can, in principle, verify or refute
the scenario.

Example 1.16 (Mythical Ether Theory (Unrevisable)). Historically, the luminiferous ether
[29, 30] was once hypothesized as the medium for light propagation. After experiments (e.g.
Michelson–Morley) failed to detect it, a purely ad hoc “ether” with undetectable properties
became unfalsifiable. If one persists in an ether theory that automatically adjusts postulates
to evade every new test, then

Stest → 0, Suntest grows.

Hence HAR → ∞. This effectively renders the theory antirealist, as it ceases to produce
meaningful testable claims.

2. Results of This Paper

This section outlines the main results of this paper.
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2.1. Properties of Hyperrealism

In this subsection, we explore the properties of Hyperrealism and related concepts through
several theorems. The theorems are presented below.

Theorem 2.1 (Threshold for Hyperrealism). Let T be a physical theory with two disjoint sets
of statements: Stest (testable) and Suntest (untestable). Suppose there exists a constant α ≥ 1

such that

|Suntest| ≥ α
∣∣Stest

∣∣.
Then the Hyperrealism–Antirealism Ratio, defined as

HAR(T ) =
|Suntest|
|Stest|

,

satisfies HAR(T ) ≥ 1. In particular, T lies in the hyperrealist regime.

Proof. By definition of HAR(T ),

HAR(T ) =

∣∣Suntest

∣∣∣∣Stest

∣∣ ≥
α
∣∣Stest

∣∣∣∣Stest

∣∣ = α ≥ 1.

Hence HAR(T ) ≥ 1, placing T in at least a hyperrealist domain.

Remark 2.2. This result formalizes the intuition that if untestable statements dominate (or
at least match) the testable ones by a constant factor α ≥ 1, the theory departs from a strictly
empirical grounding and enters the hyperrealist regime.

Theorem 2.3 (Antirealist Limit). Let T be a physical theory whose testable statements remain
bounded in number, i.e.

∣∣Stest

∣∣ = T0 < ∞, while its untestable statements
∣∣Suntest

∣∣ grow
unboundedly over successive reformulations or expansions. Then

lim
expansions

HAR(T ) = lim
n→∞

|Suntest|(n)
T0

= ∞.

Hence, in the limit, T becomes antirealist.

Proof. Label each expansion or new version of the theory by an index n ∈ N, and let U(n) =

|Suntest|(n) denote the number of untestable statements at stage n. Assume U(n) → ∞ as
n → ∞, while |Stest| = T0 remains fixed (or does not grow comparably). Then

HAR(T )(n) =
U(n)

T0
−−−→
n→∞

∞.

Thus, as n increases, the Hyperrealism–Antirealism Ratio diverges, implying T enters the
antirealist regime.
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Corollary 2.4 (Surfeit of Speculation Implies Antirealism). If |Suntest| grows without bound,
while |Stest| stays finite or increases more slowly, then eventually

HAR(T ) → ∞,

driving the theory into an antirealist limit.

Remark 2.5 (Scope and Limitations). Although these measures (ratio definitions and thresh-
olds) offer a convenient way to quantify how far a theory drifts from empirical verifiability, the
distinction between “testable” and “untestable” can be somewhat fluid. Future technological
or conceptual breakthroughs may convert currently untestable statements into testable ones.
Nevertheless, these theorems underscore a key principle: once untestable content becomes
overwhelmingly large, the theory effectively detaches from strict empirical foundations and
moves toward hyperrealism or even antirealism.

2.2. Neutrosophic Realism Index

The Neutrosophic Realism Index is a concept derived from the application of Neutrosophic
Logic to the framework of realism. Neutrosophic Logic [8, 11, 37–40] is widely recognized
as a generalization of Fuzzy Logic [42] and Intuitionistic Fuzzy Logic [2, 3]. The principles
of Neutrosophic Logic have been applied across various fields, including graph theory [9, 12,
13], topology [19, 32], algebra [24, 25], automata [14], and linguistics [10], demonstrating its
versatility and broad utility. Below, we present the definition of the Neutrosophic Realism
Index, along with relevant theorems and properties.

Definition 2.6 (Neutrosophic Logic). [38] Neutrosophic Logic extends classical logic by
assigning to each proposition a truth value comprising three components:

v(A) = (T, I, F ),

where T, I, F ∈ [0, 1] represent the degrees of truth, indeterminacy, and falsity, respectively.

Example 2.7 (Real-Life Application of Neutrosophic Logic: Weather Forecast). (cf. [1]) Con-
sider a weather forecast predicting that it will rain tomorrow. Using Neutrosophic Logic, this
prediction can be expressed as:

v(“It will rain tomorrow”) = (0.7, 0.2, 0.1),

where:

• T = 0.7: There is a 70% confidence that the statement is true based on meteorological
data.
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• I = 0.2: There is a 20% level of indeterminacy due to factors such as changing weather
conditions or measurement uncertainties.

• F = 0.1: There is a 10% chance that the statement is false, possibly due to model
inaccuracies or unforeseen events.

This representation highlights the nuanced uncertainties involved in real-world predictions,
making Neutrosophic Logic suitable for domains like weather forecasting, decision-making,
and risk assessment.

Definition 2.8 (Neutrosophic Realism Index). [6] Let each statement s ∈ S have a triple
(Ts, Is, Fs), where Ts, Is, Fs ∈ [0, 1] with Ts + Is + Fs ≤ 3. Define the Neutrosophic Realism
Index (NRI) for the theory as an average:

NRI(T ) =
1

|S|
∑
s∈S

Ts.

Example 2.9 (A Highly Realist Theory). Let T1 have |S| = 4 statements: S = {s1, s2, s3, s4}.
Suppose each statement has (Ts, Is, Fs) as follows:

s1 : (0.9, 0.05, 0.05), s2 : (1.0, 0.0, 0.0), s3 : (0.85, 0.10, 0.05), s4 : (0.95, 0.02, 0.03).

Then the sum of Ts is (0.9 + 1.0 + 0.85 + 0.95) = 3.70. Dividing by |S| = 4, we get

NRI(T1) =
3.70

4
= 0.925.

Since 0.925 is quite high (close to 1), this theory is strongly realist by Theorems 2.12 and 2.14.

Example 2.10 (A Partially Realist Theory). Let T2 have |S| = 3 statements with:

s1 : (0.5, 0.4, 0.1), s2 : (0.6, 0.2, 0.2), s3 : (0.4, 0.35, 0.25).

The sum of Ts is (0.5 + 0.6 + 0.4) = 1.5. Hence

NRI(T2) =
1.5

3
= 0.5.

If we define α = 0.3 and β = 0.8 as the thresholds, we see 0.5 falls in the intermediate
range α ≤ 0.5 < β. So T2 is partially realist, reflecting moderate truth membership but also
significant indeterminacy or falsehood.

Example 2.11 (A Low-NRI (Hyperrealist/Antirealist) Theory). Consider T3 with |S| = 3

statements:
s1 : (0.1, 0.5, 0.4), s2 : (0.0, 0.4, 0.6), s3 : (0.05, 0.3, 0.65).

The sum of Ts is (0.1 + 0.0 + 0.05) = 0.15, so

NRI(T3) =
0.15

3
= 0.05.

That is very low, indicating most statements are closer to indeterminate or false than to true.
By Theorem 2.12, this places T3 in the strongly antirealist/hyperrealist domain.
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Theorem 2.12 (Realism vs. Indeterminacy). If NRI(T ) is very low (close to 0), it indicates
minimal average truth membership, which implies strong antireal or hyperreal tendencies. If
NRI(T ) is high (close to 1 or beyond), the theory is strongly realist. Intermediate values of
NRI reflect partial realism, acknowledging significant uncertainty (large Is) or partial falsehood
(larger Fs).

Proof. By Definition,

NRI(T ) =
1

|S|
∑
s∈S

Ts.

If NRI(T ) is near 0, that sum of Ts over all statements must be near 0, indicating that most
statements have Ts ≈ 0. Because Ts + Is + Fs ≤ 3, such statements must have either Is

or Fs significant. In neutrosophic logic, large Is or Fs aligns with hyperrealism/antirealism
(the statements are either indeterminate or false from a realist standpoint). Conversely, if
NRI(T ) ≈ 1 or larger, then most statements have Ts close to 1, indicating strong agreement
with a realist or “true” stance. Intermediate values of Ts imply partial truth or increased
indeterminacy. This direct link to the sum of truth degrees proves the theorem.

Theorem 2.13 (Bounds on NRI). For any theory T with statements {s1, . . . , sn} assigned
triples (Ts, Is, Fs) in [0, 1], we have:

0 ≤ NRI(T ) ≤ 3,

where 3 is an absolute maximum only if Ts = 3 is allowed; in practice, typical implementations
take Ts + Is + Fs = 1, so 0 ≤ NRI(T ) ≤ 1.

Proof. By definition, Ts ∈ [0, 1] for each statement. If we allow the extended sum Ts+Is+Fs ≤
3, then the maximum Ts for a single statement can be 3. However, in many neutrosophic logic
formulations, one confines Ts + Is + Fs = 1. Under that typical constraint, Ts ≤ 1. Summing
n such values and dividing by n yields a maximum of 1 for NRI(T ). The minimum is clearly
0, achieved if Ts = 0 for all s.

Theorem 2.14 (Thresholds for Classification). Fix two constants 0 < α < β ≤ 1. We may
define realism categories based on NRI(T ):

• If NRI(T ) < α, the theory is antirealist-leaning or hyperrealist-leaning.
• If α ≤ NRI(T ) < β, the theory is partially realist (significant uncertainty or partial

falsehood).
• If NRI(T ) ≥ β, the theory is strongly realist.
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Proof. This follows from Theorem 2.12 and the observation that NRI(T ) can be partitioned
into different ranges. Such threshold-based classification is common in fuzzy or neutrosophic
logic frameworks, where intervals represent distinct qualitative categories.

Theorem 2.15 (NRI and Global Consistency). Assume each statement in S must satisfy
Ts + Is + Fs = 1 (a common simplification in neutrosophic frameworks). Then:

NRI(T ) +
1

|S|
∑
s∈S

(Is + Fs) = 1.

Hence

NRI(T ) = 1− 1

|S|
∑
s∈S

(Is + Fs).

Proof. If Ts + Is + Fs = 1 for each s, summing this over all s ∈ S gives:∑
s∈S

Ts +
∑
s∈S

Is +
∑
s∈S

Fs = |S|.

Divide both sides by |S|:

1

|S|
∑
s∈S

Ts +
1

|S|
∑
s∈S

Is +
1

|S|
∑
s∈S

Fs = 1.

The left term is precisely NRI(T ), and the other two terms sum to the average (Is + Fs). So
the statement follows.

Corollary 2.16 (Trade-off of Realism, Indeterminacy, and Falsehood). Under the same as-
sumption, if NRI(T ) is high, then 1

|S|
∑

s∈S(Is+Fs) must be low, meaning the theory does not
rely heavily on indeterminacy or falsehood. Conversely, if NRI(T ) is low, then Is + Fs must
be high on average, implying an antirealist or hyperrealist stance.

Proof. Immediate from Theorem 2.15: NRI(T ) = 1− 1
|S|

∑
s∈S(Is + Fs). If one term is large,

the other is correspondingly small.
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