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Abstract 

Neutosophic graphs are an extension of fuzzy and intuitionistic fuzzy graphs by 

including the uncertainty, vagueness, and indeterminacy that are normal in the real 

world. This paper looks into the edge connectivity of a neutrosophic graph, which is 

a basic parameter that shows how strong and fault-tolerant networks are that are 

modelled by these graphs. Edge connectivity, which is the smallest number of edges 

that need to be taken away from a graph to make it trivial or disconnected, is a key 

concept in figuring out how strong and resilient networks are in many situations. This 

paper also addresses computational challenges related to determining edge 

connectivity in neutrosophic graphs. We develop efficient algorithms that minimize 

computational overhead and ensure accuracy in identifying the critical edge sets. We 

analyze the performance of these algorithms through both theoretical complexity 

assessments and empirical evaluations on benchmark datasets. Some of the most 

important things that the study found were critical edges that, when removed, have a 

big effect on how connected the graph is and how indeterminacy affects the strength 

of networks. The research underscores the importance of incorporating neutrosophic 

parameters into graph connectivity studies to better model and analyse systems 

characterized by uncertainty and partial knowledge. 
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1. Introduction 

 

Zadeh [1] introduced the theory of fuzzy sets, revolutionizing the handling of 

uncertainty and imprecision in mathematical models. Fuzzy set theory added 

vagueness to classical set theory by giving membership grades from 0 to 1. This 

enabled its application in various domains, including decision-making [2, 3]. Over the 

years, researchers have built on this base to create fuzzy graphs (FGs), which model 

relationships when there is uncertainty. FGs have been used in communication 

networks, social systems, and optimization problems [4, 5]. An important 

generalization of fuzzy sets, known as intuitionistic fuzzy sets (IFSs), was introduced 

by Atanassov [6]. IFSs incorporate an additional parameter, the degree of non-

membership, to address uncertainty with greater precision. This addition made it 

possible for intuitionistic fuzzy graphs (IFGs), which have been studied a lot for their 

ability to model systems with two levels of uncertainty, like social networks, decision 

support systems, and cell phone networks [7, 8, 9]. Researchers have extensively 

studied the connectivity properties of fuzzy and intuitionistic fuzzy graphs. They have 

focused on measures like cut vertices, bridges, and strong paths, which are important 

for understanding how stable and resilient networks are. 

In spite of these improvements, both FGs and IFGs don't deal with systems that are 

inherently uncertain, like relationships that can't be clearly put into membership or 

nonmembership categories. To get around this problem, Smarandache came up with 

neutrosophic sets [10], a structure with three parts: truth-membership (TT), 

indeterminacy-membership (I), and falsity-membership (F). Then Neutrosophic 

graphs (NGs) take this idea and apply it to graph theory, giving us a better way to 

model networks that are uncertain, vague, and uncertain all at the same time. Then 

Raut et al. wrote a lot of papers about neutrosophic theory, Fermatean neutrosophic 

theory, and how they could be used [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. 

Connectivity is a fundamental parameter for any graph structure, as it reflects the 

robustness and reliability of the network it represents. The edge connectivity of a 

graph, defined as the minimum number of edges whose removal disconnects the 

graph, plays a critical role in evaluating network stability. A lot of research has been 

done on edge connectivity for crisp, fuzzy, and intuitionistic fuzzy graphs, but not as 

much on how it applies to neutrosophic graphs. The fact that NGs contain uncertainty 

adds to their complexity, calling for new ways to measure and analyze connectivity. 

In this paper, we look into how edges connect in neutrosophic graphs and come up 

with new definitions and methods that work with this type of graph. We include the 

truth, indeterminacy, and falsity parameters of edges in the analysis. This gives us a 
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more complete picture of how robust a network is. Section-2 provides the necessary 

preliminaries, including fundamental concepts of neutrosophic graphs. Section-3 

presents the mathematical formulation of neutrosophic edge removal and the 

neutrosophic edge measure. Section-4 presents a theorem, which presents 

neutrosophic edge connectivity is the classical edge connectivity of the graph. 

Section-5 presents an algorithm to compute edge connectivity in a neutrosophic graph. 

Section-6 presents an example, and section-7 defines results and Finally, Section-8 

concludes the study with key findings and outlines potential directions for future 

research. This study adds to the basic ideas of neutrosophic graph theory and gives us 

useful tools for looking at how strong complex systems are when there is uncertainty, 

vagueness, and indeterminacy. 

2. Preliminaries 

 

2.1 Neutrosophic Graph 

A neutrosophic graph 𝐺 = (𝑉, 𝐸, 𝜏, 𝜄, 𝜙) consists of: 

• 𝑉: Set of vertices. 

• 𝐸: Set of edges. 

• 𝜏: 𝐸 → [0,1] represent Truth membership function. 

• 𝜄: 𝐸 → [0,1] represent Indeterminacy membership function. 

• 𝜙: 𝐸 → [0,1] represent Falsity membership function. 

Each edge 𝑒 ∈ 𝐸  is represented as 𝑒 = (𝑢, 𝑣, 𝜏, 𝜄, 𝜙) , where 𝜏, 𝜄 𝑎𝑛𝑑 𝜙  satisfy 

0 ≤ 𝜏𝑒 + 𝜄𝑒 + 𝜙𝑒 ≤ 1. 

 

2.2 Edge Connectivity 

For a graph G: 

• Edge connectivity 𝜆(𝐺): Minimum number of edges that need to be removed 

to disconnect 𝐺. 
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• For neutrosophic graphs, edge connectivity considers the neutrosophic 

weights (𝜏, 𝜄, 𝜙) 

  3. Mathematical Formulation 

 

3.1 Neutrosophic Edge Removal 

Let 𝐸′ ⊆ 𝐸 be a subset of edges. Removing 𝐸′ results in a subgraph 𝐺′ = (𝑉, 𝐸 ∖

𝐸′). The neutrosophic impact of removing 𝐸′ is defined as: 

𝑑(𝐺, 𝐺′) = ∑ ((1 − 𝜏𝑒) + 𝜄𝑒 + 𝜙𝑒)𝑒∈𝐸′ .  

3.2 Edge Connectivity Measure 

The neutrosophic edge connectivity 𝜆N(G)  is: 

• 𝜆𝑁(𝐺) = 𝑚𝑖𝑛(𝜆𝑁(𝐺), 𝑑(𝐺, 𝐺′))is disconnected 𝑑(𝐺, 𝐺′) = ∑ ((1 −𝑒∈𝐸′

𝜏𝑒) + 𝜄𝑒 + 𝜙𝑒).  

4. Theorem: 

For any neutrosophic graph 𝐺 = (𝑉, 𝐸, 𝜏, 𝜄, 𝜙) the neutrosophic edge connectivity 

𝜆𝑁(𝐺) satisfies:𝜆𝑁(𝐺) ≥ λ(G),  where 𝜆(𝐺), is the classical edge connectivity of the 

graph. 

 

Proof: 

From Definitions of Classical Edge Connectivity λ(G), The minimum number of 

edges that need to be removed to disconnect the graph G. 

   Neutrosophic Edge Connectivity 𝜆𝑁(𝐺) Defined as:  

𝜆𝑁(𝐺) = 𝑚𝑖𝑛 ∑ ((1 − 𝜏𝑒) + 𝜄𝑒 + 𝜙𝑒)

𝑒∈𝐸′

 

where ( 𝜏, 𝜄, 𝜙 ) are the truth, indeterminacy, and falsity membership 

values of the edges in 𝐸′. 
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Steps-1: Classical Case as a Special Case: 

o If we assign 𝜏𝑒 = 1, 𝜄𝑒 = 0 and 𝜙𝑒 = 0 for all 𝑒 ∈ 𝐸, the neutrosophic 

graph 𝐺 reduces to a classical graph. 

o Under this assignment: ∑ ((1 − 𝜏𝑒) + 𝜄𝑒 + 𝜙𝑒)𝑒∈𝐸′ = ∑ ((1 − 1) +𝑒∈𝐸′

0 + 0) = E′ 

Hence, 𝜆𝑁(𝐺) = λ(G) in the classical case. 

Steps-2:   General Neutrosophic Graph: 

For a neutrosophic graph, edge weights include  𝜏𝑒 , 𝜄𝑒 , 𝜙𝑒 The 

neutrosophic impact of removing an edge e is given by: 𝑤(𝑒) = 1 −

𝜏𝑒 + 𝜄𝑒 + 𝜙𝑒.. This weight 𝑤(𝑒) ≥ 0 since 0 ≤ 𝜏𝑒 + 𝜄𝑒 + 𝜙𝑒 ≤ 1  and 

𝜏𝑒 + 𝜄𝑒 + 𝜙𝑒 ≤ 1. 

Steps-3 :   Minimum Edge Set to Disconnect G: 

o Let 𝐸′ be the edge set with the minimum neutrosophic impact that 

disconnects 𝐺. 

o The neutrosophic impact is:  

𝑑(𝐺, 𝐺′) = ∑ 𝑤(𝑒) = ∑ ((1 − 𝜏𝑒 + 𝜄𝑒 + 𝜙𝑒)

𝑒∈𝐸′

 

 

o Since 𝑤(𝑒) ≥ 1 − 𝜏𝑒, the neutrosophic impact satisfies: 𝑑(𝐺, 𝐺′) ≥∣

𝐸′ ∣ , where ∣ 𝐸′ ∣ is the number of edges in 𝐸′. 

Steps-4: Relation to Classical Edge Connectivity: 

The classical edge connectivity 𝜆(𝐺)  corresponds to the minimum ∣

𝐸′ ∣ for which 𝐺′ becomes disconnected. 
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o Hence, the neutrosophic edge connectivity, which considers 𝑤(𝑒) ≥ 1 

for all edges in the classical sense, satisfies: 𝜆𝑁(𝐺) ≥ 𝜆(𝐺).  

The neutrosophic edge connectivity 𝜆𝑁(𝐺) is always greater than or equal to the 

classical edge connectivity 𝜆(𝐺)  because neutrosophic weights assign additional 

contributions from indeterminacy and falsity measures, making 𝜆𝑁(𝐺)at least as large 

as 𝜆(𝐺).  

5. Algorithm: Compute Edge Connectivity in a Neutrosophic Graph 

 

Input: 

• A neutrosophic graph 𝐺 = (𝑉, 𝐸, 𝜏, 𝜄, 𝜙)  

Where, 𝑉 is Set of vertices and 𝐸 is Set of edges with neutrosophic weights 

(𝜏, 𝜄, 𝜙). 

Output: 

• The neutrosophic edge connectivity 𝜆𝑁(𝐺), the minimum neutrosophic 

impact required to disconnect the graph. 

Steps: 

2. Initialization: 

• Set 𝜆𝑁(𝐺) → ∞. 

3. Identify Edge Subsets: 

• List all subsets of edges 𝐸′ ⊆ 𝐸. 

4. Iterate Over Subsets: 

• For each 𝐸′, perform the following:  
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▪ Remove edges in 𝐸′ from 𝐺, forming a subgraph 𝐺′ = (𝑉, 𝐸 ∖

𝐸′). 

▪ Check if 𝐺′ is disconnected (using graph traversal techniques 

like DFS or BFS). 

5. Calculate Neutrosophic Impact: 

• For each subset 𝐸′ that disconnects 𝐺, compute the neutrosophic 

impact: 𝑑(𝐺, 𝐺′) = ∑ ((1 − 𝜏𝑒) + 𝜄𝑒 + 𝜙𝑒)𝑒∈𝐸′ .  

6. Update Edge Connectivity: 

• Update 𝜆𝑁(𝐺) = 𝑚𝑖𝑛(𝜆𝑁(𝐺), 𝑑(𝐺, 𝐺′)) 

7. Return Result: 

• Return the computed 𝜆𝑁(𝐺). 

6. Example: Edge Connectivity Computation 

 

Here is the graphical representation of the neutrosophic graph from the provided 

example. Each edge is labelled with its corresponding neutrosophic weights (𝜏, 𝜄, 𝜙).  
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Graph Description: 

• Vertices: 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷}. 

• Edges: 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

o 𝑒1 = (A, B) = (0.9,0.05,0.05) 

o 𝑒2 = (B, C) = (0.8,0.1,0.1) 

o 𝑒3 = (C, D) = (0.85,0.1,0.05) 
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o 𝑒4 = (D, A) = 0.7,0.15,0.15) 

Steps: 

1. Edge Subsets: 

o Identify subsets of edges that disconnect the graph:  

▪ {𝑒1, 𝑒3}: Disconnects 𝐴 and 𝐶 from 𝐵 and 𝐷. 

▪ {𝑒2, 𝑒4}: Disconnects 𝐵 and 𝐷 from 𝐴 and 𝐶. 

2. Compute Neutrosophic Impact: 

o For{𝑒1, 𝑒3} 

 𝑑(𝐺, 𝐺′) = (1 − 0.9 + 0.05 + 0.05) + (1 − 0.85 + 0.1 + 0.05) = 0.2 +

0.3 = 0.5 

o For{𝑒2, 𝑒4}:  

𝑑(𝐺, 𝐺′) = (1 − 0.8 + 0.1 + 0.1) + (1 − 0.7 + 0.15 + 0.15) = 0.4 +

0.6 = 1.0  

3. Minimum Neutrosophic Impact: 

𝜆𝑁(𝐺) = 0.5 

 

7. Result 

The neutrosophic edge connectivity  

𝜆𝑁(𝐺) = 0.5 
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8. Conclusion 

In this paper, we advance our theoretical understanding of edge connectivity in 

neutrosophic graphs and provide practical tools for its application in diverse fields. 

There are suggestions for future research, such as looking into how vertex 

connectivity changes in neutrosophic graphs and how it might be used in new areas 

like artificial intelligence, cybersecurity, and complex system analysis. This work lays 

the groundwork for further exploration of neutrosophic graph theory and its 

implications for network science and decision-making under uncertainty. 
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