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Abstract: Operations research uses scientific methods that take the language of mathematics as a basis and uses the 

computer, without which it would not be possible to achieve numerical solutions to the problems raised. It is concerned 

with applying scientific methods to complex issues in the management and direction of large systems in various fields 

and private and governmental businesses in peace and war in politics, management, economics, planning and 

implementation and in all aspects of life. In issues that require sound solutions, when solutions are numerous and options 

are multiple, we need a decision based on sound scientific foundations that take into account all the circumstances and 

changes that the decision maker may face during the course of work, and help him make a decision that leaves nothing 

to chance or luck. For this reason, operations research has provided many methods that help us transform life issues into 

mathematical models whose optimal solution is the appropriate decision. The nonlinear programming method is one of 

the most important methods presented by operations research because most problems, when modeled, result in a 

nonlinear model, which prompted many students and researchers to search for appropriate scientific methods to solve 

these models. One of the most important and most widely used of these methods is the Lagrange multipliers method. 

Keywords: Operations research; nonlinear programming; Lagrange multipliers; neutrosophic science; neutrosophic 

nonlinear programming; neutrosophic augmented Lagrange multipliers method. 

 

1. Introduction 
Operations research is the applied aspect of mathematics and is one of the most important modern sciences that deals 

with practical issues and meets the desire and demand of decision-makers to obtain ideal decisions through the methods 

it provides that are appropriate for all issues. We know that operations research methods depend on the data attached 

to each issue and this data is values that were set through observation and its accuracy depends on who collects it and is 

appropriate for working conditions similar to the conditions in which this data was collected. Before the emergence of 

neutrosophic science, we relied on this data to study real issues and accept the results as they are, but after the 

emergence of neutrosophic science, the science that caused a major revolution in all fields and proved its ability to give 

results that enjoy a margin of freedom and suit all conditions, many researchers interested in scientific development have 

turned to reformulating many scientific concepts using the concepts of this science. We now have neutrosophic numbers 

- neutrosophic groups - neutrosophic probabilities - neutrosophic statistics - neutrosophic differentiation - neutrosophic 
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integration - neutrosophic linear programming - neutrosophic dynamic programming - neutrosophic simulation - 

neutrosophic transport models… [1-11, 16-18]. 

Nonlinear programming is one of the most important methods presented by operations research because most practical 

problems lead to nonlinear models. Therefore, in a previous study [12], we formulated some basic concepts of nonlinear 

programming using the concepts of neutrosophic science. In the two studies [13,14], we presented a neutrosophic study 

of the graphical method and the Lagrange multipliers method in the case of constraints of the type of equality methods 

used to find the optimal solution for nonlinear models. In this study, we present a formulation of the augmented Lagrange 

multipliers method that is used to find the optimal solution for nonlinear models restricted by inequality constraints using 

the concepts of neutrosophic science [15]. That is, we will take the data of the problem under study as neutrosophic 

numbers with the following standard formula 𝑁 = 𝑎 + 𝑏𝐼 where  𝑎 𝑎𝑛𝑑 𝑏 are real or complex coefficients, 𝑎 represents 

the determinant part and 𝑏𝐼 represents the undetermined part of the undetermined number 𝑁 and it can be [𝜆1  ,   𝜆2 ]or 

{𝜆1 ,   𝜆1  } or ... else is any set close to the true value 𝑎. 

 

2. Discussion: 
A mathematical model is a neutrosophic model if the variables in the objective function, constraints, or both are 

neutrosophic values. Suppose we want to determine the optimal values of a neutrosophic nonlinear function 𝒇𝑵(𝒙) 

subject to a set of constraints in the form of equalities or inequalities. This type of problem is addressed through 

the Lagrange factorial method, a method that has received great attention from students and researchers in the 

field of operations research, and appropriate developments have been introduced to it that have enabled it to deal 

with most situations with high efficiency. 

 Previous study: 

1- Neutrosophic nonlinear programming problems constrained by equality constraints: [12] 

Constrained nonlinear programming problem text: 

For nonlinear programming problems constrained by the equation constraints defined as follows: 

Find: 

𝒁𝑵 = 𝒇
𝑵

(𝑿) ⟶ ( 𝑴𝒂𝒙 𝒐𝒓 𝑴𝒊𝒏) 

Subject to the constraints: 

𝒈
𝑵𝒊

(𝑿) = 𝒃𝑵𝒊    ; 𝒊 = 𝟏, 𝟐, … , 𝒎 

𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) ∈ 𝑹𝒏 

Since the functions  𝒇𝑵(𝒙) 𝒂𝒏𝒅 𝒈𝑵𝒊(𝑿)  are continuous functions whose partial derivatives of the first degree can be 

computed, the Lagrange factorial method requires us to form a function of the type: 

𝑳𝑵(𝑿, 𝝀𝒊) = 𝒇𝑵(𝑿) − 𝝀𝒊(𝒈𝑵𝒊(𝑿) − 𝒃𝑵𝒊) 

Where we call 𝑳𝑵(𝑿, 𝝀𝒊) the Lagrange neutrosophic function and the coefficients 𝝀𝒊 refer to the Lagrange factorials and 

these factorials measure the rate of change in the optimal value of  𝒇𝑵(𝑿) as a result of Making small modifications to 

𝒈𝑵𝒊(𝑿), by solving the set of equations: 

𝝏𝑳𝑵

𝝏𝑿
= 𝟎     ,    

𝝏𝑳𝑵

𝝏𝝀𝒊

= 𝟎       

We get the optimal solution vector, which is a maximum neutrosophic value of the function, which can be a minimum or 

a maximum. To determine its type, we apply the following test: 

Maximum and minimum values of a constrained nonlinear function: 

We can determine whether the value of an objective function in a nonlinear model is a minimum or a maximum as follows: 

The value is minimum if the objective function is convex and the set of constraints forms a convex region 

The value is maximum if the objective function is concave and the set of constraints forms a convex region 

To determine the type of function 𝒇𝑵(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏) (convex or concave), we use the Hessian matrix for this function: 
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Hessian matrix of the neutrosophic function 𝒇
𝑵
(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏

): 

It is a square and symmetric matrix of order 𝒏 × 𝒏, denoted by 𝑯𝑵
(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏

) and is defined by the following 

relation: 

𝑯𝑵
(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏

) = [
𝝏

𝟐
𝒇

𝑵

𝝏𝒙𝒊𝝏𝒙𝒋

] 

The matrix is symmetric and must satisfy the following conditions: 

• The elements of the main diagonal are positive. 

• The main minor determinants are positive. 

2- Nonlinear programming problems with inequalities: [15] 

The problem of nonlinear programming of constrained by inequalities is defined as follows: 

𝑴𝒂𝒙𝒁 = 𝐟(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏) 

 Subject to constraints in the form of inequalities: 

𝒈
𝒊
(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏

) ≤ 𝒃𝒊 

(𝒙𝟏, 𝒙
𝟐

, … , 𝒙𝒏) ≥ 𝟎 

In such problems, there is a direct relationship between the size of the problem under study and the size of the 

calculations required to determine the maximum point (maximum or minimum) of this problem, so the Lagrange method 

mentioned above is considered an impractical method to solve it. In order to solve these problems, researchers in the 

field of operations research have presented the augmented Lagrange multipliers method., which can be summarized in 

the following steps: 

Step 1: We solve the problem without constraints, i.e.: 

𝑴𝒂𝒙𝒁 = 𝐟(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏) 

❖ If the resulting optimal value satisfies all constraints, then this solution is an optimal solution to the constrained 

problem. We conclude from this that the constraints of the problem are unnecessary. 

❖ If the resulting optimal value does not satisfy all constraints, we move to the second step. 

Step 2: We take 𝒌 = 𝟏 (the number of constraints used is 𝒌, we take one of the existing constraints) and convert 

this constraint to an equality constraint and search for the optimal solution for 𝐟(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏) that is subject to 

 𝒌 = 𝟏 constraint in an equal manner using the Lagrange multipliers method mentioned above, 

❖ If the resulting solution satisfies all the constraints of the problem, then the solution determines a local optimal 

point 

❖ If the resulting value does not satisfy all the constraints, we delete this solution because it is not possible 

We repeat this step for all possible sets of constraints, each of which consists of 𝒌 = 𝟏 equality constraint and 

record all the local optimal points that we obtain, then move to the third step. 

Step 3: We take 𝒌 = 𝟐 (the number of constraints used is 𝒌. We take two constraints from the existing constraints) 

and convert these two constraints into equality constraints and search for the optimal solution for 𝐟(𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒏) 

that is subject to 𝒌 = 𝟐 constraints in an equal manner using the Lagrange multipliers method mentioned above. 

❖ If the resulting solution satisfies all the constraints of the problem, then the solution determines a local optimal 

point. 

❖ If the resulting value does not satisfy all the constraints, we delete this solution because it is not possible. 

We repeat this step for all possible sets of constraints each consisting of 𝒌 = 𝟐 equality constraints and record all the 

local optimal points we obtain. 

We repeat the work for 𝒌 = 𝟑, 𝒌 = 𝟒 …, 𝒌 = 𝒎 

We calculate the values of the objective function for all local optimal points and choose the optimal value that satisfies 

the objective of the problem under study. The corresponding point is an absolute optimal point. 

Note: If we do not encounter a local optimal point in the resulting solutions, we decide that the problem has no possible 

solution. 

We illustrate the above through the following example: 

Example1: 

Find the optimal solution to the following nonlinear programming problem: 
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𝑴𝒂𝒙𝒁 = 𝐟(𝒙𝟏 , 𝒙𝟐) = −(𝟐𝒙𝟏 − 𝟓)𝟐 − (𝟐𝒙𝟐 − 𝟏)𝟐 

Subject to constraints: 

𝒙𝟏 + 𝟐𝒙𝟐 ≤ 𝟐 

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 

Solution: 

Step 1: We solve the problem without restrictions: 

To find the optimal value of 𝑓(𝑥) without constraints, we find the solutions to the following equations: 
𝜕𝑓

𝜕𝑥1

= −4(2𝑥1 − 5) = 0 

𝜕𝑓

𝜕𝑥2

= −4(2𝑥2 − 1) = 0 

The solution to the set of equations is 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (
𝟓

𝟐
,

𝟏

𝟐
) This solution does not satisfy the first constraint in the 

problem, so we resort to applying steps (2) and (3) in the solution algorithm. Applying these two steps requires solving 

seven problems using the Lagrange multipliers method . 

We summarize these problems and their solutions as follows: 

For 𝒌 = 𝟏 for all constraints we get Problems 1, 2, 3: 

Problem 1: For the constraint 𝒙𝟏 = 𝟎: 

The Lagrange function is: 

𝐿1(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆𝑥1 

We calculate the partial derivatives of this function with respect to 𝒙𝟏    ، 𝒙𝟐   ، 𝝀: 

 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) = 0 

𝜕𝐿

𝜕𝜆
= 𝑥1 = 0 

The solution to the system of equations is the point 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (0,
1

2
, −20) The point satisfies all the constraints 

and is a local maximum. 

Problem 2: For the constraint 𝒙𝟐 = 𝟎: 

The Lagrange function is: 

𝐿2(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆𝑥2 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆: 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆 = 0 

𝜕𝐿

𝜕𝜆
= 2𝑥2 = 0 

 

The solution to the previous set of equations is the point 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (
5

2
, 0,0). 

The point 𝑥̅ = (𝑥1, 𝑥2) = (
5

2
, 0) does not satisfy all the constraints since the first constraint is not satisfied Solution 

Rejected. 

Problem 3: For the constraint 𝒙𝟏 + 𝟐𝒙𝟐 − 𝟐 = 𝟎: 

The Lagrange function is: 

𝐿3(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆(𝑥1 + 2𝑥2 − 2) 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆: 
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𝜕𝐿3

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆 = 0 

𝜕𝐿3

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆 = 0 

𝜕𝐿3

𝜕𝜆
= −(𝑥1 + 2𝑥2 − 2) = 0 

The solution to the previous set of equations is 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (
22

10
,

−1

10
,

12

5
)The point (𝑥1, 𝑥2) = (

22

10
,

−1

10
)does not 

satisfy the third constraint. The solution is rejected. 
For 𝒌 = 𝟐 for all constraints we get Problems 4,5,6: 

Problem 4: Taking the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − 𝟐 = 𝟎    , 𝒙𝟏 = 𝟎  : 
The Lagrange function is 

𝐿4(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1(𝑥1 + 2𝑥2 − 2) − 𝜆2𝑥1 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1  ، 𝜆2: 

𝜕𝐿4

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 − 𝜆2 = 0 

𝜕𝐿4

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆1 = 0 

𝜕𝐿4

𝜕𝜆1

= −(𝑥1 + 2𝑥2 − 2) = 0 

𝜕𝐿4

𝜕𝜆2

= −𝑥1 = 0 

The solution to the previous set of equations is 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (0,1, −2,22) The point (𝑥1, 𝑥2) = (0,1) satisfies all 

the constraints, so it is a local maximum. 

Problem 5: We take the two constraints 𝒙𝟏 + 𝟐𝒙𝟐 − 𝟐 = 𝟎    , 𝒙𝟐 = 𝟎   
The Lagrange function is: 

𝐿5(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1(𝑥1 + 2𝑥2 − 2) − 𝜆2𝑥2 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1  ، 𝜆2: 

𝜕𝐿5

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 = 0 

𝜕𝐿5

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆1 − 𝜆2 = 0 

𝜕𝐿5

𝜕𝜆1

= −(𝑥1 + 2𝑥2 − 2) = 0 

𝜕𝐿5

𝜕𝜆2

= −𝑥2 = 0 

The solution to the previous set of equations is 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (2,0,4, −4) The point (𝑥1, 𝑥2) = (2,0) satisfies all 

the constraints, so it is a local maximum. 

Problem 6: We take the two constraints 𝒙𝟐 = 𝟎    , 𝒙𝟏 = 𝟎   
The Lagrange function is: 

𝐿6(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1𝑥1 − 𝜆2𝑥2 
We calculate the partial derivatives of this function with respect to𝑥1   ، 𝑥2   ، 𝜆1  ، 𝜆2: 

𝜕𝐿6

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 = 0 

𝜕𝐿6

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆2 = 0 

𝜕𝐿6

𝜕𝜆1

= −𝑥1 = 0 

𝜕𝐿6

𝜕𝜆2

= −𝑥2 = 0 
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The solution to the previous set of equations is 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (0,0, −20, −4)The point 

 (𝑥1, 𝑥2) = (0,0)satisfies all the constraints and is a local maximum. 

For 𝒌 = 𝟑 for all constraints we get Problem 7: 

Problem 7: We take the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − 𝟐 = 𝟎  ، 𝒙𝟐 = 𝟎  , 𝒙𝟏 = 𝟎   
The Lagrange function is: 

𝐿7(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1𝑥1 − 𝜆2𝑥2 − 𝜆3(𝑥1 + 2𝑥2 − 2) 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1   ، 𝜆2   ، 𝜆3: 

𝜕𝐿7

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 − 𝜆3 = 0 

𝜕𝐿7

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆2 − 2𝜆3 = 0 

𝜕𝐿7

𝜕𝜆1

= −𝑥1 = 0 

𝜕𝐿7

𝜕𝜆2

= −𝑥2 = 0 

𝜕𝐿7

𝜕𝜆3

= −(𝑥1 + 2𝑥2 − 2) = 0 

We note that there is no solution to the previous set of equations due to the contradiction of the last three equations. 

To determine the absolute optimal solution, i.e., the absolute maximum value, we take all possible points (local 

maximum points) and calculate the value of the objective function at each point and choose the largest value. The 

corresponding point is the absolute maximum solution point: 

Problem 1: Point 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (𝟎,
𝟏

𝟐
) is a local maximum point, value of the objective function: 

𝒇(𝒙) = −𝟐𝟓 

Problem 4: Point (𝒙𝟏, 𝒙𝟐) = (𝟎, 𝟏) This point is a local maximum point, value of the objective function: 

𝒇(𝒙) = −𝟐𝟔 

Problem 5: Point (𝒙𝟏, 𝒙𝟐) = (𝟐, 𝟎) is a local maximum point, value of the objective function: 

𝒇(𝒙) = −𝟐 

Problem 6: Point (𝒙𝟏, 𝒙𝟐) = (𝟎, 𝟎) is a local maximum point, value of the objective function: 

𝒇(𝒙) = −𝟐𝟔 

By comparing the values of the objective function in the previous problems, we find that the best possible point 

is point (𝒙𝟏
∗ , 𝒙𝟐

∗ ) = (𝟐, 𝟎) and the absolute maximum value of the function is: 

𝒇∗(𝒙) = −𝟐 

 
 
 

 Current study: 

Neutrosophic Nonlinear programming problems constrained by inequalities: 

The nonlinear programming problem constrained by inequalities is defined as follows: 

(𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛)𝑍𝑁 = 𝑓𝑁(𝑥1 , 𝑥2, … , 𝑥𝑛) 
And subject to constraints in the form of inequalities: 

𝑔
𝑁𝑖

(𝑥1 , 𝑥2, … , 𝑥𝑛) ≤ 𝑏𝑁𝑖 

(𝑥1, 𝑥
2

, … , 𝑥𝑛) ≥ 0 

 
The solution steps according to the expanded Lagrange multipliers method are as follows: 

Step 1: We solve the problem without constraints, i.e.: 

(𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛)𝑍𝑁 = 𝑓𝑁(𝑥1 , 𝑥2, … , 𝑥𝑛) 
If the resulting optimal neutrosophic value satisfies all constraints, then this solution is an optimal solution to the 

constrained neutrosophic problem, and we conclude Hence, the constraints of the problem are unnecessary if the 

resulting optimal value does not satisfy all the constraints. 

Step 2: We take 𝒌 = 𝟏 (we take one of the constraints):  

We convert this constraint to an equality constraint and search for the optimal solution for 𝑓
𝑁

(𝑥1 , 𝑥2, … , 𝑥𝑛) that is 

subject to 𝑘 = 1 constraint in an equal manner using the Lagrange neutrosophic multipliers method. 
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If the resulting solution satisfies all the constraints of the problem, then the solution determines a local neutrosophic 

optimal point. If the resulting neutrosophic optimal value does not satisfy all the constraints, we delete it because this 

solution is not possible. 

We repeat the work for all possible sets of constraints, each of which consists of 𝑘 = 1 equality constraint, and we 

record all the local neutrosophic optimal points that we obtain, then we move to step 3. 
Step 3: We take 𝒌 = 𝟐 constraint (we take two of the constraints):  

We convert this constraint to an equality constraint and search for the optimal solution for 𝑓
𝑁

(𝑥1 , 𝑥2, … , 𝑥𝑛) that is 

subject to 𝑘 = 2 constraint in an equal manner. 

 If the resulting neutrosophic optimum does not satisfy all the constraints, we delete it because this solution is not 

possible.  
We repeat the work for all possible sets of constraints, each of which consists of 𝑘 = 2 equality constraint, and we 

record all the local neutrosophic optimum points that we obtain. 

We continue in this way until we reach 𝑘 = 𝑚 constraint. 

We calculate the value of the objective function for all the local optimal points we have obtained and choose the largest 

value if the goal is to maximize and the smallest value if the goal is to minimize. These values are the absolute 

neutrosophic optimal value. 

We illustrate the above through the following example: 

We take the mathematical model given in example (1): 

The neutrosophic formula for the mathematical model given in example (1) is: 

𝑀𝑎𝑥𝑍𝑁 = 𝑓𝑁(𝑥1 , 𝑥2) = (𝑐1𝑁𝑥1 − 𝑑1𝑁)2 − (𝑐2𝑁𝑥2 − 𝑑2𝑁)2 
 
Subject to constraints: 

𝑎1𝑁𝑥
1

+ 𝑎2𝑁𝑥2 ≤ 𝑏𝑁 

𝑥1, 𝑥2 ≥ 0 

 
Where 𝑐1𝑁, 𝑐2𝑁, 𝑑1𝑁, 𝑑2𝑁, 𝑎1𝑁, 𝑎2𝑁, 𝑏𝑁are neutrosophic values. 
It is worth noting that the existence of one neutrosophic value is sufficient for the nonlinear mathematical model to be 

a neutrosophic model. Accordingly, since the purpose of this research is to provide a neutrosophic formulation of the 

extended Lagrange multipliers method, we will take the neutrosophic mathematical model as follows: 

Example 2: 

 Find the optimal solution to the following neutrosophic nonlinear programming problem: 

𝑀𝑎𝑥𝑍 = f(𝑥1 , 𝑥2) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 
Subject to the constraints: 

𝑥1 + 2𝑥2 ≤ [1,3] 

𝑥1, 𝑥2 ≥ 0 
In any of the constraints of the mathematical models, the second party expresses the available capabilities  
(The number of raw materials - possible working hours ...) We took it as a neutrosophic value in the form of a field 

whose minimum limit represents the available capabilities in the worst conditions and the maximum limit represents the 

available capabilities in the best conditions. 

Step 1: We solve the problem without restrictions: 

To find the optimal value of  𝑓(𝑥) without constraints, we find the solutions to the following equations: 

𝜕𝑓

𝜕𝑥1

= −4(2𝑥1 − 5) = 0 

𝜕𝑓

𝜕𝑥2

= −4(2𝑥2 − 1) = 0 

The solution to the set of equations is 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (
𝟓

𝟐
,

𝟏

𝟐
) This solution does not satisfy the first constraint in the 

problem, so we resort to applying steps (2) and (3) in the solution algorithm. Applying these two steps requires solving 

seven problems using the Lagrange multipliers method . 
We summarize these problems and their solutions as follows: 
For 𝒌 = 𝟏 for all constraints we get Problems 1, 2, 3: 

Problem 1: For the constraint 𝒙𝟏 = 𝟎: 

The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆𝑥1 
We calculate the partial derivatives of this function with respect to 𝒙𝟏    ، 𝒙𝟐   ، 𝝀. 
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𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) = 0 

𝜕𝐿

𝜕𝜆
= 𝑥1 = 0 

The solution to the system of equations is the point 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (0,
1

2
, −20) The point satisfies all the 

constraints and is a local maximum. 

Problem 2: For the constraint 𝒙𝟐 = 𝟎: 

The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆𝑥2 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆. 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆 = 0 

𝜕𝐿

𝜕𝜆
= 2𝑥2 = 0 

The solution to the previous set of equations is the point 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (
5

2
, 0,0). 

The point 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (
𝟓

𝟐
, 𝟎) does not satisfy all the constraints since the first constraint is not satisfied Solution 

Rejected. 

Problem 3: For the constraint 𝒙𝟏 + 𝟐𝒙𝟐 − [𝟏, 𝟑] = 𝟎: 

The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆(𝑥1 + 2𝑥2 − [1,3]) 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆. 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆 = 0 

𝜕𝐿

𝜕𝜆
= −(𝑥1 + 2𝑥2 − [1,3]) = 0 

The solution to the previous set of equations is: 

𝑥̅𝑁 = (𝑥1𝑁, 𝑥2𝑁, 𝜆𝑁) = ([1,
6

5
] , [0,

2

5
] , [

52

5
, 12]) 

The point 𝑥𝑁̅ = (𝑥1𝑁, 𝑥2𝑁) = ([1,
6

5
] , [0,

2

5
])does not satisfy the third constraint. The solution is rejected. 

For 𝒌 = 𝟐  all constraints we get Problems 4,5,6: 

Problem 4: Taking the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − [𝟏, 𝟑] = 𝟎    , 𝒙𝟏 = 𝟎  : 
The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1(𝑥1 + 2𝑥2 − [1,3]) − 𝜆2𝑥1 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1  ، 𝜆2. 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆1 = 0 

𝜕𝐿

𝜕𝜆1

= −(𝑥1 + 2𝑥2 − [1,3]) = 0 

𝜕𝐿

𝜕𝜆2

= −𝑥1 = 0 
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The solution to the previous set of equations is: 

𝑥𝑁̅ = (𝑥1𝑁, 𝑥2𝑁, 𝜆1𝑁, 𝜆2𝑁) = (0, [
1

2
,
3

2
] , [0,4], [16,20]) 

The point 𝑥𝑁̅ = (𝑥1𝑁, 𝑥2𝑁) = (0, [
1

2
,

3

2
]), not all constraints are satisfied since the first constraint is not satisfied, 

the solution is rejected. 

Problem 5: We take the two constraints 𝒙𝟏 + 𝟐𝒙𝟐 − [𝟏, 𝟑] = 𝟎    , 𝒙𝟐 = 𝟎  . 
The Lagrange function is: 

L(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1(𝑥1 + 2𝑥2 − [1,3]) − 𝜆2𝑥2 
We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1  ، 𝜆2. 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 2𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝜆1

= −(𝑥1 + 2𝑥2 − [1,3]) = 0 

𝜕𝐿

𝜕𝜆2

= −𝑥2 = 0 

The solution to the previous set of equations is: 

𝑥𝑁̅ = (𝑥1𝑁, 𝑥2𝑁, 𝜆1𝑁, 𝜆2𝑁) = ([1,3], 0, [−4,12], [−20,12]) 
The point 𝑥𝑁̅̅ ̅ = (𝑥1𝑁, 𝑥2𝑁) = ([1,3], 0) satisfies all the constraints, so it is a local maximum. 

Problem 6: We take the two constraints 𝒙𝟐 = 𝟎    , 𝒙𝟏 = 𝟎  : 
The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1𝑥1 − 𝜆2𝑥2 
We calculate the partial derivatives of this function with respect to𝑥1   ، 𝑥2   ، 𝜆1  ، 𝜆2. 

𝜕𝐿6

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 = 0 

𝜕𝐿6

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆2 = 0 

𝜕𝐿6

𝜕𝜆1

= −𝑥1 = 0 

𝜕𝐿6

𝜕𝜆2

= −𝑥2 = 0 

 

The solution to the previous set of equations is 𝑥̅ = (𝑥1, 𝑥2, 𝜆) = (0,0, −20, −4)The point 

 𝑥̅ = (𝑥1, 𝑥2) = (0,0)satisfies all the constraints and is a local maximum. 

For 𝒌 = 𝟑 for all constraints we get Problem 7: 

Problem 7: We take the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − [𝟏, 𝟑] = 𝟎  ، 𝒙𝟐 = 𝟎  , 𝒙𝟏 = 𝟎  : 
The Lagrange function is: 

𝐿(𝑥, 𝜆) = −(2𝑥1 − 5)2 − (2𝑥2 − 1)2 − 𝜆1𝑥1 − 𝜆2𝑥2 − 𝜆3(𝑥1 + 2𝑥2 − [1,3]) 

We calculate the partial derivatives of this function with respect to 𝑥1    ، 𝑥2   ، 𝜆1   ، 𝜆2   ، 𝜆3. 

 

𝜕𝐿

𝜕𝑥1

= −4(2𝑥1 − 5) − 𝜆1 − 𝜆3 = 0 

𝜕𝐿

𝜕𝑥2

= −4(2𝑥2 − 1) − 𝜆2 − 2𝜆3 = 0 

𝜕𝐿

𝜕𝜆1

= −𝑥1 = 0 
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𝜕𝐿

𝜕𝜆2

= −𝑥2 = 0 

𝜕𝐿

𝜕𝜆3

= −(𝑥1 + 2𝑥2 − [1,3]) = 0 

To determine the absolute optimal neutrosophic solution, i.e., the absolute neutrosophic maximum, we take all possible 

points (local maxima) and calculate the value of the objective function at each point and choose the largest values. The 

corresponding point is the absolute neutrosophic maximum solution point: 

Problem 1: The point  𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (𝟎,
𝟏

𝟐
) is a local maximum point, the value of the objective function: 

𝒇(𝒙) = −𝟐𝟓 

Problem 3: The point 𝒙𝑵̅̅̅̅ = (𝒙𝟏𝑵, 𝒙𝟐𝑵) = ([𝟏,
𝟔

𝟓
] , [𝟎,

𝟐

𝟓
]) is a local maximum point, the value of the objective function: 

𝒇𝑵(𝒙) ∈ [−𝟑𝟑. 𝟖, −𝟏𝟑] 
Problem 5: The point 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = ([𝟏, 𝟑], 𝟎) is a local maximum point, the value of the objective function: 

𝒇𝑵(𝒙) ∈ [−𝟗, −𝟏] 
Problem 6: The point 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (𝟎, 𝟎) is a local maximum point, the value of the objective function: 

𝒇(𝒙) = −𝟐𝟔 

By comparing the values of the objective function in the previous questions, we find that the best possible point is the 

point (𝒙𝟏
∗ , 𝒙𝟐

∗ ) = ([𝟏, 𝟑], 𝟎) and the absolute maximum value of the function is: 

𝒇𝑵
∗ (𝒙) ∈ [−𝟗, −𝟏] 

Note: This method does not guarantee an absolute optimal value for the problem, however the best possible point can 

be considered an absolute optimal point (general). 

3. Conclusion and results: 
 In the previous study, we presented a neutrosophic formulation of the extended Lagrange multipliers method, and we 

summarize what we have reached through the following table: 

 Classical Problem Neutrosophic Problem 

The 

Problem 

without 

restrictions 

Optimal value of 𝑓(𝑥) without constraints 

Solution point 𝑥̅ = (𝑥1, 𝑥2) = (
5

2
,

1

2
)  

Does not satisfy all constraints as the first 

constraint 

Optimal value of 𝑓(𝑥) without constraints 

Solution point 𝑥̅ = (𝑥1, 𝑥2) = (
5

2
,

1

2
)  

Does not satisfy all constraints as the first 

constraint 

Problem1 k = 1 
Constraint x1 = 0 

Solution point x̅ = (x1, x2) = (0,
1

2
) 

It satisfies all constraints, so it is a local 
maximum 

Value of objective function f(x) = −25 

𝑘 = 1 

Constraint 𝑥1 = 0 

Solution point 𝑥̅ = (𝑥1, 𝑥2) = (0,
1

2
) 

It satisfies all constraints, so it is a local 

maximum 

Value of objective function 𝑓(𝑥) = −25 

Problem2 k = 1 

Constraint x2 = 0 

Solution point x̅ = (x1, x2) = (
5

2
, 0) 

Not all constraints are satisfied as the first 

constraint is not satisfied 

Solution rejected 

k = 1 

Constraint x2 = 0 

Solution point x̅ = (x1, x2) = (
5

2
, 0) 

Not all constraints are satisfied as the first 

constraint is not satisfied 

Solution rejected 

Problem3 𝑘 = 1 

Constraint 𝑥1 + 2𝑥2 − 2 = 0 

Solution point 𝑥̅ = (𝑥1, 𝑥2) = (
22

10
,

−1

10
) 

Does not satisfy all constraints as the third 

constraint is not satisfied 

Solution rejected 

𝑘 = 1 

Constraint 𝑥1 + 2𝑥2 − [1,3] = 0 

Solution Point 

 𝑥𝑁̅̅̅̅ = (𝑥1𝑁, 𝑥2𝑁) = ([1,
6

5
] , [0,

2

5
]) 

It satisfies all constraints, so it is a local 

maximum 

Value of objective function 

𝑓𝑁(𝑥) ∈ [−33.8, −13] 
Problem4 𝑘 = 2 

Constraints 𝑥1 + 2𝑥2 − 2 = 0    , 𝑥1 = 0 

The solution is the point 𝑥̅ = (𝑥1, 𝑥2) =
(0,1) that satisfies all the constraints 

It is a local maximum 

𝑘 = 2 

Constraints 𝑥1 + 2𝑥2 − [1,3] = 0    , 𝑥1 = 0 

Solution Point 𝑥𝑁̅̅̅̅ = (𝑥1𝑁, 𝑥2𝑁) = (0, [
1

2
,

3

2
]) 

Does not satisfy all constraints as the first 

constraint is not satisfied 
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The value of the objective function 𝑓(𝑥) =
−26 

Solution rejected 

Problem5 𝑘 = 2 

Constraints 𝑥1 + 2𝑥2 − 2 = 0    , 𝑥2 = 0 

The solution is the point 

𝑥̅ = (𝑥1, 𝑥2) = (2,0) 

It satisfies all the constraints, so it is a local 

maximum 

The value of the objective function 

𝑓(𝑥) = −2 

𝑘 = 2 

Constraints 𝑥1 + 2𝑥2 − [1,3] = 0    , 𝑥2 = 0 

Solution Point 𝑥𝑁̅̅̅̅ = (𝑥1𝑁, 𝑥2𝑁) = ([1,3], 0) 

It satisfies all constraints, so it is a local 

maximum 

Value of the objective function 

𝑓𝑁(𝑥) ∈ [−9, −1] 

Problem6 𝑘 = 2 

Constraints 𝑥2 = 0  , 𝑥1 = 0 

The solution is the point 

𝑥̅ = (𝑥1, 𝑥2) = (0,0) 

That satisfies all the constraints, so it is a 

local maximum 

The value of the objective function 

 𝑓(𝑥) = −26 

𝑘 = 2 

Constraints 𝑥2 = 0  , 𝑥1 = 0 

The solution is the point 

𝑥̅ = (𝑥1, 𝑥2) = (0,0) 

That satisfies all the constraints, so it is a local 

maximum 

The value of the objective function 

𝑓(𝑥) = −26 

Problem7 𝑘 = 3 

Three constraints 

𝑥1 + 2𝑥2 − 2 = 0    , 𝑥1 = 0 , 𝑥2 = 0 

There is no solution to the problem 

𝑘 = 3 

Three constraints 

𝑥1 + 2𝑥2 − [1,3] = 0 ،𝑥2 = 0  , 𝑥1 = 0 

There is no solution to the problem 

 

Comparing the results of the solution of the classical and neutrosophic problems, we find: 

Problem 3: 

In the classical problem: 

 𝑘 = 1 and 𝑥1 + 2𝑥2 − 2 = 0 

The problem has a solution at the point 𝑥̅ = (𝑥1, 𝑥2) = (
22

10
,

−1

10
) but it does not satisfy all the constraints since the third 

constraint is not satisfied 

A rejected solution 

In the neutrosophic problem: 

𝑘 = 1 with the neutrosophic constraint 𝑥1 + 2𝑥2 − [1,3] = 0 

The problem has a solution at the point 𝑥𝑁̅̅̅̅ = (𝑥1𝑁, 𝑥2𝑁) = ([1,
6

5
] , [0,

2

5
]) which satisfies all the constraints and is a 

local maximum. 

The value of the objective function 𝒇𝑵(𝒙) = [−𝟑𝟑. 𝟖, −𝟏𝟑] 
Problem4: 

In the classical problem: 

𝒌 = 𝟐 and the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − 𝟐 = 𝟎    , 𝒙𝟏 = 𝟎 

The problem has a solution which is the point 𝒙̅ = (𝒙𝟏, 𝒙𝟐) = (𝟎, 𝟏) that satisfies all the constraints, so it is a local 

maximum. 

The value of the objective function 𝒇(𝒙) = −𝟐𝟔 

In the neutrosophic problem: 

𝒌 = 𝟐 and the constraints 𝒙𝟏 + 𝟐𝒙𝟐 − [𝟏, 𝟑] = 𝟎    , 𝒙𝟏 = 𝟎 

The problem has a solution which is the point 𝒙𝑵̅̅̅̅ = (𝒙𝟏𝑵, 𝒙𝟐𝑵) = (𝟎, [
𝟏

𝟐
,

𝟑

𝟐
])  that does not satisfy all the constraints, 

since the first constraint is not satisfied 

Rejected solution 

In addition to the absolute optimal value: 

In the classical problem: 

The point (𝒙𝟏
∗ , 𝒙𝟐

∗ ) = (𝟐, 𝟎) and the absolute maximum value of the function is: 

𝒇∗(𝒙) = −𝟐 

In the neutrosophic problem: 

The point (𝒙𝟏
∗ , 𝒙𝟐

∗ ) = ([𝟏, 𝟑], 𝟎) and the absolute maximum value of the function is: 

𝒇𝑵
∗ (𝒙) ∈ [−𝟗, −𝟏] 

The absolute maximum value in the classical problem belongs to the solution domain in the neutrosophic problem, 

which confirms what we mentioned in the text of the research that the neutrosophic values give results that have a 

margin of freedom and are suitable for all conditions. 
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