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Abstract: In this article, we develop neutrosophic extension of the Wald (Inverse Gaussian) 

distribution to present more realistic modelling for real data by introducing uncertainty in its 

parameters. We derive fundamental statistical properties such as the probability density function 

(PDF), cumulative distribution function (CDF) and quantile function, and compare it with the 

classical model. This comparison shows the versatility and great robustness of the neutrosophic 

model against the imprecise data. Considering that the Wald distribution plays a significant role in 

the theory of reliability, we extend some key reliability functions into a neutrosophic framework. 

Under neutrosophic uncertainty, we derive and study the survival function, the reliability function 

and the hazard function which results in a more generalized and pragmatic approach for modeling 

reliability. These functions provide an improved decision-making process for situations in which 

classical models are unable to capture the inbuilt uncertainties of systems. To make it even more 

applicable, we propose an approach to generate random samples from neutrosophic Wald 

distribution using quantile function so that neutrosophic Wald distribution can be simulated and 

empirically validated. In addition, we also develop an estimation procedure through the method of 

moments (mom), which shows a simple way of estimating the parameters. 

Keywords: Neutrosophic distribution; neutrosophic probability; estimation; simulation 

 

 

1. Introduction 

Statistical distributions are commonly used tools for modeling, analyzing, and predicting real-

world phenomena across various domains, but especially in reliability engineering and survival 

analysis [1]. Reliability theory describes the time-to-failure behavior of systems, components, and 

machinery through statistical distributions, allowing engineers to assess product lifespan, failure 

rates, maintenance schedules, and product reliability (i.e. estimates of the probability of survival 

within a certain time) [2]. The exponential, Weibull, gamma, and inverse Gaussian (Wald) 
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distributions are commonly used distributions in reliability analysis, each suitable for different 

failure patterns [3]. The exponential distribution, for example, represents fixed failure rates, and the 

Weibull, with its parameters, is more flexible to capture failure rates that rise or fall as time progresses 

[4]. Likewise, the inverse Gaussian (Wald) distribution has been applied extensively to a variety of 

first-passage time problems, so it is useful for modeling system lifetimes when they are exposed to 

random shocks [5]. Statistical distributions are pivotal in survival analysis for modeling lifespan data 

in the fields of medical and biological studies [6]. The Kaplan-Meier estimator, Cox proportional 

hazards model, and parametric distributions (i.e. log-normal, gamma and inverse Gaussian 

distributions) are well established methods to estimate survival probabilities and hazard rates [7]. 

These distributions are used to derive the hazard function, which describes the probability of an event 

occurring at a specific point in time, playing a key role in medical decision-making, risk assessment, 

and insurance studies [8]. Additionally, statistical distributions are utilized for quality control, 

warranty predictions, and risk analysis, all of which are necessary to ensure the product is designed 

optimally and is inexpensive to maintain over its lifetime in industrial applications. Statistical 

distributions are widely used in reliability and survival analysis due to their significance in providing 

some quantitative insights, predicting future outcomes, and helping in optimization of some of the 

decision-making processes [9]. The Wald distribution is one of the very importance distributions in 

statistical applications [10]. The Wald distribution (also known as the Inverse Gaussian distribution) 

is a basic probability model in statistics particularly in first-passage time problems and in reliability 

problems and provides better model results for stochastic processes [11]. It refers to the amount of 

time until a certain Brownian motion with positive drift hits a given threshold level and hence is well-

suited for use in sequential analysis, financial growth approximations, and similar fields [12]. For 

similar reasons, the Wald distribution is of interest to reliability engineering, when we wish to model 

the lifetime of systems and components that are subject to random wear and degradation with time. 

Commonly used in biostatistics and in the survival analysis, it is used to model waiting or survival 

time, namely a situation when early failures as well as long-term survival probabilities vary greatly. 

Two of the most used characteristics of the survival functions are the location and shape parameters. 

In econometrics and finance, it is used to model log stock prices, default times in credit risk analysis, 

time-to-event processes, etc. In decision processes, the Wald distribution is instrumental; specifically, 

in sequential probability ratio tests (SPRT), it aids in optimal stopping rules based on cumulative 

evidence over time.  

Although classical probability theory is the most widely used method for modeling uncertainty 

and is based on well-defined probability measures, it requires crisp, well-defined and complete 

information about events. But in a large class of real-word problems, the uncertainties are not purely 

stochastic but also linguistic, ambiguous, or imprecise, which makes classical probability models 

inadequate [13]. This also highlights one of the main limitations of classical probability theory: that it 

does not deal well with subjectivity, uncertainty or vagueness at the level of decision-making, 

medical diagnosis, financial forecasting, and risk assessment [14]. In contrast, traditional probability 

models require an rigorously defined sample space and velvet probabilities that are often impossible 

to have in complex systems where uncertainty arises from human perception, incomplete data, or 

simply lack of precision measuring devices [15]. For instance, in medical prognosis, determining a 

patient’s recovery period may not always be expressed in terms of crisp probabilities since it relies 

on many uncertain factors such as lifestyle choices, genetic compositions, treatment efficacy, etc. To 

overcome these limitations, the use of fuzzy set theory, fuzzy probability theory, and fuzzy 

distributions have been proposed to deal with situations with uncertain, vague, or natural language 

type uncertainties [16]. In fuzzy probability theory, classical probability is generalized to where 

membership functions specify the likelihood or degree of belief concerning an event. They basically 

represent probability values as fuzzy numbers rather than precise values; therefore, they are 
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appropriate for problems in which uncertainty is not purely random but also imprecise or subjective. 

This paradigm is central to artificial intelligence, machine learning, decision support systems, climate 

modeling and human-centered processes where data is often incomplete, unclear or inconsistent [17]. 

Through fuzzy possibility decision making, prediction, delay, and uncertainty analysis, fuzzy 

probability can expand the application of fuzzy mathematics and help solve problems in many fields. 

Although fuzzy set theory is ineffective in reconstructing higher levels of vagueness, conflict, 

and undetermined data [18]. Fuzzy logic attaches a membership in the range of 0 to 1, yet it does not 

distinguish between lack of information and contradictory data. Fuzzy set theory and fuzzy logic 

cannot completely model uncertainty that results in the real- world problems, especially in the 

decision, in the medical diagnosis, and artificial intelligence where uncertainty originates from 

partial, inconsistent, and contradictory information [19]. Aiming to solve these problems, 

neutrosophic logic was proposed by Smarandache, where each of the entities inside an uncertain 

statement, truth (T), indeterminacy (I) and falsity (F), is treated as a query that works independently 

from the others, and each of these entities takes values in the [0,1] domain [20-23]. Neutrosophic logic, 

as compared to fuzzy logic which can only accommodate partial truth, explicitly models uncertainty 

and contradiction [24]. This is particularly helpful in the areas of decision making in very complex 

situations, machine learning, medical diagnosis, and disparate uncertain data analysis, where 

uncertainty and counter-intuitive data pair [25-27]. Since classical probability fails to take into 

consideration real-world uncertainty, neutrosophic probability and neutrosophic distributions have 

emerged as important and applicable areas in many engineering and scientific fields. Neutrosophic 

theory is also helpful to model uncertainty because it adds indeterminacy [28]. 

In this work, we present the neutrosophic version of the Wald model for better modelling the 

real-life problems. Neutrosophic extension of Wald distribution provides additional power in dealing 

with ambiguous and incomplete information, rendering the models more suitable for practical 

scenarios.  

The work is structured as follows. In section 2 the statistical model of the proposed model with 

uncertainty parameters are presented. Section 3 data generating model using the quantile function is 

discussed. Section 4 provides estimation procedure of the proposed model. Finally, Section 5 

concludes the major findings of the work. 

 

2. Proposed Model 

In this section, we derive and present the statistical properties of the Wald distribution with 

essential functions used in the reliability analysis. The proposed model, as the classical one, is a 

continuous probability distribution on the positive real axis, whose parameters, through the use of the 

neutrosophic logic, can take the values of indeterminate and uncertain events. By assuming the 

imprecision in the distributional parameters, proposed model can be defined as: 

𝑓𝑁(𝑡; μ𝑁, λ𝑁) = √
λ𝑁

2π𝑡3
exp (−

λ𝑁(𝑡−μ𝑁)
2

2μ𝑁
2 𝑡

) , 𝑡, λ𝑁 , μ𝑁 > 0      (1) 

where μ𝑁 = [μl, μu] and λ𝑁 = [λl, λu] are vague parameters of the proposed model. 

The proposed model generalizes the traditional Wald distribution, as the mean and shape parameters 

are crisp values in the traditional Wald distribution, while in the neutrosophic Wald distribution, they 

can be imprecise, vague, indeterminate, or interval-based, leading to a broader application in real-world 

where exact values are not available.  It finds application especially in reliability analysis, survival 

studies, and stochastic modeling when uncertainty originates from measurement errors, human 

judgment, or random environmental factors. For certain values of  μ𝑁 and λ𝑁 the PDF of the proposed 

distribution is shown in Figure 1. 
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Figure 1 The PDF of the proposed distribution with imprecise location parameter values 

 

The PDF of neutrosophic Wald distribution for different values of μ𝑁  is displayed in Figure 1, and 

explains the behaviour of the distribution under indeterminacy. Each panel in the Figure 1 corresponds 

to a different interval of the parameter μ𝑁, and encompasses a range of density curves rather than a 

single deterministic function. The shaded areas between the two curves in both panels show the 

uncertainty in the PDF as a consequence of the neutrosophic representation for a, meaning that the 

actual value of the parameter is unknown (it may take any value within a defined interval).The 

distribution in the first panel μ𝑁=[0.5, 1.5] is highly right-skewed, it has a higher peak and a slower 

decay, which indicates that higher probability density points towards to further left towards of the 

Wald neutrosophic variable. The initial left panel is consistent with a very exaggerated deformation of 

periodicity as the mean interval shifts upward, and it serves as a representation of complete degradation 

towards random noise with a steadily increasing scandals in the mean interval as μ𝑁 =[1.5,2], 

μ𝑁=[2.5,3.5], μ𝑁=[3.5,5] panels, as the peak moves to the right and the peak appears flat, showing an 

increasing dispersion and lower skewness.  

Similarly, the CDF of the proposed model is given by: 

𝐹𝑁(𝑡; μ𝑁, λ𝑁) = Φ(√
λ𝑁

𝑡
(

𝑡

μ𝑁
− 1)) + exp (

2λ𝑁

μ𝑁
)Φ(−√

λ𝑁

𝑡
(

𝑡

μ𝑁
+ 1))   (2) 

By assuming different values of μ𝑁 and λ𝑁 the CDF curves of the proposed model is shown in Figure 2.  
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Figure 2 The CDF plot of the proposed model with different values of location parameter 

 

The effect of uncertainty in shape parameter on the cumulative probability of the Wald neutrosophic 

variable is shown in Figure 2, which depicts the cumulative distribution function (CDF) of 

Neutrosophic Wald distribution. This means that each subpanel shows its own intervals of the 

parameter μ𝑁  , describing the possible CDF curves instead of a single deterministic function. In each 

panel, the shaded areas representing the space between the two curves illustrate the area of uncertainty 

or indeterminacy associated with the neutrosophic parameter, for which the true value of μ𝑁  is not 

known exactly, but for which the value belongs to the interval of the range. As we can see in the first 

panel (μ𝑁  =[0.5,1.5]), the CDF increases more steeply than the previous case, indicating that the 

probability of finding smaller values of the Wald variable is higher since it is strongly right-skewed. In 

the other rows, which represent the same CDFs but for larger values of a in the mean parameter (μ𝑁 

=[1.5,2], μ𝑁 =[2.5,3.5], and μ𝑁 = [3.5,5]), we notice that as the value of a increases across a, the CDF curves 

shift to the rightmost parts of the plot, meaning that the distribution becomes wider, and larger values 

of the Wald variable become more likely. As μ𝑁  becomes μ𝑁 larger, the shaded regions become the 

wider, representing greater uncertainty regarding cumulative probabilities.  Figure 2 illustrates how 

neutrosophic uncertainty on the shape parameter modifies the cumulative probability shape, allowing 

the Neutrosophic Wald distribution to be very flexible to different types of uncertain, imprecise, and 

incomplete information.  
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A program in R is written that use the structure of “neutrostat “ package [29] to draw the PDF and CDF 

values of the proposed model. The PDF and CDF values at specified values with μ𝑁  =[1, 2] and λ𝑁 

=[0.5,1] are given in Table 1. 

 

Table 1 PDF and CDF values of the proposed model using neutrostat R package 

Z 

values 

PDF values CDF values 

0.5 [0.643,0.967] [0.232, 0.249] 

1 [0.352, 0.564] [0.490, 0.627] 

1.5 [0.212, 0.259] [0.627, 0.824] 

2 [0.120, 0.141] [0.713, 0.915] 

2.5 [0.058,0.099] [0.773, 0.957] 

3 [0.028, 0.073] [0.815, 0.978] 

3.5 [0.014, 0.056] [0.848, 0.988] 

4 [0.007, 0.044] [0.873, 0.994] 

 

Results in Table 1 show at each value of neutrosophic random variable Z we have interval value of PDF 

and CDF. This is because of indeterminacy that we have assumed in the neutrosophic distributional 

parameters. 

The survival function is another important function of the proposed model. For uncertain parameters, 

survival function of the proposed model is given by: 

𝑆𝑁(𝑡; μ𝑁, λ𝑁) = 1 − 𝐹𝑁(𝑡; μ𝑁, λ𝑁)        (3) 

The survival function indicates the probability of subject or system survival past time. Mathematically 

T is a random variable representing the time to occurrence of an event of interest (e.g., failure, death, 

or any type of endpoint of interest). In reliability study, clinical studies, and actuarial science, the 

survival function provides important information about the longevity or durability of a system or 

population. It is a non-increasing function. For some specific values of μ𝑁 and λ𝑁,survival function of 

the proposed model is shown in Figure 3. 

 

 
 

Figure 3 Survival function of the proposed model with imprecise parameter values. 
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Interval values of the neutrosophic mean parameters of the survival function of the Neutrosophic Wald 

Distribution are shown in this Figure 3. The survival function 𝑆𝑁(𝑡; μ𝑁, λ𝑁)  corresponds to the 

probability that the Wald neutrosophic variable T > t. It plots the survival functions corresponding to 

two edge values of the neutrosophic location parameter, namely μ𝑁=0.5 and μ𝑁=1.5 (left panel). The 

area in gray symbolizes the uncertainty in the neutrosophic extension, as each realization would result 

in a possible survival probability ranging from a minimum to a maximum value. In the right panel on 

the left is plotted survival function for the interval μ𝑁=1.5 and μ𝑁=2. Survival probabilities decrease as t 

increases, and the shaded area once more emphasizes the fluctuations of possible values fueled by 

neutrosophic uncertainty. The results show how the uncertainty of the location parameter impacts the 

survival probabilities, and confirming the proposed distribution's ability to model a survival problem 

where the values of the parameters are not exact. Neutrosophic interval effect is visually depicted by 

the upper and lower boundaries of the shaded region.  

The other function related to survival is hazard function which is defined below: 

𝐻𝑁(𝑡; μ𝑁, λ𝑁) =
𝑓𝑁(𝑡;μ𝑁,λ𝑁)

𝑆𝑁(𝑡;μ𝑁,λ𝑁)
         (4) 

The exact expression of Eq (4) is quite complicated, how visual depiction of hazard function is given in 

Figure 4. 

 
Figure 4 Hazard function of the proposed model with different inexact distribution parameters 

 

In survival analysis and reliability studies, the hazard function describes the instantaneous failure rate 

of a subject or system at a given time, subject to prior survival. It gives insights on how failure of 

components changes over its life and is widely used in reliability modeling, reliability evaluation, 

medicine, engineering applications, etc. 

The cumulative hazard function for the proposed model can be derived by : 

𝐻𝑁(𝑡; μ𝑁, λ𝑁) = − ln 𝑆𝑁 (𝑡; μ𝑁, λ𝑁)        (5) 

The 𝐻𝑁(𝑡; μ𝑁, λ𝑁)is has an important role in survival and reliability data modelling. It provides a 

measure of the expected number of failures occurring up to a specific time in survival and reliability 

analysis. One of the primary reliability metrics that must be computed is the Mean Time to Failure 

(MTTF), which represents the average failure time for a system or component that cannot be repaired. 

The average time to failure (MTTF) is the average time that the failure occurs or is equal to the mean of 

the failure time distribution, which is often broadly applied in engineering, manufacturing, and 

survival analysis to estimate product life, calculate optimal maintenance approaches, increase system 

reliability, and reduce incidence of surprises. 



Neutrosophic Sets and Systems, Vol. 82, 2025 283  

 

 

Khan et.at., Neutrosophic Design of the Exponential Model with Applications 

 

The MTTF for the proposed model is defined by: 

MTTF𝑁 = 𝐸[𝑇] = ∫ 𝑡
∞

0

𝑓𝑁(𝑡; μ𝑁, λ𝑁) 𝑑𝑡 

𝐸[𝑇] = ∫ 𝑡
∞

0
√

λ𝑁

2π𝑡3
exp (−

λ𝑁(𝑡−μ𝑁)
2

2μ𝑁
2 𝑡

) 𝑑𝑡        (6) 

Solving (6) further yielded: 

𝐸[𝑇] = 𝜇𝑁 
The mean residual life (MRL) function  can also derived as: 

MRL𝑁(𝑡; μ𝑁, λ𝑁) =
∫ 𝑆𝑁(𝑢;μ𝑁,λ𝑁)𝑑𝑢
∞
𝑡

𝑆𝑁(𝑡;μ𝑁,λ𝑁)
        (7) 

The MRL function characterizes the expected remaining functional lifetime of an item (system) given 

that it has survived up to the instant t. It is used in reliability analysis, survival studies, and maintenance 

planning. Ultimately, MRL assists in assessing longevity, predictions on failures, and optimization of 

replacement strategies, both for engineering and health purposes. 

The variance of the model can be derived as follows: 

Var(𝑇) = 𝐸[𝑇2] − (𝐸[𝑇])2         (8) 

Now 

𝐸[𝑇2] = ∫ 𝑡2𝑓𝑁(𝑡; μ𝑁, λ𝑁)
∞

0
 𝑑𝑡        (9) 

𝐸[𝑇2] = μ𝑁
2 +

μ𝑁
3

λ𝑁
           (10) 

𝐸[𝑇] = 𝜇𝑁           (11) 

Using Eq (10) and Eq (11) in Eq (9), we get: 

Var(𝑇) =
μ𝑁
3

λ𝑁
          (12) 

Likewise, mode of the distribution can be obtained as: 
𝑑

𝑑𝑇
𝑓𝑁(𝑇; μ𝑁, λ𝑁) = 0          (13) 

 

𝑓𝑁(𝑇) = √
λ𝑁

2π𝑇3
exp(−

λ𝑁(𝑇 − μ𝑁)
2

2μ𝑁
2 𝑇

) 

Solving for T, mode is given by: 
𝑑

𝑑𝑡
𝑓𝑁(𝑡) = 𝑓𝑁(𝑡) [

3

2𝑡
−
λ𝑁
μ𝑁
2 (1 −

μ𝑁
𝑡
)] 

3

2𝑡
−
λ𝑁
μ𝑁
2 (1 −

μ𝑁
𝑡
) = 0 

Solving for T, mode is given by: 

Mode(𝑇) = μ𝑁 (√1 +
9μ𝑁

4λ𝑁
−

3μ𝑁

2λ𝑁
)        (14) 

 The skewness can be determined by solving the expression: 

γ1 =
𝐸[(𝑇−𝐸[𝑇])3]

Var(𝑇)3/2
          (15) 

Var(𝑇) =
μ𝑁
3

λ𝑁
 

and  𝐸[𝑇] = μ𝑁 

Using these expressions in Eq (15), yielded: 

γ1𝑁 =

3μ𝑁
5

λ𝑁

(
μ𝑁
3

λ𝑁
)
3/2

 

γ1𝑁 =
3μ𝑁

√λ𝑁
           (16) 

We can derive the expression for kurtosis coefficient as: 
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γ2 =
𝐸[(𝑇−𝐸[𝑇])4]

Var(𝑇)2
          (17) 

Eq (17) further can be simplified as: 

𝐸[(𝑇 − μ𝑁)
4] =

15μ𝑁
7

λ𝑁
3  

γ2𝑁 =

15μ𝑁
7

λ𝑁
3

(
μ𝑁
3

λ𝑁
)
2  

γ2𝑁 =
15μ𝑁

7

λ𝑁
3 ×

λ𝑁
2

μ𝑁
6  

γ2𝑁 =
15μ𝑁

λ𝑁
           (18) 

 

Skewness and kurtosis coefficients explain probability distribution shape. Skewness tells us about the 

asymmetry of a distribution a positive number means the distribution is right-skewed (has a longer 

right tail), and a negative number means that it is left-skewed. On other hand kurtosis refers to the tails 

of a distribution; high kurtosis means a lot of extreme outliers, low kurtosis means a flatter distribution. 

 

3. Random Sample Generation 

The inverse cumulative function method, also referred to as the inverse transform sampling 

technique [30], is the basic technique for generating random samples from a given probability 

distribution. Uniform random numbers is then generated according to the standard uniform 

distribution (a simple approach is that R use runif(.), or Python use random.uniform(.) etc). Using the 

inverse of the cumulative distribution function (CDF) of the desired distribution, these uniform values 

are then transformed. The CDF gives us the probability that a random variable will be less than or equal 

to a value at a given point. The inverse function is then applied to map the uniform values based on 

values of the target distribution. This technique is popular, since, provided that appropriate sampling 

techniques are followed, the produced samples will adhere exactly to the theoretical distribution 

without any error of approximation. This is valid for several distributions. The inverse cumulative 

function method is especially beneficial in Monte Carlo simulations, statistical modeling, and stochastic 

processes, where random sample generation is critical for decision-making and predictive analysis.  

The inverse cumulative function or quantile function of the proposed model is defined as: 

𝐹𝑁(𝑡; μ𝑁, λ𝑁) = Φ(√
λ𝑁
𝑡
(
𝑡

μ𝑁
− 1)) + exp (

2λ𝑁
μ𝑁

)Φ(−√
λ𝑁
𝑡
(
𝑡

μ𝑁
+ 1)) 

Now quantile function is obtained by solving the expression: 

𝑝 = 𝐹𝑁(𝑡; μ𝑁, λ𝑁) 

𝑄𝑁(𝑝) =
μ𝑁

2λ𝑁
(2λ𝑁Φ

−1(𝑝) + √4λ𝑁
2 (Φ−1(𝑝))

2
+ 4μ𝑁λ𝑁)     (19) 

To generate random samples from the neutrosophic Wald distribution, we follow the simulation 

procedure described below. The neutrosophic parameters (e.g., mean and shape factor) become 

involved by defining them as interval or fuzzy values (in other words, uncertainty is taken into 

account). We assume that μ𝑁 = [0.5, 2] and λ𝑁 = [1,1]. Then, uniform random numbers from a uniform 

distribution are generated to use as transformation inputs. The output is directive adjustment based on 

the accepted neutrosophic likelihood parameters and will return neutrosophic Wald distributed 

samples. In cases when the parameters are represented by intervals, lower and upper bounds are 

computed separately, yielding an interval-valued dataset. This gives an opportunity to model on 
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uncertain and imprecise data and versatility in reliability analysis, survival studies and uncertain 

decision-making environments. A program in R is used to generate random samples from the proposed 

model. At specific seed setting first forty random samples values using Eq (19) are given in Table 2. 

 

Table 2 Random samples generated from the proposed with imprecise parameter values 

Random Data 

 [1.072, 1.893] [0.954, 1.603] [1.346, 1.939] [1.87, 2.462] [1.284, 1.462] 

[1.186, 1.958] [0.619, 1.377] [1.296, 1.976] [0.851, 0.865] [1.563, 1.564] 

[1.769, 2.199] [1.722, 1.949] [1.146, 1.945] [0.957, 1.224] [1.087, 1.762] 

[0.684, 1.367] [1.362, 1.487] [1.125, 1.352] [1.353, 2.287] [1.504, 2.388] 

[0.731, 1.748] [1.135, 1.33] [1.001, 2.233] [1.466, 2.471] [1.539, 1.726] 

[0.741, 2.153] [1.59, 1.706] [1.108, 1.186] [1.334, 1.863] [1.521, 2.251] 

[1.672, 1.839] [1.75, 1.849] [0.666, 2.185] [0.987, 2.027] [0.888, 1.645] 

[0.691, 2.271] [1.754, 1.947] [0.532, 1.689] [0.818, 1.614] [0.806, 1.891] 

 

Table 2 shows the interval random sample values generated from the proposed model with parameter 

setting μ𝑁 = [1, 2]  and λ𝑁 = [0.5,1] . Each interval value indicates imprecise because of imprecise 

neutrosophic parameters. 

 

4 Estimation Method  

Estimation methods are statistical modeling techniques used to estimate the unknown parameters 

of a probability distribution based on observed neutrosophic data. Some common estimation methods 

in literature include the maximum likelihood estimation (MLE), method of moments (mom), and least 

squared method (LSM). Despite its asymptotic efficiency, which makes MLE popular, computing it 

involves solving complicated optimization problems (especially for non-standard distributions). 

However sometime, it is difficult to find the closed form likelihood expressions. In contrast, the method 

of moments is simpler and more intuitive, as it works by equating theoretical based moments to the 

sample based moments to estimate parameters. The inverse Wald distribution can be more easily fitted 

using the method of moments than by any of the other methods. This is due to the complex likelihood 

function of the inverse Wald distribution, which involves relatively computationally intensive MLE 

process that could even sometimes require iterative numerical methods. The method of moments, in 

contrast, features simple estimates where parameters can be obtained directly from sample-based 

properties (mean and variance). It is not subject to complex optimization routines and allows for faster 

estimation, making it especially useful for practical applications, especially when memory is limited or 

when the datasets are large. 

Based on MoM approach the equating moments can be achieved as follows: 

μ�̂� = �̅�           (19) 

λ�̂� =
𝑇3̅̅ ̅̅

𝑆2
           (20) 

If we assume the random samples generated from the proposed model with μ𝑁 = [0.5, 2] and λ𝑁 =

[1,1] then estimated values with other statistical characteristics are shown in Table 3. 
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Table 3 Estimated values of proposed model using moments method 

Characteristics Estimated values 

μ�̂� [1.817, 1.187] 

λ�̂� [11.98, 42.63] 

Mean [1.187, 1.817] 

Median [1.038,1.750] 

Variance [0.139, 0.141] 

Mode [1.191,1.817] 

 

Table 3 shows the estimated values of the proposed model using simulated data given in Table 2. 

Results indicate that due to imprecision in the parameters μ𝑁 = [1, 2] and λ𝑁 = [0.5,1], each estimated 

quantity involves uncertainty. Moreover, if we assume that indeterminacy is zero then results of the 

classical model match with the neutrosophic version of the Wald distribution. 

 

5 Conclusions 

In this work, we proposed the neutrosophic Wald distribution which broadens the applicability of 

this model in practical situations by allowing uncertainty of its parameters. Utilizing this extension 

we also obtained key statistical properties such as the probability density function, cumulative 

distribution function and quantile function, which shows how flexible and robust the model is in 

comparison with the classical Wald distribution. The proposed addressed in our study provides a 

pragmatic and significant tool for fitting data with fuzzy and vague characteristics in the count of 

failures and analysis of reliability. Specifically, we examined some elementary reliability metrics like 

survival function, reliability function, and hazard function in the neutrosophic framework, thus 

extending definite reliability functions into a neutrosophic context. In addition, we presented a 

quantile-driven simulation method for the generation of random samples from the proposed model 

for the purposes of empirical evidence. We also proposed the moments estimation procedure that is 

simple and computationally inexpensive. 
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