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Abstract: Neutrosophic Zuzzy Sets deal with complex, incomplete and imprecise data. For the
robust approach in such data, we have constructed an SV —tukasiewicz Neutrosophic Juzzy
matrix. To approach this study with real-life problem, we took a decision-making problem on
choosing an ultimate Laptop Model on behalf of the needs of an individual. We have established
the operations and types of SV —Lukasiewicz Neutrosophic Zuzzy matrix. These are benefited in

the procedure of achieving the best outcome.
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1. Introduction

Fuzzy is a powerful mathematical technique that forms the basis of set theory and logic. It can
handle imprecise, inconsistent and ambiguous data by providing membership grades in the interval
[0,1] on the basis of truth or belongingness. In addition to this grade, Atanassov included the non-
membership grade in the set theory, for considering the falsity or non-belonginess. It was named as
Intuitionistic Fuzzy set. These set theories lack in handling indetermined data. [2] Smarandache
handled this lack by introducing Neutrosophic set, which consists of truth, falsity and indeterminacy
grades in non-standard intervals. Then, a view of Neutrosophic Zuzzy set was first proposed by S.
Das et al [7]. This set theory blends with the characteristics of Neutrosophic set and Juzzy set. The

elements in the set are in the form of four tuple that defines the membership value with varying
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Accuracy, Inaccuracy, and Indecisiveness degrees. This provides more accuracy in handling real-life
decision-making problem. Also, it doesn’t suit for complex problem due to the representation non-
standard intervals for the Neutrosophic components. This issue is overcome by the proposal of
SV —Neutrosophic Fuzzy set [9]. As it works with the components of Neutrosophic sets in [0,1]. This
helps to work in the complex field of pattern recognition, artificial intelligence and so on.
Furthermore, using computational instances, the authors developed a range of set theoretic
operations and properties. [10,11] Later, they extended this concept in matrix theory for the
utilization of Neutrosophic Zuzzy Matrix. This contributes to the creation of Single-valued
Neutrosophic #uzzy Matrix or SV —Neutrosophic #uzzy Matrix, which allows the entries of the
matrix to possess the four tuples namely membership value and its degree of Accuracy,
Indecisiveness and Inaccuracy [13]. As an extension of set theory to matrix theory, one can work on
real life data in various ways with the use of their operations. Some authors incorporated this concept
in decision making problem by conducting research in the perspective of algebraic structures and
investigated the algebraic operations. Using which some authors constructed the score matrix for the
application in decision-making problem by use of matrix operations [14]. This §V —Neutrosophic
Juzzy Matrix gives better and more accurate result in decision-making problem rather than other
theories. To bring advancement in this concept, we combined this matrix theory with Lukasiewicz
Fuzzy Set theory. It has both logical interpretations and a suitable basis for implementation. This was
first proposed by a polish Mathematician, Jan Lukasiewicz, who was a logician and Philosopher. He
gave rise to the worthwhile logic called Lukasiewicz logic. This logic provides a powerful framework
with diverse application across various disciplines. As a part of it, many professionals incorporate
the above logic to fuzzy set theory and presented the idea of Lukasiewicz Zuzzy Set in various

algebra [15-18].

In this study, we have extended the Lukasiewicz set theory to Matrix theory and fused the
concept of Lukasiewicz theory to SV —Neutrosophic Fuzzy Matrix for bringing the discussion on
operations of the matrices to earn the betterment of result in decision making problem. We have
addressed a specific problem on choosing a best laptop model under the circumstance of user’s

requirements and budgetary constraints.

2. Preliminaries
2.1. Juzzy Set (FD)

A FS A over U is referred as A = {(&, uA\(ii))/& € [U}, and p,: U - [0,1] be membership

function of A.
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2.2. SV —Neutrosophic Set ($£29)

ASNS B over U is referred as

B = {(8 7@, 5@, F5 @) |a € 0,
where T, 9 and Fj are functions of Accuracy, Indecisiveness, and Inaccuracy degrees
respectively. For each point & in U, 5,75, F5 € [0,1].
2.3. SV —Neutrosophic Juzzy Set (RFS)

A RNFS C on U is referred as

€= {(& e (@), T (@, ), 98, ), Fe(@ ) ) & € 0}

where its membership value fi; is described by its Accuracy T¢(d, ft), Indecisiveness J¢(d, ) and
Inaccuracy Fe¢(a, fr)functions. Moreover T¢, 9 and F¢ are either standard or non-standard form
of ]107,17[. Thatis, T¢:U - 107,17, 7¢: U > ]07,1%[ and F: U - 107, 1*[. Also 0~ < Sup(T¢) +
Sup(J¢) + Sup(F¢) < 3.
2.4. SV —Neutrosophic Fuzzy Set (SN FS)

The NS D on U is defined by

D = {(& fn (@), Tp (& 0, I & ), F (&, ) |6 € 0},

where f@(&,ﬂ), ﬁ@(&,ﬂ),?@(&,ﬂ) €[0,1] and 0 < j'c(&,[fl) + ﬁ@(ﬁ,[’l) + ?@(ﬁ,ﬂ) <3.

2.5. 8V —Neutrosophic Matrix ($3241)

A S 4H is defined as
M =[da;] = [(&Z,d, af
6, = L&),
where aj;, &};, dj; are referred to as Accuracy, Indecisiveness and Inaccuracy degrees of the ij™

element in M. These degrees satisfy 0 < ii‘?i + ii?]- + ii?;- <3 Vi,j.

2.6. Neutrosophic Fuzzy Matrix (#25FfH)
The NFM is defined as

H = [ﬁij];,x@ = [(ay, frn(a5), T H(ﬁu"ﬂ)'ﬁrm(ﬁipﬂ)j’rm(&q,ﬂ))]f,xa,
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where its membership value has been represented by an Accuracy, Indecisiveness and Inaccuracy
degrees which are subsets of either standard or non-standard form of ]07,1*[ and 0~ <
Sup(Ty) + Sup(dy) + Sup(Fy) < 3.
2.7. 8V —Neutrosophic Fuzzy Matrix (SR FM)
The &1 M is defined as
G= [ﬁij] = [ﬂ@(aij):TG(aij; ﬂ),jﬁ(&ij,ﬂ):j:@(aij;ﬂ)]

3 <

where its membership value has been represented by an Accuracy, Indecisiveness and Inaccuracy
membership and T (&, it), I (a4, i), Fg(ay, i) € [0,1] which satisfy the condition that 0 <
TG(&U’I:‘) + jG(aij'ﬂ) + TG(aij;l:‘) <3

3. SV —Lukasiewicz Neutrosophic Fuzzy Matrix

3.1. Definitions

3.1.1. @ — Lukasiewicz Neutrosophic Zuzzy Set (LR FS)
Let A bea & in U and let 8 = [0,1]. The ZNFS Lg is defined as

£8: U - [0,1],d - max{0,A(a) + 6 — 1.
3.1.2. SV — 0 — Lukasiewicz Neutrosophic Fuzzy Set (SLNFS)
Let D = (fip (&), T'p (&, fr), Ip (8, f1), Fp, (6, 1)) be a ©NFS in U and let § = [0,1]. A SLNFS
L% is defined as
4 = (U, @, 6 0,3, 6.0, 7, 6 )] € O},
D D D D
where ft5:0 - [0,1],d - max{0, f1,(@) + 6 — 1}, T,5:U - [0,1],& > max{0,7,(&) + 6 — 1},
D D
:‘ILQ:[['J - [0,1],d > max{0,7,(d) + 6 — 1} and ?LQ:H'J - [0,1], & > max{0, F(a) + § — 1} are
D D
membership value and its Accuracy, Indecisiveness and Inaccuracy memberships, which satisfies

the condition that 0 < T, (4, 1) + 7 5 (&, 1) + F. 5 (4, 1) < 3.
td L4 td

3.1.3. SV — 8 — Lukasiewicz Neutrosophic Fuzzy Matrix (SLRFM)

The SL N FM is defined as

B = [E‘ii];,xa = [(ﬂtg (a5),7 10 (5, ﬂ)’jbg (a5, 1), F 0 (&ij’ﬂ)]iaxﬁ,’
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where its membership value has been expressed by an Accuracy, Indecisiveness and Inaccuracy

degreesas ft5:U - [0,1], 4 > max{0, () + 0 — 1}, T 5: U > [0,1],d;; > max{0,T¢(d;) +
G G

6-1}, 3,,:0-1[0,1] 5 - max{0,9(d;) + 6 — 1} and F,5: 0 - [0, 1], &;; » max{0, F(d;) +
G G

0 — 1} respectively, which satisfy the condition that 0 < J° Lg (ii,-j, [l) + jbg (iii,-, [Zt) + Tbg (iii,-, [Zt) <3.

3.2. Operations on SV —Lukasiewicz Neutrosophic Zuzzy Matrix
3.2.1. Matrix Addition

Let P = []pif]mm and Q = [qii]/r’hxh be two LR FMs. The matrix addition is in the form

P+ @ = [(lllﬂ“u@(&ij)' TITP+@(E‘U: ['l),.',]p_,_@(ﬁi]-, II‘)':}’:]TM@(&U' I‘))]

i
where fip,5(d;) = max (ﬂlﬁ(ﬁii)'l"@(ﬁii))r Tp.q(ay, i) = max (-‘T By, ), T @(ﬁii'ﬂ))
Tp.q(ag i) = max (35(ay, i), I5(dy ) ) and Fp,q(ay, it) = min (F(ay, i), Fg(ay ).
3.2.2. Matrix Subtraction

Let P = [pil-]mm and Q = [qﬁ]mxﬁ be two SL R FMs. The matrix subtraction is in the form

P —Q = [(fp_g(8y), Tp_g (b &), Tp_ig (855, 1), Frp_g (65, )]

X
, . a-(a),  if as(ag) = s (65
where uﬂs_@(aij) = {ﬂ(];n(al]) Ol{’f:ﬂ:ﬂ(‘f/;]ge ”Q(au) /
- . g j-‘v(&”’ l”l)’ if j‘]\ﬁ(all I’l) 2 j‘“ (ﬁl, l’,l)
T“’ o) i7) = P Yy j Q j ,
r-a(dy. £ { 0, otherwise
R () if 95 (dy, fr) = Iy, i)
Ip_glay i) ="~ Py a\ 8y d
r-a(dy f) { 0, otherwise an

Fo_o (g 1) = {Tlﬁ(ﬁi]’.ﬂ). if?fﬁ’(ﬁij'ﬂ) < T@(ai]’:[‘).
P-Q\ " 0, otherwise
3.2.3. Component wise Matrix Multiplication

Let P =[p;]_ . and Q=[qy]_ . betwoSLNIFAs. The component wise matrix

XA

multiplication will be

PoQ = [(ftp.g(dy), Tp.g (8, 1) Ipag (85, 1), Fpog (5, )]

mxi
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where fp.g(d;) = min (;’tp(ﬁi;).ﬂ@(&q)), T3 (3, f2) = min (T (g, 1), T @(&ii'ﬂ))

I5.(y, i) = min (I5(dy, 1), 9g (i 1)) and Fp.g(ay, ft) = max (Fp(iy, 1), Fg(ay, i) ).

3.2.4. Scalar Product

The scalar product of SLNFM P = [(ﬂp(ii,-j),j'p(ﬁ,-j, ﬂ),."]us(iiij,ﬂ),j’p(&ij, ﬂ))] P be defined

X

to be

AP = [(min (k /Ztﬂa(ii,-]-)) ,min (k T (8 ﬂ)) ,min (k ju‘»(ﬁij'ﬂ)) ,max (1 — &, j”n“»(&ij'ﬂ))]mm'

3.2.5. Matrix Product

The matrix product of two SLNFMs P = [a,] . and Q = [a;], . are defined to be

P+ Q = [(tp.g(8y), Tr.5(d4, 1), Ip.q (a4, 1), Fr.g(dg )]
where fip.q(iy) = max {min{is (i), fig(d)))
Fr.q(iy i) = max, min{Fp(ag. i), T4 1)},
Ip.5(ay, ) = min, {max{ﬁp(iiik,ﬂ),?@(6ki,ﬂ)}} and
Fp.g(dyj, ) = miny, {max{a’fﬁ,(aik, ), Fy (i, n)}}, k=12, ..n,i=12,..mand j=1,2,..,r1.
3.2.6. Score Matrix (&M)
Let i; and i, be two SLNFMs. Its S is defined as
S (ikq, i) = [U -7V
where U = [u;] . ., wy = f, (8;) + Ti, (85, 1) + i, (84, ) — Fi, (G55, 1) and
V= ["’ii]mxh/ vy = i, (857) + Tie, (835, 1) + T, (8, 1) — Fiy (5, f2).
3.2.7. Transpose of the Matrix

Let P = [iii-] .. be LN F A and its transpose is referred to be
I Linxi
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PT = [(ap(a;) Tp(d; 1), Tp (850 1), F(i )]

mxi’

3.2.8. Complement of the Matrix

Let P = [iii-] .. be LN F A and its complement is referred to be
I L inxin

P = [(Fp(ay ), 1 — Ip(ay;, 1), T5 (855, 1), 15 (i)

mxi

3.2.9. Trace of the Matrix
Let P =[a;]  beSLNFMand its trace is defined as
tr(P) = XiL, du
3.3. Types of SV —Lukasiewicz Neutrosophic Fuzzy Matrix

3.3.1. SV —Zero Lukasiewicz Neutrosophic Fuzzy Matrix ($ZILH I M)

Let P = [&ij]mxhbe a ST N FM. The matrix is known to be SZLRNF M, if all the entries of P

are (0,0,0,1) and is denoted by 0.
3.3.2. 8V —Universal Lukasiewicz Neutrosophic Fuzzy Matrix (SELR F M)

Let P = [&ij]th be a SLP FM. The matrix is known to be SUL N F M, if all the entries of P

are (1,1,1,0) and is denoted by I.

3.3.3. SV —Symmetric Lukasiewicz Neutrosophic Fuzzy Matrix ($SLRNF M)
Let P = ['ciil-]me be a SLNIFM. The matrix P is known to be SSLRNIFM if Py = Py, i,j =
1,2,..,n.
3.3.4. SV —Upper triangular Lukasiewicz Neutrosophic Fuzzy Matrix (SUTLRN F M)
Suppose P = [d;]  _ bea SLNIFM. Then the matrix P is known to be SUTLNFM if
P; =(0,0,0,1), Vi>j and i,j=1,2,..,n
3.3.5. 8V —Lower Triangular Lukasiewicz Neutrosophic Fuzzy Matrix (SLTLRN FM)
Suppose P = ['d,-]-]me be a LN FM. Then the matrix P is known to be SLTLN FM if

P; =(0,0,0,1), Vi<jand i,j=1,2,..,n

3.3.6. Theorem
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Let P be SLNFS. Show that P is a vector space under SL AN F A addition and scalar

multiplication.
Proof

Let us examine all the axioms of Vector space.

MXAn

Q = [(ag(dy), Tg(a; 1), I5(d; 1), Fgay ﬂ))]mmn be two SL N FM. In accordance with

matrix addition, it is obvious that P + @ also belongs to the LN JFM of order 7 X 7n.

Ay: Let P = [(fap(dy), Tp(dy, i), Ip(dy, 1), Fp(ay, )] .

MmXAn

Q = [y (8y) Tig(8y, ), I (845, i), Fg (5, 1)) nd

L .a
mXm
R = [(ﬂ@(&ij):fﬁ(&ij:ﬂ): j@(&ij:ﬂ);j:]]“g(&i]‘, ['l))]me be three SL N F M.
P+ (Q+R) = [(ip(dy) Tp(ay, 1), Ip(ay;, i), Fp (a5, 1))]

max (ﬂ@(&ij),ﬂi«(&ij)) , max (T@(&i]”ﬂ); Tm(aij, ﬂ)).

|, max (ﬂu‘»(&ii)'ﬂ@(ﬁij)'ﬂn“&(ﬁii)) ,max (7 p(dy, 1), Tg(ay 1), T R(&ii'ﬂ))'
max (Ip(iy, ), I (), Ia (6, 1) ) min (Fp(ay, i), Fo (8 ), Fr(d7,2))

max (g (i), frg (&) ) max (T (i, ), Tg (65, 12))

+ (g (65), T (84, 1), T (45, 1), Fr(a, 1))

P+Q)+R=|(

_ |, max (ﬂﬁ(&ii)'ﬂ@(ﬁii)'ﬂu“a(ﬁij)) ,ymax (7' p(dy, 1), Tq by, 1), T @(&ii'ﬂ))'
max (jﬂ“”(&ij' 1), 35(ay, 1), Ix(a;, f‘)) ,min (T p(ay 1), Fgay, ), Fr(d, ﬂ))

Hence F+(@+R) = (p+@)+ﬁ.
In a similar manner, we can show, P (QoR) = (P~ @) R.

max (I’ln‘»(ﬁij). l’l@(ﬁ,—j)) ,max (:Tﬂw;, (85, i), Ty (a5 #)) ’
max (ﬁn‘»('dij, i), 35 (4, u)) ,min (ﬂ«»(&ij, it), Fo (i, Il))

A;: P+Q=[(
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_ max (ﬂ@(al])!ﬂ]}‘”(al])) ,max (T@(aljﬁ ﬂ)lj”ﬁ’(al]l ﬂ)) ) ) _ @ + F

Ay If P+ 0 =P, forany SLNFM P = [aif]mxm’ then SZLNFM, 0 is the additive identity.

If Pol =P, forany SLNFM P = [&ii]mxm’ then SULN FAM, 1 is the identity for

multiplication.

My: Letussay P bea SN FMand £ be any scalar. In accordance with the scalar multiplication
for SL N FM, it is obvious that £P is also a SLNIF M.

M,: Now to prove distributive law. Suppose that P € @, R. Then fip(d;) < fig(ds;), fag(d;);
Tp(dy k) < Tg(ay i), Tr(ay i), Ip(8y 1) < T5(ay, 1), Ix (8, 1), Fp(ay, i) =

?(@(al],ﬂ),?@(aq,ﬂ) Thus,

Eﬁ ° (@ + R) = [(ﬂ[?(al])' j‘[?(&i]'l ﬂ)'ﬁﬁ(&ij! ﬂ)! j:HT’(&i]'l ﬂ))]
max (fig (i), fin (i) ) max (T8, ), (i, ),
max (35 (ay, i), 3n(dy, ) ) min (Fg 6y, i), Fa by, i)

min (ﬂp(ii,-,-), max (ﬂ@(ﬁu). l’lm(ﬁij))) )
min <T]T1>(&ij' I,l)’ max (T@(ﬁij' I‘)' T@(aii‘ ﬂ))) ’
min (ﬁﬂs (d4;, ), max (j@(&ij: ft), Ix(dy, ”))) :

| max <Tp(a,], ﬂ),min (f'@(a,], [,l), ?R(al], ﬂ))) |

min (ji(8y), iy (d5) ) min (Fp(y, ), T5(8, 1))

(Pe@)+(PeR)=[( , , ,

min (ﬂ]ﬁ(ﬁij): ﬂ@(&ij)) ,min (Tﬁ(&ij' ), Tu“&(ﬁij. ﬂ)) )

min (fes ). (i) ).
,min (7' p(8y, ), T R(&ii'ﬂ)))'
ymin (5 iy, i), I5 (i 15‘))) :

,max (.‘}”ﬂ“»(ﬁij; [,l), ?R(&ii' ”))) i

max (min (ﬂﬂa(&i]-), fg ()
max (min (Tﬂs (43, i), T (84, 1)

max (min (jp(ﬁij, ), 35(d;;, )

Il

T — — —
Il
==i(

| min (max (.‘?‘,p(&,-j, i), F5(ay, i)

Similarly, we can prove if P 2 @, R. Thus, the distributive law holds.
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Mj3: For any two scalars £, and #,, we have
(kl‘l'kz)p: (kl‘l'kz)IO]TD: (kll+kzl)°F ='kll°p+kzl°p=k1°p+k2°p.
Therefore, &L JF M forms a vector space.

4. Case study on SV —Lukasiewicz Neutrosophic Fuzzy Matrix

The L FM is widely applied in areas requiring decision-making under uncertainty, as it
effectively handles imprecise, inconsistent, and incomplete information. We applied this idea on a
decision-making problem to demonstrate how to apply it in real-life situations. In the current
market, there are numerous varieties of models in electronic devices. The process of buying an
electronic device deal with lot of issues due to the lack of knowledge about the device’s features or
confusion in selecting the appropriate model based on their specific needs. They are typically
purchased infrequently. So, the decision-making process is crucial to align with both the user’s
requirements and their budgetary constraints. As a note of it, we have addressed the problem
specifically on the selection of best Laptop model from the available data using the theory of
SV —Lukasiewicz Neutrosophic Fuzzy Matrix. For the case analysis, we have collected the data
from five persons P= {3“31, i’z, i’g, ff%, 3'55} and noted their preferences in the features such as F=
{Processor, Price, RAM, Display, Rating} of the Laptops. Also, we have used the data of five
different laptop models £ = {Ill, Ly L3, L, 135} and their features. Now we have to deduce which
laptop model is suitable for the persons, we have chosen. Table 6.1 is the data of persons and their

preferences in laptop features and Table 6.2 is the data about the laptop models and its features.

Feature Preferences
Person Price DDR4 Display .
Processor (in?) RAM (in inches) Rating
Arun (?1) Intel Core i5 Processor 60000 8 GB 15.5 44
Fredrick (#,) | Intel Core i3 Processor 55000 4GB 14 4.1
John (#3) Apple M1 Processor 75000 16 GB 13.5 4.6
Max (3"94) Intel Core i5 Processor 65000 16 GB 14.5 4.5
Thomas (Ps) Intel Core i3 Processor 50000 8 GB 15 3.8
Table 1. Persons and their preferences in the feature of the laptops
Features
Laptop Model Price | DDR4 | Displ
play .
Processor Ratin
(in%¥) | RAM | (in inches) 8
L 15 G2 i3 11th
enovo VIS G "Core i3 11t Intel Core i3 Processor | 37900 8 GB 15.6 44
Gen (£,)
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ASUS .TUF Gaming ..1:15 Core Intel Core i5 Processor | 49990 8 GB 15.6 4.4
i5 10th Gen (LZ)
ASUS Vivo Book 15 (2022) . 8 GB 15.6 4.3
Core i3 10th Gen ( 1:3) Intel Core i3 Processor | 33990
Lenovo Athlon Dual Core AMD Athlon Dual 4GB 14 3.8
.. 18999 :
(134) Core Processor

APPLE 202 Aj

1(34;) IE/EaC)bOOk 1T Apple M1 Processor 86990 8 GB 13.3 47
5

Table 2. Laptop Models and their features

We have defined the membership value for the above data sets as given below.

0.9 + 0.7 + 0.4
Intel Core i5 Processor Intel Core i3 Processor AMD Athlon Dual Core Processor

e Processor= {

0.7 + 0.8 }
Apple M1 Processor AMD Ryzen 5 Hexa Core Processor

0 if p<25000andp = 100000
25099 £ 25000 < p < 35000

10000
1 if 35000 <p < 60000

Uooooo—p if 60000 < p < 100000
40000

0 ifp<4
« RAM={Z= if4<p<is
1 ifp=16
Oif p<ld4andp =175
e Display (in inches)=
1if14<p <175
0ifps3
¢ Rating= pl—_ssif?)SpSALS

1if45<p<5

s
e o o
> N ® © =

S

Membership Grades

Membership Grades
o o o
o

°
©

)
o0 2 3 4 5 6 7 H 9 10 o 5 10 15 20 25 30 35 40
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Membership Grades
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Figure 1. Graphical Representations of membership grades. (a) Membership Grade for Price, (b)
Membership Grade for RAM, (c) Membership Grade for Display, (d) Membership Grade for

Rating
4.1. Algorithm
1. Construct the R F M M using Table 1 and the membership values defined.
2. Construct the ©NF M N using Table 2 and the membership values defined.
3. Convert the &9 FMs M and N to SLN FMs Lgﬁ and L]%.
4. Determine the matrix complement of Lg.

5. Determine the matrix Lgﬂ * Lg.

6. Determine the matrix Lg-ﬂ * L%C

7.Find U and V of &M

8. Measure the M S, (Lgﬂ * L%,Lg-ﬂ * L%C).
Step-1

Construct a $RNFM M using Table 1 and defined Membership grades to represent the

Person’s preferences in the feature of the laptops.
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(0.9,0.6,0.2,0.1)  (1,0.7,0.1,0.2)  (0.3,0.6,0.1,0.1) (1,0.8,0.1,0.1) (0.93,0.6,0.2,0.1)
(0.7,0.7,0.1,0.2)  (1,0.50.2,01)  (0,0.3,0802) (0,0.6,0.3,0) (0.73,0.50.4,0.2)
M=| (0.7,0900) (0.63,040.203) (109010 (008010  (1,09,0.1,0.1)
[(0.9,0.5,0.1,0.2) (0.88,0.6,0.1,0.1) (1,0.80202) (1,07,01,01) (1,080.1,0.2) |

(0.7,0.6,02,0.1)  (1,0.3,050.1)  (0.3,0.7,0.4,0.3) (1,0.4,0.3,0.1) (0.53,0.5,0.5,0.2)

Step-2

Construct a $RNFM N using Table 2 and defined Membership grades to represent the

Laptop Model’s features.

(0.7,1,00)  (1,1,0,0) (0.3,1,0,0) (1,1,0,00 (0.93,1,0,0)
(0.9,1,00) (1,1,0,0)0 (0.3,1,00) (1,1,0,00 (0.93,1,0,0)
N =(0.7,1,0,00 (0.9,1,00) (0.3,1,00) (1,1,0,0) (0.87,1,0,0)
(0.4,1,00) (0,1,0,00  (0,1,0,0) (0,1,0,00 (0.53,1,0,0)
(0.7,1,0,0) (0.33,1,0,00 (0.3,1,0,0) (0,1,00) (1,1,0,0)

Step-3

Convert the SRNFMs M and N to SLNFMs Lgﬂ and Lg. Now this Lgﬂ and Lg

represents the Person’s preferences in the feature of the laptops and Laptop Model's features.

1(0.45,0.15,0,0) (0.55,0.7,0,0)  (0,0.15,0,0)  (0.55,0.35,0,0)  (0.48,0.15,0,0)
) (0.25,0.25,0,0) (0.55,0.5,0,0)  (0,0,0.35,0) (0,0.15,0,0) (0.28,0.05,0,0) ]
L% =1(0.25,045,0,0) (0.18,0,0,0) (0.55045,0,0)  (0,0.35,0,0) (0.55,0.45,0,0)
(0.45,0.05,0,0) (0.43,0.6,0,0) (0.55,0.35,0,0) (0.55,0.25,0,0)  (0.55,0.35,0,0)
1(0.25,0.15,0,0) (0.55,0,0.5,0)  (0,0.25,0,0) (0.55,0,0,0)  (0.08,0.05,0.05,0)
(0.25,0.55,0,0) (0.55,0.55,0,0) (0,0.55,0,0) (0.55,0.55,0,0) (0.48,0.55,0,0)
_1(0.45,0.55,0,0) (0.55,0.55,0,0) (0,0.55,0,0) (0.55,0.55,0,0) (0.48,0.55,0,0)
% =(0.25,0.55,0,0) (0.45,0.55,0,0) (0,0.55,0,0) (0.55,0.55,0,0) (0.42,0.55,0,0)
(0,0.55,0,0) (0,0.55,0,0)  (0,0.55,0,0) (0,0.55,0,0)  (0.08,0.55,0,0)
1(0.25,0.55,0,0)  (0,0.55,0,0)  (0,0.55,0,0) (0,0.55,0,0)  (0.55,0.55,0,0)
Step-4

Determine the defect of the laptop models by computing the complement of the matrix Lz.

5C
It is represented as L .

(0,1,0.55,0.55) (0,1,0.55,0)

(0,1,0.55,0.55) (0,1,0.55,0.48)
(0,1,0.55,0.55) (0,1,0.55,0) ]

(0,1,0.55,0.55) (0,1,0.55,0.48)

(0,1,0.55,0.25)
c [(0,1,0.55,0.45)

£8 =1(0,1,0.55,0.25) (0,1,0.55,0.45) (0,1,0.55,0) (0,1,0.55,0.55) (0,1,0.55,0.42)
(0,1,0.55,0) (0,1,0.55,0)  (0,1,0.550)  (0,1,0.550)  (0,1,0.55,0.08)
(0,1,0.55,0.25)  (0,1,0.55,0)  (0,1,0.550)  (0,1,0.55,0)  (0,1,0.55,0.55)
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Step-5

Determine the relation between feature preferences of persons and laptop features, by

taking matrix multiplication between them (i. e., Lg-ﬂ * Lg).

(0.45,0.55,0,0)
] (0.45,0.5,0,0)
L+ 18 =1(0.25,0.45,0,0)
[(0.43,0.55,0,0)
(0.45,0.25,0,0)

(0.55,0.55,0,0)
(0.55,0.5,0,0)
(0.45,0.45,0,0)
(0.45,0.55,0,0)
(0.55,0.25,0,0)

(0,0.55,0,0)
(0,0.5,0,0)
(0,0.45,0,0)
(0,0.55,0,0)
(0,0.25,0,0)

(0.55,0.55,0,0)
(0.55,0.5,0,0)
(0.55,0.45,0,0)
(0.55,0.55,0,0)
(0.55,0.25,0,0)

(0.48,0.55,0,0)
(0.48,0.5,0,0) ]
(0.55,0.45,0,0)
(0.55,0.55,0,0)‘
(0.48,0.25,0,0)

Step-6

Determine the relation between feature preferences of persons and defects of laptop, by

p s C
taking matrix multiplication between them (i. e., Lgﬂ * L?N )

(0,0.7,0.55,0)  (0,0.7,0.55,0)  (0,0.7,0.55,0) (0,0.7,0.55,0)  (0,0.7,0.55,0.08)
. [(0,0.5,0.55,0) (0,0.5,0.55,0)  (0,0.5,0.55,0)  (0,0.5,0.55,0)  (0,0.5,0.55,0.08)
£8 « 18 =1(0,0.45,0.550) (0,0.45,0.55,0) (0,0.45,0.550) (0,0.450.550) (0,0.45,0.55,.08)
(0,0.6,0.55,0)  (0,0.6,0.550) (0,0.6,0.550) (0,0.6,0.55,0)  (0,0.6,0.55,0.08)
(0,0.25,0.55,0) (0,0.25,0.55,0) (0,0.25,0.55,0) (0,0.25,0.55,0) (0,0.25,0.55,0.08)

Step-7
Find U and V of SM.
1 1.1 055 1.1 1.03
. [0.95 1.05 0.5 1.05 0.98}
U=10.7 09 045 1 1
l0.98 1 055 11 11 J
0.7 08 025 0.8 0.73
[1.25 1.25 1.25 1.25 1.17‘|
. 1.05 1.05 1.05 1.05 0.97
V=1 1 1 1 0.92
1.15 1.15 1.15 1.15 1.07
0.8 0.8 0.8 0.8 0.72
Step-8
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Measure the S, S, (Lgﬂ * Lgp Lgﬂ * hg] ) to determine the result.

[—0.25 -0.15 -0.7 -0.15 —0.14]

o . |-0a 0o -055 0 001
S(bh bl rg«1d )=|-03 -01 -055 0 008
~017 -015 —06 —005 0.3

~01 0 —055 0 001

From the above $#, the score of APPLE 2020 MacBook Air M1 is higher for all the five
persons. So, we conclude that, APPLE 2020 MacBook Air M1 is the best laptop model for everyone
from the given data. Utilizing $¥ 2 I fl enables us to identify the most accurate laptop model during
the early stages of decision-making. This approach not only streamlines the selection process, but
also minimizes the risk of investing in a laptop that does not align with the user's preferences,

ultimately leading to cost savings. This study can also be applied for large and complex data too.

5. Conclusions

In order to address multicriteria situations with neutrophilic inputs, we have built the idea of
SV — Lukasiewicz Neutrosophic Zuzzy Matrices by combining Lukasiewicz logic to
SV —Neutrosophic #Fuzzy Matrices and discussed the operations and types associated with them. As
a note of it, we address a decision-making problem on selecting the best laptop model based on the
individual’s feature preferences and provided a solution which is more applicable for every
individual in the data. This study shows how one can carry out the benefits of SV —Lukasiewicz
Neutrosophic #uzzy Matrices in hard computations. In future, SV —Lukasiewicz Neutrosophic
Fuzzy Matrix can be investigated in higher dimensional structures and one can incorporate this idea
in Machine Learning for constructing Al Models to enhance the process of reinforcement or clustering

algorithm.

Funding;: This research received no external funding.
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