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Abstract: The Quasi-XLindley distribution (QXLD) is widely used in the field of survival and 

reliability engineering to simulate lifespan data in different fields of human, electronic designs and 

other fields. However, when dealing with uncertain data, a more generalized version of this 

distribution is needed. To address this, a neutrosophic Quasi-XLindley distribution (NQXLD) is 

developed in this paper. The NQXLD is particularly useful for representing skewed uncertain data. 

In this study, we present some statistical characteristics of the NQXL distribution, including the 

neutrosophic mean time failure, neutrosophic hazard rate, neutrosophic moments, and 

neutrosophic survival function. We also evaluate the parameters using the maximum likelihood 

(ML) estimation technique in a neutrosophic context based on a simulation study. Finally, 

applications of three different real data sets are considered to investigate the applicability of the 

suggested NQXL distribution. The results show the flexibility of the NQXL distribution in fitting 

various types of COVID-19 data as compared to the QXLD. 

Keywords: Neutrosophic; COVID-19; Maximum likelihood estimation; Probability distribution; 

Quasi-XLindley distribution, Uncertainty 

 

 

1. Introduction 

The use of lifetime probability models has revolutionized analytical tools and is now 

widespread across various fields., such as renewable energies, health sciences, biology and 

engineering. Over the past century, numerous vital distributions have been derived, as the 

Quasi-XLindley distribution suggested by [20] being one of the most widely used regarding 

reliability. Its usefulness has transformed the applied sciences, inspiring researchers to discover new 

and innovative ways to leverage this powerful analytical toolset. The probability density function 

(PDF) of the QXLD is given by:  
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The cumulative distribution function (CDF) of the QXLD is defined as: 
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Statistical distributions are an essential tool for modeling data with exact and determinate 

observations, but they become unsuitable when there is uncertainty in the observations or 

distribution parameters. In such cases, fuzzy-logic-based distributions can be applied to datasets. 
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The fuzzy Rayleigh distribution suggested by Pak et al. [23] is a perfect example of this. It has been 

extensively studied and successfully employed for reliability analysis and biomass pyrolysis by 

Dhaundiyal and Singh [14]. Van Hecke has explored the estimation of a fuzzy Rayleigh distribution 

in [31], and Pak et al. [24] have estimated its parameter for fuzzy lifetime data. Shafiq et al. [27] 

provided comprehensive work on distribution reliability concerns using the fuzzy method. 

Chaturvedi et al. [11] have used a fuzzy method to analyze hybrid censored data. Therefore, it is safe 

to conclude that fuzzy-logic-based distributions offer a powerful alternative to classical probability 

models when uncertainty exists in the observations or distribution parameters. 

The rise of neutrosophic distributions has been a significant development in recent years. These 

distributions are designed to simulate phenomena with ambiguous observations. Several 

researchers have proposed the best neutrosophic probability distributions to analyze these data sets. 

Alhabib et al. [5] have proposed neutrosophic Poisson, neutrosophic exponential, and neutrosophic 

uniform distributions. Alhasan and Smarandache [18] have introduced a wide range of neutrosophic 

distributions, including the neutrosophic Weibull, Rayleigh, three-parameter Weibull, 

five-parameter Weibull, beta Weibull, and inverse Weibull distributions. Patro and Smarandache 

[24] proposed neutrosophic normal and binomial distributions. Aslam [10] suggested the 

neutrosophic Raleigh distribution, which has been used to model wind speed data. The 

neutrosophic Beta distribution was proposed by Sherwani et al. [28], while the neutrosophic 

Kumaraswamy distribution was proposed by Ahsan-ul-Haq [1]. Aslam [7] studied the Weibull 

distribution under indeterminacy and used it to construct the sampling strategy for testing average 

wind speed. More recently, Ahsan-ul-Haq and Zafar [2] proposed a neutrosophic discrete 

Ramos-Louzada distribution. Duan et al. [16] suggested neutrosophic exponential distribution and 

investigated it in modeling and applications for complex data. Khan et al. [19] considered a 

development of the neutrosophic gamma distribution. Eassa et al. [17] proposed neutrosophic 

generalized Pareto distribution. Algamal et al. [4] introduced the neutrosophic Beta-Lindley 

distribution with an application to bladder cancer data. Sherwani et al. [29] offered the neutrosophic 

discrete geometric distribution. Rao [26] suggested the neutrosophic log-logistic distribution. 

Ahsan-ul-Haq et al. [3] suggested neutrosophic Topp-Leone distribution considered for 

interval-valued data analysis. The increasing number of neutrosophic distributions available makes 

it easier to simulate complex phenomena with ambiguous observations, which is crucial for solving 

real-world problems. 

The neutrosophic logic provides information regarding determinacy, indeterminacy, and 

falseness as Neutrosophy [21]. Neutronsophic logic is, therefore, more effective than interval-based 

analysis and fuzzy logic. Later on, several writers demonstrated their work on neutrosophic logic for 

various issues as Pratihar et al. [25]. The introduction of neutrosophic logic is investigated by 

Smarandache [30] has led to the development of neutrosophic statistics, which provide a means of 

determining indeterminacy and determinacy (as elaborated in Aslam [8]). In the absence of data 

relating to the measure of indeterminacy, classical statistics can be employed as an alternative to 

neutrosophic statistics. 

The rest of the paper is organized as follows: The suggested NQXLD is presented in Section 1 

with its cdf. Some statistical properties are given in Section 3. Section 4 shows the estimation of the 

distribution parameters. In Section 5, three real data sets are investigated to illustrate the distribution 

applicability. The paper is concluded in Section 6. 

 

2. Neutrosophic Quasi-XLindley Distribution  

The authors [30] and [9] introduced neutrosophic statistics and propose the following formula 

for the neutrosophic variable: 
N L N UX X I X= + ,  ,N L UI I I   where 

LX  and 
N UI X  represent 
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definite and indeterminate portions, respectively, and  ,N L UI I I  is an arbitrary interval. Assume 

that the NQXLD, with neutrosophic scale parameters  ,N L U    and  ,N L U   , follows the 

neutrosophic random variable  ,N L UI I I   Remember that the lower and upper values are, 

respectively, represented by the symbols , ,L L LX    and , ,U U UX   . The PDF of the NQXLD is 

provided by:  
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If , then the pdf can be written as 
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where . Note that when , the neutrosophic quantities 

reduce to classical statistics. The corresponding CDF of the NQXLD is given by: 
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Figure 1 shows the pdf plots for the NQXL distribution for some values of the distribution 

parameters. It can be noted that the pdf has several shapes which make the distribution more flexible 

in fitting the real data. Figure 2 presents some CDF plots of the NQXLD for some parameters.  
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Figure 1: The pdf curves for NQXL distribution for various values of the parameters 

 

Figure 2: The cdf curves for NQXL distribution for various values of the parameters 

3. Statistical Properties  

The NQXLD statistical features covered in this section are now visible and available.  
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3.1 Moments and associated measures  

Calculating statistical measures like variance, skewness, kurtosis, and central tendency can be 

simplified by utilizing the moments of a specific density function. To find the rth moment of random 

variable XN around the origin, Equation (3) can be applied.  
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The following is the final expression of ordinary moments.  
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Equation (4) can be used to get the first four moments of the random variable XN about the origin by 

inserting  as: 

 

Variance (Var) and index of dispersion (ID) of the NQXLD distribution are given below as: 
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The following relations can be utilized to determine the coefficient of kurtosis, represented by , 

and the coefficient of skewness, represented by 1N , are given by 
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The following relations can be utilized to determine the coefficient of kurtosis, represented by 

β2N and the coefficient of skewness, represented by β1N. The neutrosophic median, neutrosophic 

skewness, neutrosophic kurtosis, standard deviation, and neutrosophic mean are displayed in Table 

(1). The results shown in Table 1 indicate that, for a given set of neutrosophic alpha parameters, 

different statistic values decrease when neutrosophic theta parametric values increase.  

Table 1: The statistical measures of neutrosophic statistic NQXLD 

Statistic 
   1.5,  2N =     1.5,  2N =     1.5,  2N =     1.5,  2N =     1.5,  2N =  

 0.5,0.75N =   1,1.25N =   1.75,2N =   2,3N =   1,1.5N =  

Mean [2.5333,1.5873] [1.2000,0.9185 ] [0.6546,0.5556 [0.5667,0.3611] [1.1667,0.7429] 

S.D. [2.4185,1.5461] [1.1662,0.9031] [0.6439,0.5500]  [0.5588,0.35897] [1.1426,0.7350] 

Median [1.8210 1.1225] [0.8502 0.6447] [0.4593,0.3879] [0.3969,0.25136] [0.8215, 0.5189] 

Skewness [1.8162,1.8848] [1.8764,1.9211] [1.9234,1.9502] [1.9332,1.9693] [1.9056,1.9479] 

Kurtosis [7.8009,8.2116] [8.1592,8.4438] [8.4584,8.6389] [8.5234,8.7724] [8.3427,8.6228] 

3.2 Features of reliability  

The NQXL distribution’s reliability attributes, such as the mean residual life function, stress 

strength reliability, neutrosophic survival and hazard functions, and neutrosophic reversed hazard 

function, are derived in this section.  

 



Neutrosophic Sets and Systems, Vol. 82, 2025     536  

 

 

Author(s), Paper’s title 

3.2.1 Neutrosophic survival function  

   .               (9) 

3.2.2 Hazard rate function  

        .                               (10) 

3.2.3 Neutrosophic mean residual life function  

.                                (11) 

3.2.4 Measures of actuarial 

Assessing market risk is crucial to actuarial science, mainly when dealing with asset portfolios. It is 

essential to evaluate the risks of any market transaction, whether it involves buying or selling. This 

evaluation calculates two significant actuarial measures for the NQXL distribution- Value at Risk 

(VaR) and Tail Value at Risk (TVaR). To determine the VaR of the NQXL model, we utilize a precise 

mathematical tool called the formula , where  represents the direct solution of 

the subsequent non-linear equation. 

          , .                                             (12) 

By following this formula, we can accurately calculate the conditional tail expectation, which 

represents the entire value at risk. It's essential to compute this value to make informed decisions 

that mitigate risk and ensure the safety of your investments. 
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4. Estimation of Parameters  

The neutrosophic parameters of the created NQXLD are derived by the utilization of the maximum 

likelihood estimation (MLE) technique. Let XN1, XN2,...,XNn be a random sample of NQXLD with 

neutrosophic characteristics. The log- likelihood function can be represented as:  
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The derivatives of Equation (14) relative to ,N N  , are respectively defined as: 
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The MLE for ( , )N N  , [ , ]LN U   and [ , ]LN U   can be found by solving Equations (15) and 

(16).  

This section presents a comprehensive simulation study for the maximum likelihood (ML) 

estimation approach. The study takes into account both small and large sample sizes. The mean 

square error (MSE)  and average bias are calculated  to compare each estimator's performance. All the 

results in this section wer   computed using the R programming language Core Team [13].  

We consider the NQXL model and simulate data with   10,000N = . We also consider 

different sample sizes, including 50n =  100, 250, and 350 for  certain  parameter values. Table 2 

provides the MSEs and simulated averages for all the simulations. 

Table 2. Simulation results of the ML estimators for the NQXLD. 

Sample Parameter MSE NAB 

n 
                

50 0.1 0.5 0 0.79970 0.00500 0.34785 0.01298 

100 0.39806 0.00292 0.21414 0.01021 

250 0.08422 0.00124 0.08187 0.00541 

350 0.04436 0.00091 0.05619 0.00404 

50 0.050 0.50 0.1 0.01387 0.23702 0.04991 0.47295 

100 0.00356 0.01444 0.04941 0.11447 

250 0.00250 0.01359 0.04082 0.11417 
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350 0.00249 0.01340 0.02292 0.11409 

50 0.50 0.50 0.1 0.25532 0.03994 0.49297 0.19562 

100    0.24396 0.03891 0.48718 0.19529 

250    0.23966 0.03891 0.45142 0.19214 

350    0.22328 0.03884 0.39219 0.18946 

50 1.50 1.50 0.50 0.24992 0.30193 0.49989 0.54635 

100    0.01000 0.16996 0.09995 0.40942 

250    0.01000 0.16711 0.09999 0.40764 

350    0.00999 0.16601 0.09888 0.40664 

 

The average bias diminishes as sample size increases, according to the simulation results. It indicates 

that as sample size grows, practice and theory agree better. A larger sample size also results in a 

decrease in the estimators' MSEs. It is clear that the obtained estimators exhibit consistency, and the 

parameters' maximum likelihood estimator operates effectively, producing precise and accurate 

findings. 

6 Applications  

This section showcases the potential of the NQXLD distribution for three real-life datasets as 

compared to the QXLD. Some summary measures of this data set are given in Table 3.  To compare 

the distribution, we utilize the suggested NQXLD with the classical QXL distribution. Model 

parameters are estimated through maximum likelihood estimation. The optimal model is chosen 

based on the smallest values of criteria such as log-likelihood, Akaike Information Criterion (AIC), 

and Bayesian Information Criterion (BIC), ˆ2 2ln( )AIC k L= −  and ˆln( ) 2ln( )BIC k n L= − , where 𝑘 is 

the number of parameters, L̂  is the maximized log-likelihood value, and 𝑛 is the sample size. The 

results are listed in Table 4. These data can be described as follows. 

Data 1: Between April 15, 2020, and June 30, 2020, COVID-19 data was collected in the United 

Kingdom and it is presented in Amaal and Ehab [6]. The data observations are: 0.0587, 0.0863, 0.1165, 

0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751, 0.2845 0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 

0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690 0.4954, 0.5139, 0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 

0.7193, 0.7444, 0.8590, 1.0438 1.0602, 1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 

1.6017, 1.6083 1.6324, 1.6998, 1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087 

2.7946, 3.3609, 3.3715, 3.7840, 3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500 5.7522, 6.4241, 

7.0657, 7.4456, 8.2307, 9.6315, 10.1870, 11.1429, 11.2019, 11.4584. 

Data II: Number of deaths per day due to COVID-19 in Nepal see Dhungana and Kumar [15]. The 

data are as follows: 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11, 9, 3, 8, 7, 11, 8, 12, 

12, 14, 7, 11, 12, 6, 14, 9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2, 7, 17, 6, 8, 10, 4, 10, 7, 11, 11, 8, 

7, 19, 9, 15, 12, 10, 14, 22, 9, 18, 12, 19, 21, 12, 12, 18, 8, 26, 21, 17, 13, 5, 15, 14, 11, 17, 16, 17, 23, 24, 20, 

30, 18, 18, 17, 21, 18, 22, 26, 15, 13, 13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23, 23,19, 25, 29, 21, 9, 13, 16, 

10, 17, 20, 23, 14, 12, 11, 15, 9, 18, 14, 13, 6, 16, 12, 11, 7, 3, 5, 5.  
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Data III: The third dataset displays the number of COVID-19 deaths in China from January 23, 2020, 

to March 28, 2020. You can find more details about this dataset at 

https://www.worldometers.info/coronavirus/country/china. The numbers are as follows: 16, 15, 24, 

26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143, 142, 105, 98, 136, 114, 118, 109, 

97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 6, 

6, 5, 3, 5, 5, 5, and 8. 

Table 3: Some descriptive measures for the data sets 

Statistic N Mean Median Q1 Q2 Q3 S.D. Min Max 

Data I 70 2.9228 1.2483 0.3926 1.2260 3.7840 4.6033 0.0587 21.1906 

Data II 153 11.6144 11 6 11 16 6.7591 2 30 

Data III 68 48.4559 31 11 31 73 43.8496 3 150 

 

Table 4. The MLEs and goodness-of-fit based on the data sets 

Data Model ̂  ̂  IN -LogLik AIC BIC 

 QXLD 1124.02179 0.41056 0 287.4088 291.4088 296.0702 

I 
 1236.42400 0.45162 0.1 272.9216 276.9216 281.5831 

NQXLD 1348.82600 0.49268 0.2 259.6959 263.6959 268.3574 

  1461.22800 0.53374 0.3 247.5294 251.5294 256.1909 

 QXLD 0.00001 0.16031 0 1011.2060 1015.2060 1021.2660 

II 
 1e-06 0.01603 0.1 982.0407 986.0407 992.1016 

NQXLD 2e-06 0.03206 0.2 955.4152 959.4152 965.4761 

  3e-06 0.04809 0.3 930.9222 934.9222 940.9830 

 QXLD 2.91390 0.02579 0 663.5121 667.5121 671.9511 

III 
 0.29139 0.00258 0.1 650.5499 654.5499 658.9889 

NQXLD 0.58278 0.00516 0.2 638.7163 642.7163 647.1554 

  0.87417 0.00774 0.3 627.8305 631.8305 636.2696 

 

The results given in Table 4 are significant and demonstrate the importance of the indeterminacy 

parameter in improving the fitting of the distribution. Based on the maximum likelihood estimates 

and goodness-of-fit metrics for the base QXLD and NQXLD, it is evident that the NQXL distribution 

is a superior fit in comparison to the classical QXLD for all data sets considered in this study. 

Therefore, it is essential to consider the indeterminacy parameter when modeling distributions to 

ensure a better fit for the data considered in this study. 

7. Conclusions  

The neutrosophic Quasi-XLindley distribution is more flexible than the Quasi-XLindley distribution 

under classical statistics, as revealed by a study that examined its fundamental characteristics. Using 
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three COVID-19 data sets, the research found that decision-makers can benefit from this 

distribution. This distribution could be used to construct other statistical distributions that will be 

useful in future research. The study suggests exploring additional properties of the neutrosophic 

Quasi-XLindley distribution and expanding on the multivariate distributions in subsequent 

analyses. Furthermore, G-families of distributions under neutrosophic statistics can be a promising 

area for future research based on the suggested NQXLD. 
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