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Abstract: Fermatean Neutrosophic graph theory plays a significant role in the modeling and 

organization of optimization problems. In real-world scenarios, uncertainty is often present due to 

undetermined or incomplete information. Consequently, experts face challenges in designing 

optimization problems using fuzzy graphs. To address concerns about inconsistency, 

unpredictability, and vagueness in graphical optimization problems, various expansions of graph 

mathematical concepts have been developed. One such expansion is the concept of Fermatean 

neutrosophic graphs, which effectively manage uncertainties associated with unspecified and 

inadequate data in optimization problems. This article explores different types of Fermatean 

neutrosophic graphs and their operations. Additionally, it provides a numerical example showcasing 

the application of Fermatean Neutrosophic Sets in decision-making. These operations serve as 

valuable tools for analyzing and manipulating neutrosophic graphs in optimization problems. 

. 
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1. Introduction 

Graph theory possesses numerous applications including computer applications, networking, 

transportation, and system analysis. It acts as a relational model, representing relationships between real-world 

objects. A graph's vertices and edges represent the objects and their associations in a given problem. Factors 

such as insufficient data, lack of evidence, or insufficient information frequently lead to inaccurate information 

in optimization problems. Zadeh [1] initially introduced the idea of the Fuzzy Set  (FS) to address uncertainty. 
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A FS assigns membership degrees ranging from 0 to 1 to objects. Sitara  et al. [2] conducted a comprehensive 

study on fuzzy graphs, showcasing some of their essential characteristics. Fuzzy graphs are significant because 

they can better handle ambiguity. However, Atanassov [3] noted that FSs are only capable of managing 

uncertainties by introducing degree of membership. Following this, Atanassov proposed intuitionistic FSs, a 

more generalized form of FSs. Every element in the intuitionistic FSs has a membership and non-membership 

function. Smarandache [4] introduced the novel concept known as Neutrosophic Set (NS), considered an 

effective method for handling vague, indistinguishable, and indetermined information in practical scenarios. 

Wang et al. [5] suggested the idea of single-valued NS (SVNS) to make NSs more usable in real-life 

applications.  Real-life  applications along with theoretical development of NSs were depicted in the studies 

[6, 7, 8, 9, 10, 11, 12, 13]. Broumi et al. [14] presented the single-valued neutrosophic graphs.  Overview of 

neutrosophic graphs was presented in [15]. NSs have been used for dealing with shortest-path problems [16, 

17, 18, 19, 20, 21]. 

Graph theories have widely studied in fuzzy and bipolar FS environment [22, 23, 24, 25, 26] . Fermatean 

FS  (FFS) [27] was developed to effectively handle indeterminate evidence by expanding the domain of 

influence for membership and non-membership evaluations. Thamizhendhi et al. [28] introduced the Fermatean 

Fuzzy Hyper Graphs (FFHGs) and provided definitions and properties for this concept.  Jaikum et al. [29]  and 

Anirudh et al. [30]  investigated vulnerability parameters in the NS environment. Broumi et al. [31] recently 

proposed the complex FNS and its application to decision-making. There are numerous applications of 

Fermatean Neutrosophic Graph (FNG)s in various fields, including shortest-path problems [32, 33]. 

The following are the primary contributions to the study: 

• This paper presents several types of operations on FNGs, including lexicographic product, 

Cartesian product, union, composition, and join, as well as their properties.  

• This study evaluates the significance of a novel class of graphs and looks into their potential 

applications in decision-making problems.  

Fermatean neutrosophic graphs make significant contributions to real-world applications by capturing and 

representing uncertainty. Neutrosophic graphs can handle uncertain data, while traditional graphs can only 

represent clear and precise information. This capability is especially useful in fields like social networks, 

decision-making, and pattern recognition, where uncertainty and ambiguity are common. 

Organization of the manuscripts 

The subsequent sections of the research are titled as follows: Section-2 highlights some definitions. 

Section-3 highlights different types of FNGs. Section-4 highlights the different operations of FNGs. 

Section-5 highlights a numerical example, i.e., the application of Fermatean Neutrosophic Sets (FNS) in 

decision-making. Section-6 summarizes the conclusions of this article. 

 

2.. Preliminaries: 

2.1 FNS [27] 
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A FNS �̂� in �̂� is defined as: Â = {〈x̂, TÂ (x̂ ), IÂ (x̂ ), FÂ(x̂ )〉| x̂   ∈ �̂�} 

where TÂ (x̂ ), IÂ (x̂ ), FÂ(x̂ ): X̂  →  [0,1]   represents respectively the membership, indeterminacy,  

and falsity degrees  such that  

0 ≤  (TÂ (x̂ ))3   + (FÂ(x̂ )) 3  ≤ 1  

 0 ≤  (IÂ (x̂ ))3   ≤ 1  

then 0 ≤  (TÂ (x̂ ))3   + (FÂ(x̂ )) 3  + (IÂ (x̂ ))3  ≤ 2 ∀ x̂   ∈  X̂.  

2.2 Intervalued FNS [32] 

An IFNS �̂� in �̂� is defined as: Â = {〈x̂, TÂ (x̂ ), IÂ (x̂ ), FÂ(x̂ )〉| x̂   ∈ �̂�} 

where TÂ (x̂ ) = [TÂ
− (x̂), TÂ

+ (x̂)] ,  IÂ (x̂ ) = [IÂ
− (x̂), IÂ

+ (x̂)] ,  and  FÂ(x̂ = [FÂ
− (x̂), FÂ

+ (x̂)]  indicates 

the truth, indeterminacy and falsity membership degree. 

0 ≤  (TÂ (x̂ ))3   + (FÂ(x̂ )) 3  ≤ 1 and 0 ≤  (IÂ (x̂ ))3   ≤ 1 

0 ≤  (TÂ (x̂ ))3   + (FÂ(x̂ )) 3 + (IÂ (x̂ ))3  ≤ 2 , ∀ x̂  ∈  X̂ 

Means   

0 ≤  (TÂ
+ (x̂))3   + (FÂ

+ (x̂))
3

 + (IÂ
+ (x̂))

3

 ≤ 2 , ∀ x̂  ∈  X̂ 

2.3 Fermatean neutrosophic graphs [28] 

FNGs combine the ideas of Fermatean graphs and neutrosophic graphs. The vertices and edges 

are assigned with Fermatean neutrosophic values, which can have true, false, and indeterminate 

components 

A graph  G = (V, E) is called FNG, if the following condition holds 

 Let  G = (P̂, R̂) where P̂ is set on �̂� and R̂ is a relation on �̂� then: 

TR̂(û, v̂) ≤ min{TP̂(û), TP̂(v̂)} 

IR̂(û, v̂) ≥  max{IP̂(û), IP̂(v̂)} 

                                     FR̂(û, v̂) ≥ max{FP̂(û), FP̂(v̂)}  

and  0 ≤  (TR̂(û, v̂))3   + (FR̂(û, v̂))
3

 + (IR̂(û, v̂))
3

 ≤ 2 , ∀ û, v̂  ∈  �̂� 

Where, TR̂(û, v̂): �̂�  × �̂�  →  [0,1], IR̂(û, v̂): �̂�  × �̂�  →  [0,1], FR̂(û, v̂): �̂�  × �̂�  →  [0,1]  represents three 

membership degree such as truth, indeterminacy and falsity of �̂�. 

3. Different Types of FNGs 

We provide regular FNGs, strong FNGs, and uniform FNGs in this section. 

3.1 Regular FNGs 

A regular FNG is a specialized type of graph in the domain of FNSs, characterized by nodes and 

edges that carry degrees of truth, indeterminacy, and falsity membership, all defined within the 

Fermatean neutrosophic framework. 

Formally, a FNG 𝐺 = (𝑉, 𝐸, 𝑇, 𝐼, 𝐹) satisfies the following: 

1. Fermatean Neutrosophic Degrees: 

For each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈  𝐸, there are functions: 

o 𝑇(𝑣), 𝑇(𝑒): 𝑉 ∪ 𝐸 → [0,1]  

o 𝐼(𝑣), 𝐼(𝑒): 𝑉 ∪ 𝐸 → [0,1]  



Neutrosophic Sets and Systems, Vol. 82, 2025     607  

 

Prasanta Kumar Raut, Surapati Pramanik, Bhabani S. Mohanty, An Overview of Fermatean Neutrosophic Graphs 

o 𝐹(𝑣), 𝐹(𝑒): 𝑉 ∪ 𝐸 → [0,1]  These degrees satisfy the Fermatean neutrosophic 

condition: 

(𝑇(𝑥))3 + (𝐹(𝑥))3 ≤ 1𝑎𝑛𝑑(𝑇(𝑥))3 + (𝐹(𝑥))3 + (𝐼(𝑥))3 ≤ 2, ∀𝑥 ∈ V ∪ E. 

A Regular Fermatean Neutrosophic Graph (RFNG) is a type of graph in which every vertex has the 

same degree under the Fermatean neutrosophic environment, meaning that each vertex has an equal 

number of adjacent vertices, while considering membership, non-membership, and indeterminacy in 

a Fermatean neutrosophic setting. 

Example of a Regular Fermatean Neutrosophic Graph: 

Consider a 3-regular Fermatean neutrosophic graph with 4 vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 4 edges 

𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣1)} forming a cycle.Each vertex has exactly 2 adjacent vertices, 

making it 2-regular. 

Fermatean Neutrosophic Representation: 

For each edge (𝑣𝑖 , 𝑣𝑗), assign Fermatean neutrosophic values: 

• Membership 𝑀𝑖𝑗: The degree of connectivity between 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 

• Non-membership 𝑁𝑖𝑗: The degree of non-connection. 

• Indeterminacy 𝐼𝑖𝑗: The uncertainty in the connection. 

Consider three membership value 

• 𝑀𝑖𝑗 = 0.8, meaning the confidence in edge existence is high. 

• 𝑁𝑖𝑗 = 0.2, meaning the confidence in non-existence is low. 

• 𝐼𝑖𝑗 = 0.1, representing a small amount of uncertainty. 

These values satisfy the Fermatean neutrosophic condition: 

(𝑀𝑖𝑗)2 + (𝑁𝑖𝑗)2 + (𝐼𝑖𝑗)2 ≤ 1 

(0.8)2 + (0.2)2 + (0.1)2 ≤ 1 

0.64 + 0.04 + 0.01 ≤ 1 

0.69 ≤ 1 

Thus, this is a valid 2-regular Fermatean neutrosophic graph. 
 

 

3.2 Strong FNGs                                                                           

A regular FNG is a specialized type of graph in the domain of FNSs, characterized by nodes and 

edges that carry degrees of truth, indeterminacy, and falsity membership, all defined within the 

Fermatean neutrosophic framework. 

Formally, a FNG 𝐺 = (𝑉, 𝐸, 𝑇, 𝐼, 𝐹) satisfies the following: 

1. Strong Relationship Condition: 

 

For any edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) 
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• The truth-membership degree 𝑇(𝑒) dominates, meaning it is significantly higher than the 

indeterminacy 𝐼(𝑒) and falsity 𝐹(𝑒) degrees: 𝑇(𝑒) > 𝐼(𝑒)and 𝑇(𝑒) > 𝐹(𝑒). 

Example of a Strong Fermatean Neutrosophic Graph: 

Consider a 3-regular Strong Fermatean neutrosophic graph with 4 vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 5 edges 

𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣1), (𝑣1, 𝑣3)}  

Fermatean Neutrosophic Representation: 

For each edge (𝑣𝑖 , 𝑣𝑗), assign Fermatean neutrosophic values: 

• High Membership Degree 𝑀𝑖𝑗 ≥ 0.9 

• Low membership Degree 𝑁𝑖𝑗 ≤ 0.1 

• Low Indeterminacy Degree 𝐼𝑖𝑗  ≤ 0.1 

Edge (𝑣𝑖 , 𝑣𝑗) Membership(𝑀𝑖𝑗) Non-Membership(𝑁𝑖𝑗) Indeterminacy(𝐼𝑖𝑗) 

(𝑣1, 𝑣2) 0.95 0.05 0.05 

(𝑣2, 𝑣3) 0.92 0.07 0.06 

(𝑣3, 𝑣4) 0.93 0.06 0.05 

(𝑣4, 𝑣1) 0.94 0.05 0.06 

(𝑣1, 𝑣3) 0.91 0.08 0.07 

 

 

These values satisfy the Fermatean neutrosophic condition: 

(𝑀𝑖𝑗)2 + (𝑁𝑖𝑗)2 + (𝐼𝑖𝑗)2 ≤ 1 

(0.95)2 + (0.5)2 + (0.5)2 ≤ 1 

0.9025 + 0.0025 + 0.0025 ≤ 1 

0.9075 ≤ 1 

Thus, this is a valid example of strong neutrosophic graph. 

 

 

3.3 Uniform FNGs 

A uniform FNG (RFNG) is a FNG where the Fermatean neutrosophic degrees (truth, 

indeterminacy, and falsity) are consistent across all vertices and edges, ensuring uniformity 

in the representation of uncertainty and vagueness throughout the graph. 

Formally, a FNG 𝐺 = (𝑉, 𝐸, 𝑇, 𝐼, 𝐹) satisfies the following: 

1. uniformity conditions 

• All vertices 𝑣 ∈ 𝑉 have identical Fermatean neutrosophic degrees 𝑇(𝑣), 𝐼(𝑣), 𝐹(𝑣). 

• All edges 𝑒 ∈ 𝐸 have identical Fermatean neutrosophic degrees 𝑇(𝑒), 𝐼(𝑒), 𝐹(𝑒). 

i.e. 𝑇(𝑣1) = 𝑇(𝑣2) = ⋯ = 𝑇(𝑣𝑛), 𝐼(𝑣1) =  𝐼(𝑣2) = ⋯  =  𝐼(𝑣𝑛), 𝐹(𝑣1) = 𝐹(𝑣2) = ⋯ = 𝐹(𝑣𝑛), 
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                for all 𝑣 ∈ 𝑉, and similarly for 𝑒 ∈  𝐸. 

4.  Operations on FNGs 

This section introduces several significant graph-theoretic operations applied to FNGs, 

accompanied by key results and illustrative examples 

Assume that 𝐺1 = (𝑃1, 𝑅1) and 𝐺2 = (𝑃2, 𝑅2)  are two FNGs, which relate to the classical graphs 

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), respectively. Here, 𝑃1 & 𝑃2 represent the Fermatean neutrosophic 

vertex sets corresponding to 𝑉1 & 𝑉2 , while 𝑅1 & 𝑅2 denote the Fermatean neutrosophic edge sets 

corresponding to 𝐸1 & 𝐸2 . 

The subsequent section explores some of these operations within the framework of FNS theory and 

examines their properties in detail. 

4.1 Cartesian Product of FNGs 

The Cartesian product of two FNGs 𝐺1and 𝐺2 is denoted by 𝐺1  × 𝐺2  and  defined as : 𝐺1  × 𝐺2 =

(𝑃1 ×  𝑃2 , 𝑅1  ×  𝑅2 ), where 

𝑇𝑃1× 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑖𝑛{𝑇𝑃1

(𝑢1), 𝑇𝑃2
(𝑢2)} 

𝐼𝑃1× 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑎𝑥{𝐼𝑃1

(𝑢1), 𝐼𝑃2
(𝑢2)} 

𝐹𝑃1× 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑎𝑥{𝐹𝑃1

(𝑢1), 𝐹𝑃2
(𝑢2)} 

∀ (𝑢1, 𝑢2) ∈ (𝑉1, 𝑉2) 

The membership value of the edges in 𝐺1  × 𝐺2 can be computed as 

𝑇𝑅1× 𝑅2
((𝑢, 𝑢2), (𝑢, 𝑣2)) =  𝑚𝑖𝑛{𝑇𝑃1

(𝑢), 𝑇𝑅2
(𝑢2, 𝑣2)} 

𝐼𝑅1× 𝑅2
((𝑢, 𝑢2), (𝑢, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑃1

(𝑢), 𝐼𝑅2
(𝑢2, 𝑣2)} 

𝐹𝑅1× 𝑅2
((𝑢, 𝑢2), (𝑢, 𝑣2)) =  𝑚𝑎𝑥{𝐹𝑃1

(𝑢), 𝐹𝑅2
(𝑢2, 𝑣2)} 

∀ 𝑢 ∈ 𝑉1, (𝑢2, 𝑣2) ∈  𝐸2 

𝑇𝑅1× 𝑅2
((𝑢1, 𝛽), (𝑣1, 𝛽)) =  𝑚𝑖𝑛{𝑇𝑅1

(𝑢1, 𝑣1), 𝑇𝑃2
(𝛽)} 

𝐼𝑅1× 𝑅2
((𝑢1, 𝛽), (𝑣1, 𝛽)) =  𝑚𝑎𝑥{𝐼𝑅1

(𝑢1, 𝑣1), 𝐼𝑃2
(𝛽)} 

𝐹𝑅1× 𝑅2
((𝑢1, 𝛽), (𝑣1, 𝛽)) =  𝑚𝑎𝑥{𝐹𝑅1

(𝑢1, 𝑣1), 𝐹𝑃2
(𝛽)} 

∀ 𝛽 ∈ 𝑉2, (𝑢1, 𝑣1) ∈  𝐸1 

 

4.2 Composition of FNGs 

The composition of two FNGs 𝐺1  and  𝐺2 , denoted by 𝐺1  ∘ 𝐺2 , and defined as: 𝐺1  ∘ 𝐺2 = (𝑃1 ∘

 𝑃2 , 𝑅1  ∘  𝑅2 ) where, 

𝑇𝑃1∘ 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑖𝑛{𝑇𝑃1

(𝑢1), 𝑇𝑃2
(𝑢2)} 

𝐼𝑃1∘ 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑎𝑥{𝐼𝑃1

(𝑢1), 𝐼𝑃2
(𝑢2)} 

𝐹𝑃1∘ 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑖𝑛{𝐹𝑃1

(𝑢1), 𝐹𝑃2
(𝑢2)} 

∀ (𝑢1, 𝑢2) ∈ (𝑉1, 𝑉2) 

𝑇𝑅1∘ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑖𝑛{𝑇𝑃1

(𝛽), 𝑇𝑅2
(𝑢2, 𝑣2)} 

𝐼𝑅1∘ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑃1

(𝛽), 𝐼𝑅2
(𝑢2, 𝑣2)} 

𝐹𝑅1∘ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑎𝑥 {𝐹𝑃1

(𝛽), 𝐹𝑅2
(𝑢2, 𝑣2)} 

∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈  𝐸2 

𝑇𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ 𝑇𝑅1

(𝑢1, 𝑣1), 𝑇𝑃2
(𝛾)} 

𝐼𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ 𝐼𝑅1

(𝑢1, 𝑣1), 𝐼𝑃2
(𝛾)} 
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𝐹𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ 𝐹𝑅1

(𝑢1, 𝑣1), 𝐹𝑃2
(𝛾)} 

∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈  𝐸1 

𝑇𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑖𝑛{𝑇𝑃2

(𝑢2), 𝑇𝑃2
(𝑣2), 𝑇𝑅1

(𝑢1, 𝑣1)} 

𝐼𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑃2

(𝑢2), 𝐼𝑃2
(𝑣2), 𝐼𝑅1

(𝑢1, 𝑣1)} 

𝐹𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥 {𝐹𝑃2

(𝑢2), 𝐹𝑃2
(𝑣2), 𝐹𝑅1

(𝑢1, 𝑣1)} 

∀ (𝑢1, 𝑢2), ( 𝑣1, 𝑣2) ∈  𝐸1 

Example 4.2.1 

Consider two FNGs 𝐺1 , and  𝐺2, as presented below. Then the composition of two graph 𝐺1  ∘ 𝐺2, 

are shown graphically in Figure below. 

 

                                   Fig. 1: Two FNGs 

 

                             Fig. 2: Composition of two FNGs 

4.3 Lexicographic product of FNGs 

The lexicographic product of two FNGs 𝐺1 and  𝐺2 , denoted by  𝐺1  ⋅ 𝐺2 , and defined as: 𝐺1  ⋅

𝐺2 = (𝑃1 ⋅  𝑃2 , 𝑅1  ⋅  𝑅2 ) where 

𝑇𝑃1⋅ 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑖𝑛{𝑇𝑃1

(𝑢1), 𝑇𝑃2
(𝑢2)} 

𝐼𝑃1⋅𝑃2
(𝑢1, 𝑢2) =  𝑚𝑎𝑥{𝐼𝑃1

(𝑢1), 𝐼𝑃2
(𝑢2)} 

𝐹𝑃1⋅ 𝑃2
(𝑢1, 𝑢2) =  𝑚𝑎𝑥{𝐹𝑃1

(𝑢1), 𝐹𝑃2
(𝑢2)} 

∀ (𝑢1, 𝑢2) ∈ (𝑉1, 𝑉2) 

𝑇𝑅1⋅ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑖𝑛{𝑇𝑃1

(𝛽), 𝑇𝑅2
(𝑢2, 𝑣2)} 

𝐼𝑅1⋅ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑃1

(𝛽), 𝐼𝑅2
(𝑢2, 𝑣2)} 

𝐹𝑅1⋅ 𝑅2
((𝛽, 𝑢2), ( 𝛽, 𝑣2)) =  𝑚𝑎𝑥 {𝐹𝑃1

(𝛽), 𝐹𝑅2
(𝑢2, 𝑣2)} 

∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈  𝐸2 

𝑇𝑅1⋅𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑖𝑛{𝑇𝑅1

(𝑢1, 𝑣1), 𝑇𝑅2
(𝑢2, 𝑣2)} 



Neutrosophic Sets and Systems, Vol. 82, 2025     611  

 

Prasanta Kumar Raut, Surapati Pramanik, Bhabani S. Mohanty, An Overview of Fermatean Neutrosophic Graphs 

𝐼𝑅1⋅ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑅1

(𝑢1, 𝑣1), 𝐼𝑅2
(𝑢2, 𝑣2)} 

𝐹𝑅1⋅ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥 {𝐹𝑅1

(𝑢1, 𝑣1), 𝐹𝑅2
(𝑢2, 𝑣2)} 

∀ (𝑢1, 𝑣1) ∈  𝐸1 , ( 𝑢2, 𝑣2) ∈  𝐸2 

Example 4.3.1 

Consider two FNGs 𝐺1  𝐺2,  as presented below. Then the lexicographic product of two graph 𝐺1  ⋅

𝐺2, are shown graphically in Figure below. 

 

 

                             Fig. 3: Two FNGs 

                                      

 

                  Fig. 4: Lexicographic product of two FNGs 

 

4.4 Union of FNGs 

The union of two FNGs 𝐺1  and  𝐺2  , denoted by 𝐺1  ∪ 𝐺2  , and defined as: 𝐺1  ∪ 𝐺2 = (𝑃1 ∪

 𝑃2 , 𝑅1  ∪  𝑅2 ) where 

𝑇𝑃1∪ 𝑃2
(𝑢) = {

𝑇𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝑇𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{𝑇𝑃1
(𝑢), 𝑇𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2

  

𝐼𝑃1∪ 𝑃2
(𝑢) = {

𝐼𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝐼𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{𝐼𝑃1
(𝑢), 𝐼𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2

 

𝐹𝑃1∪ 𝑃2
(𝑢) = {

𝐹𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝐹𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{𝐹𝑃1
(𝑢), 𝐹𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2
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𝑇𝑃1∪ 𝑃2
(𝑢, 𝑣) = {

𝑇𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝑇𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{𝑇𝑅1
(𝑢, 𝑣), 𝑇𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

  

𝐼𝑃1∪ 𝑃2
(𝑢, 𝑣) = {

𝐼𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝐼𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{𝐼𝑅1
(𝑢, 𝑣), 𝐼𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

 

𝐹𝑃1∪ 𝑃2
(𝑢, 𝑣) = {

𝐹𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝐹𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{𝐹𝑅1
(𝑢, 𝑣), 𝐹𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

 

 

Example 4.4.1 

Consider two FNGs 𝐺1  𝑎𝑛d 𝐺2 ,  as presented below. Then the union of 𝐺1  ∪ 𝐺2 , are shown 

graphically in Figure 5. 

 

                                       Fig. 5: Fermatean Neutrosophic Graphs 

 

 

                                     Fig. 6: Union of two FNGs 

4.5 Join of FNGs 

The Join of two FNGs 𝐺1 and  𝐺2 , denoted by 𝐺1  + 𝐺2 , is defined as: 𝐺1  + 𝐺2 = (𝑃1 + 𝑃2 , 𝑅1  +

 𝑅2 ) where, 
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𝑇𝑃1+ 𝑃2
(𝑢) = {

𝑇𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝑇𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{𝑇𝑃1
(𝑢), 𝑇𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2

  

𝐼𝑃1+ 𝑃2
(𝑢) = {

𝐼𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝐼𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{𝐼𝑃1
(𝑢), 𝐼𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2

 

𝐹𝑃1+ 𝑃2
(𝑢) = {

𝐹𝑃1
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉1 − 𝑉2

𝐹𝑃2
(𝑢) 𝑖𝑓 𝑢 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{𝐹𝑃1
(𝑢), 𝐹𝑃2

(𝑣)} 𝑖𝑓 𝑢 ∈  𝑉1 ∪ 𝑉2

 

 

 

𝑇𝑃1+ 𝑃2
(𝑢, 𝑣) = {

𝑇𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝑇𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{𝑇𝑅1
(𝑢, 𝑣), 𝑇𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

  

𝐼𝑃1+ 𝑃2
(𝑢, 𝑣) = {

𝐼𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝐼𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{𝐼𝑅1
(𝑢, 𝑣), 𝐼𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

 

𝐹𝑃1+ 𝑃2
(𝑢, 𝑣) = {

𝐹𝑅1
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 − 𝐸2

𝐹𝑅2
(𝑢, 𝑣) 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{𝐹𝑅1
(𝑢, 𝑣), 𝐹𝑅2

(𝑢, 𝑣)} 𝑖𝑓 (𝑢, 𝑣)  ∈  𝐸1 ∪ 𝐸2

 

 

Example 4.5.1 

Consider two FNGs 𝐺1 𝑎𝑛d 𝐺2,  as presented  below. Then the join of two graph  𝐺1  + 𝐺2, are 

shown graphically in Figure below. 

 

    Fig. 7: Two FNGs 
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                Fig. 8 Join of two FNGs 

5. Numerical example (Application of FNSs) in decision-making) 

 NSs and their extensions have widely used in  decision making such as identification of key 

factors affecting soil liquefaction under seismic risk [34], Choosing the most critical water quality 

parameter for an aquaponic system [35], green supplier selection [36],  E-commerce site selection 

[37],  career selection problem [38], vaccine selection  [39], clay-brick selection [40], and so on.  

Different extension of NSs have been proposed in the literature such as quadripartition NS (QNS) 

[41], interval QNS [42], Pentapartitioned NS (PNS) [43] , Interval PNS [44], Pythagorean/ Fermatean 

NSs [45].  Several researchers have recently used Fermatean fuzzy  sets, for multicriteria decision 

making such as WASPAS [46, 47], TOPSIS [48, 49], ELECTRE method [50] and so on.  To 

demonstrate the application of Fermatean in decision making, let us consider a scenario in which a 

company must decide which supplier to use for a specific product. The decision is made based on 

three factors: price, quality, and delivery time. 

We consider that there are three potential suppliers: A, B, and C. The decision-making team assigns 

Fermatean Neutrosophic membership values to each supplier for each criterion, ranging from 0 to 1. 

Supplier A: 

Table-1: Supplier A’s membership values 

 Belief Indeterminacy Unbelief 

Price 0.8 0.3 0.7 

Quality 0.7 0.2 0.6 

Delivery Time 0.8 0.4 0.7 

 

 

Supplier B: 

Table-2: Supplier B’s membership values 

 Belief Indeterminacy Unbelief 

Price 0.7 0.3 0.7 

Quality 0.8 0.3 0.7 
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Delivery Time 0.9 0.4 0.6 

 

Supplier C: 

Table-3: Supplier C’s membership values 

 Belief Indeterminacy Unbelief 

Price 0.7 0.2 0.6 

Quality 0.8 0.3 0.7 

Delivery Time 0.7  0.4 0.6 

 

To calculate the overall Fermatean neutrosophic score for each supplier, we can use the weighted 

average method. Let's assume equal weights for all criteria. 

Supplier A: 

Price: (0.8 ×  1/3)  + (0.3 ×  1/3)  + (0.7 ×  1/3)  =  0.59 

Quality: (0.7 ×  1/3)  + (0.2 ×  1/3)  + (0.6 ×  1/3)  =  0.49 

Delivery Time: (0.8 ×  1/3)  + (0.4 ×  1/3)  + (0.7 ×  1/3)  =  0.62 

Overall Score for Supplier A:  
(0.59 + 0.49 + 0.62) 

3
=  0.56 

Similarly, we can compute the total scores for Suppliers B and C. 

Supplier B: Overall Score is 0.59 ,Supplier C: Overall score is 0.54. 

Based on the Fermatean neutrosophic scores, Supplier B has the highest overall score and should be 

considered the company's preferred choice. 

This example demonstrates how FNSs can be used in decision making by allowing experts to consider 

the belief, indeterminacy, and unbelief values associated with each decision alternative and criteria. 

6.  Conclusions 

Fermatean Neutrosophic graphs offer a unique and efficient framework for representing and examining 

intricate systems. These graphs utilize the Fermatean Neutrosophic set to effectively capture and assess the 

varying degrees of membership, non-membership, and uncertainty present in a system. This facilitates a 

more comprehensive comprehension and interpretation of the information, making Fermatean 

Neutrosophic graphs an invaluable tool in areas like decision-making, pattern recognition, and data 

analysis. The development and application of Fermatean Neutrosophic graphs have the potential to 

significantly enhance our understanding of complex systems, enabling more precise and well-informed 

decision-making. In the future the concept of Fermentinean neutrosophic graph can be extended to 

Fermentinean pentapartitioned neutrosophic graph [51]. 
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