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Abstract. In plant breeding programs, the augmented design is designated to screen numerous new treatments

compared with a few check treatments, which in turn are required to estimate both of error variance and local

control for new future treatments. It is well known that the classical augmented design is not suitable for data

that are imprecise, uncertain, or undetermined, and these accordingly emerge because of many circumstances

beyond humans control. As a result, there is a sever necessity to define a proper generalization for the aug-

mented designs to handle uncertain environments. To be more specific, this work aims to propose an easy to

apply approach to treat the augmented randomized complete block design under neutrosophic statistics (NS).

This well-defined approach is based on building a neutrosophic ANOVA table, including deriving a suitable test

statistics, FN , to handle uncertain settings.This leads to the corresponding neutrosophic hypotheses and the

necessary related decision rules. Real data and a series of simulation studies numerically assess the performance

of the present method. It will be shown that the neutrosophic method outperforms the classical one, and in

effect, it is more flexible than in the presence of indeterminacy.

Keywords: Augmented randomized complete block design; neutrosophic test statistics; indeterministic obser-

vations; NANOVA.

—————————————————————————————————————————-

1. Introduction

Breeding programs worldwide are administered when numerous genotypes are the object of

examination. As a result, the augmented design has been developed for comparing thousands

of genotypes with only one plot per genotype. This statistical art was first introduced by

Federer [17]. This design contains a small number of varieties, known as checks, which are
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randomly replicated in the field to compute an estimate of error [17]. As Federer states, one

can calculate the expected yield for the plots in the studied field by relying on those varieties,

and then the observed yields of the genotypes can be adjusted. Besides, the augmented design

can also be used in characterizing genotypes for assessing mean performances, assessing effects,

and controlling the variability of genotypes (see Federer and Crossa [18]).

The augmented design is a special case of block design (like complete, incomplete, Latin

squares, etc.) by enlarging the block size. For example, the augmented randomized block de-

sign (ARCBD) can be constructed as c replicated checks and n non-replicated new treatments

in r blocks. To build this augmented design, a randomized complete block design (RCBD) with

r blocks and c check genotypes is employed. Then, the blocks are expanded so that embrace

all c checks and n new units, in a way that each block would contain n/r new genotypes. We

may refer the interested reader to review many examples of augmented designs in Federer and

Crossa [18].

On the other hand, the augmented row-column designs along with few checks were handled by

Piepho and Williams [24]. Also, the augmented design in which all treatments are not repli-

cated was discussed by Burgueño, et al. (Ch. 13) [10]. Further developments in augmented

designs can also be found in [26,28].

In today’s real world studies, especially when the experimental units are either biological or

breeding varieties, uncertain observations are plausible. What is known for sure is that the

classical ARCBD model will fail in analyzing such indeterministic observations. So, the search

aims to define a novel neutrosophic model to overcome all limitations in the literature of AR-

CBD, and to our knowledge, this is the first such study in this framework.

The statistical art of neutrosophic statistics (NS) has attracted many researchers in recent

years, years after its first definition by Smarandache [32], to propose and define new approaches

to deal with uncertain and imprecise information. Aslam [11] gives an explicit explanation

for the differences between the fuzzy, neutrosophic, and classic statistics. Contributions by

Aslam [12] in experimental design analysis, the neutrosophic ANOVA was completely high-

lighted. After that, Aslam and Albassam [15] introduced multiple comparison post hoc tests

for NS. The neutrosophic ANCOVA’s for varieties of block designs were suggested and de-

veloped by AlAita and Aslam [1]. Other NS applications to deal with imprecise data in

split-plot design and augmented Latin square design are given in [8, 9], respectively. To stay

on track, one may point out to the numerous NS applications that are sufficiently discussed

in [2–6,13,14,16,20–22,27,30,31,33,35].

The randomized complete design is, in fact, the most and popular design in agricultural studies

and biological fields, and this design can be extended to uncertain environments by adopting

the NS, which is suitable for estimating model parameters and compute all related sum of
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squares. The suggested new approach, which is called the NARCBD, is a suitable general-

ization of the classic ARCBD in sense of dealing with both exact or vague information. The

superiority of the proposed NARCBD over the ARCBD will be approved through real data

study and simulation scenarios. It will be shown that the suggested design can completely

discriminate between the null hypothesis and the alternatives, where the type I error is con-

trolled at a given nominal level of α.

Following in this paper, first, we give a brief summary addressing the motivation for this cur-

rent research in Section 2. After that, basic concepts and notions of the NS framework are

introduced in Section 3. An overview of the addressed NARCBD is given in Section 4. Section

5 contains a numerical explanatory example of real case study, as well as a series of simulation

studies to check and evaluate the performance of our proposed design. A wide conclusion and

further discussions are presented in Section 6.

2. Motivation, Necessity and Research Gap

Imprecise data in real-world problems forces researchers to innovate corresponding statistical

techniques to deal with such a situation. This motivated us to generalize the augmented designs

consisting of imprecise observations and solve them under the NS setting. In this way, one can

deal with interval-type observations or a set of neutrosophic data. In our point of view, this

is a significant addition to previous classical experimental designs, and would close the gap

between the two. In fact, our work was inspired by many previous literatures in NS, showing

its flexibilty and efficiency in treating complex situations. In this paper, the main focus was

made on presenting a new theoretical approach along with a series of simulation studies and

a real case study.

3. Preliminaries

By reviewing some basic ideas of NS in this section, one can easily follow-up and comprehend

the main results related to the subsequent sections.

The neutrosophic logic is a type of logic that extends both of classical and fuzzy logics to

handle uncertain, vague and indeterminate data. As already known, fuzzy sets represent the

uncertain part by a single-valued membership on [0, 1], whereas NS considers three possible

outcomes: true, false and indeterminate. Consequently, the indeterminate part opens a wide

window to accommodate uncertain and vague data more nuancedly.

The neutrosophic probability [34] is, in effect, a natural generalization of classical probability

theory for dealing with incomplete and indeterminate data. The neutrosophic probability is

the triple (T, I, F), where T and F are respectively for truth and falsity, and I stands for

uncertainty.
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A neutrosophic random variable includes two parts, defined by

XN = XL +XUIN

where XL is classical and XUIN is the indeterminate part for uncertainty level IN∈[IL, IU ]. In
this way, the values of NRV can be true, false or indeterminate, simultaneously. Consider the

neutrosophic normal random variable XN∈ [XL, XU ] with neutrosophic mean and variance

µN∈ [µL, µU ] and σ2
N∈[σ2

L, σ
2
U ], where

µN ∈ [µL, µU ] =

[∑N
i=1XLi

N
,

∑N
i=1XUi

N

]

σ2
N ∈ [σ2

L, σ
2
U ] =

[∑N
i=1 (XLi − µL)

2

N
,

∑N
i=1 (XUi − µU )

2

N

]
Now, let a neutrosophic random sample of size n is drawn from a population of size N including

indeterminate observations. The observed neutrosophic sample mean xN and variance s2N are

xN ∈ [xL, xU ] =

[∑n
i=1 xLi
n

,

∑n
i=1 xUi

n

]
s2N ∈ [s2L, s

2
U ] =

[∑n
i=1 (xLi − xL)

2

n− 1
,

∑n
i=1 (xUi − xU )

2

n− 1

]

4. The NARCBD

The model of a design with b blocks, c checks and v new treatments can be written as

yNhijg = µN + αNi + τNqj + τNlig + εNhijg,


i = 1, 2, . . . , b

j = 1, 2, . . . , c

g = 1, 2, . . . , n(li)

(1)

where indices l and q for h are related to new treatments and checks, respectively, µN is the

general mean, αNi is the i
th neutrosophic block effect, τNqj is the j

th neutrosophic check effect,

τNlig is the gth neutrosophic new treatment effect, and εNhijg is the neutrosophic error with

zero mean and variance σ2
N . For v =

∑b
i=1 n(li) new treatments and c checks, e = v + c is the

total number of checks and new treatments; therefore, the total number of units in blocks is

n = v + bc.

It is worth mentioning here that the Equation (1) can be rewritten as

yNhijg = yLhijg + yUhijgIN ; IN ∈ [IL, IU ] (2)

In the neutrosophic ANOVA framework, the subscript N stands for the neutrosophic expres-

sion, and hence, the neutrosophic sum of squares (NSS) are denoted by SSNT , SSNTr, SSNB

and SSNE to represent total, treatment, block, and error sum of squares, respectively.
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4.1. Estimating neutrosophic parameters

After imposing the following two constraints

b∑
i=1

α̂Ni = 0

c∑
j=1

τ̂Nqj +

b∑
i=1

n(li)∑
g=1

τ̂Nlig = 0 (3)

on the model (1), one can estimate model parameters by solving the least square normal

equations and get

µ̂N =
1

v + c

yN... −
(b− 1)

b

c∑
j=1

yNq.j

−
b∑

i=1

n(li)α̂Ni; µ̂N ∈ [µ̂L, µ̂U ]

α̂Ni = yNqi. −
yNq..

bc
; α̂Ni ∈ [α̂Li, α̂Ui]

τ̂Nqj = yNq.j − µ̂N ; τ̂Nqj ∈ [τ̂Lqj , τ̂Uqj ] (4)

τ̂Nlig = yNlig − α̂Ni − µ̂N ; τ̂Nlig ∈ [τ̂Llig, τ̂Ulig]

where i = 1, 2, ..., b, j = 1, 2, ..., c, and g = 1, 2, ..., n(li).

All parameter estimators in neutrosophic treatment models and block-reduced models can be

obtained in a similar manner.

4.2. The neutrosophic test statistics

First of all, let us introduce some mathematical expressions for NSS, where “adj” and

“unadj” stand for adjusted and unadjusted sums of squares, respectively.

SSNT =

b∑
i=1

c∑
j=1

y2Nqij +

b∑
i=1

n(li)∑
g=1

y2Nlig −
y2N...

n
; SSNT ∈ [SSLT , SSUT ]

SSNB(unadj) =
b∑

i=1

y2N.i.

c+ n(li)
−

y2N...

n
; SSNB(unadj) ∈

[
SSLB(unadj), SSUB(unadj)

]
SSNTr(adj) =

b∑
i=1

(
yNqi. −

yNq..

bc

)
yNqi. +

1

b

c∑
j=1

y2Nq.j +

b∑
i=1

n(li)∑
g=1

y2Nlig −
b∑

i=1

y2N.i.

c+ n(li)
;

SSNTr(adj) ∈
[
SSLTr(adj), SSUTr(adj)

]
SSNTr(unadj) =

1

b

c∑
j=1

y2Nq.j +

b∑
i=1

n(li)∑
g=1

y2Nlig −
y2N...

n
;

SSNTr(unadj) ∈
[
SSLTr(unadj)SSUTr(unadj)

]
,

SSNCheck =
1

b

c∑
j=1

y2Nq.j −
y2Nq..

bc
; SSNCheck ∈ [SSLCheck, SSUCheck]
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SSNnew =
b∑

i=1

n(li)∑
g=1

y2Nlig −
y2Nl..

v
;SSNnew ∈ [SSLnew, SSUnew]

SSNnew and new × ch = SSNTr(adj) − SSNCheck;

SSNnew and new × ch ∈ [SSLnew and new × ch, SSUnew and new × ch]

SSNnew × check = SSNTr(unadj) − SSNCheck − SSNnew;

SSNnew × check ∈ [SSLnew × check, SSUnew × check]

SSNB(adj) = SSNB(unadj) − (SSNTr(unadj) − SSNTr(adj));SSNB(adj) ∈
[
SSLB(adj)SSUB(adj)

]
SSNE = SSNT − SSNTr(adj)SSNB(unadj)SSNT − SSNTr(unadj)SSNB(adj);

SSNE ∈ [SSLE , SSUE ]

It is well known that mean squares are obtained by dividing the each corresponding sum of

squares onto its degrees of freedom. As a result, the neutrosophic mean squares are as follows:

MSNTr(adj) =
SSNTr(adj)

c+ v − 1
; MSNTr(adj) ∈

[
MSLTr(adj)MSUTr(adj)

]
MSNB(adj) =

SSNB(adj)

b− 1
; MSNB(adj) ∈

[
MSLB(adj),MSUB(adj)

]
MSNCheck =

SSNCheck

c− 1
; MSNCheck ∈ [MSLCheck,MSUCheck]

MSNnew =
SSNnew

v − 1
; MSNnew ∈ [MSLnew,MSUnew]

MSNnew and new × ch =
SSNnew and new × ch

v
;

MSNnew and new × ch ∈ [MSLnew and new × ch,MSUnew and new × ch]

MSNnew × check =
SSNnew × check

1
;MSNnew × check ∈ [MSLnew × check,MSUnew × check]

MSNE =
SSNE

(b− 1)(c− 1)
; MSNE ∈ [MSLE ,MSUE ]

Now, each of the following statistics represents a candidate neutrosophic test statistics FN .

FNTr(adj) =
MSNTr(adj)

MSNE
; FNTr(adj) ∈

[
FLTr(adj), FUTr(adj)

]
FNB(adj) =

MSNB(adj)

MSNE
; FNB(adj) ∈

[
FLB(adj), FUB(adj)

]
FNCheck =

MSNCheck

MSNE
; FNCheck ∈ [FLCheck, FUCheck]

FNnew =
MSNnew

MSNE
;FNnew ∈ [FLnew, FUnew]

FNnew and new × ch =
MSNnew and new × ch

MSNE
;

FNnew and new × ch ∈ [FLnew and new × ch, FUnew and new × ch]
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FNnew × check =
MSNnew × check

MSNE
;FNnew × check ∈ [FLnew × check, FUnew × check]

The neutrosophic test statistics FN , is defined as

FN = FL + FUIFN
; IFN

∈ [IFL
, IFU

] (5)

where FL is the lower bound and FL is the upper bound. Note that FL represents the deter-

minate part, and FUIFN
represents the indeterminate part in each proposed test.

It is obvious that the test statistics (5) reduces to the classical approach when IFN
= 0.

4.3. Neutrosophic decision rules

We list down the null and the alternative hypotheses which are needed to test block, check

and new treatments effects:

HN0 : αNi = 0 vs HN1 : not all αNi ̸= 0, i = 1. 2., , , . b,

HN0 : τNbj = 0 vs HN1 : not all τNbj ̸= 0, j = 1. 2., , , . c,

HN0 : τNlig = 0 vs HN1 : not all τNlig ̸= 0, g = 1. 2., , , . n(li)

According to Smarandache [32], the neutrosophic decision rules at level α are:

• Accept HN0 for min {pN−value}> α.

• Reject HN0 for max {pN−value}≤ α.

• If min {pN−value}<α<max {pN−value}, then there is no decissive decission. But,

in this special case one could compute the chance to reject HN0 to be the ratio of
α−min{pN−value}

max{pN−value}−min{pN−value} . Likewise, the ratio max{pN−value}−α
max{pN−value}−min{pN−value} repre-

sents the chance of accepting HN0.

As usual classical ANOVA tables, building NANOVA tables for NARCBD as in Tables 1 and

2 is also straightforward.

Table 1. NANOVA Table (A) suitable for NARCBD

Sources of variation Ndf NSS NMS FN -value

Blocks unadjusted b− 1 SSNB(unadj)
SSNB(unadj)

b−1 –

Treatments adjusted c+ v − 1 SSNTr(adj)
SSNTr(adj)

c+v−1

MSNTr(adj)

MSNE

Checks c− 1 SSNCheck
SSNCheck

c−1
MSNCheck
MSNE

New and New × Check v SSNnew and new × ch
SSNnew and new × ch

v
MSNnew and new × ch

MSNE

Error (b− 1)(c− 1) SSNE
SSNE

(b−1)(c−1) –

Total n− 1 SSNT – –

5. Case and simulation studies

In this section, we exclusively examine the performance of our proposed NARCBD approach

by a real data set scenario, followed by an extensive simulation study.
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Table 2. NANOVA Table (B) suitable for ARCBD

Sources of variation Ndf NSS NMS FN -value

Blocks adjusted b− 1 SSNB(adj)
SSNB(adj)

b−1

MSNB(adj)

MSNE

Treatments unadjusted c+ v − 1 SSNTr(unadj)
SSNTr(unadj)

c+v−1 –

Checks c− 1 SSNCheck
SSNCheck

c−1
MSNCheck
MSNE

New treatments v − 1 SSNnew
SSNnew

v−1
MSNnew
MSNE

New × Check 1 SSNnew × check
SSNnew × check

1
MSNnew × check

MSNE

Error (b− 1)(c− 1) SSNE
SSNE

(b−1)(c−1) –

Total n− 1 SSNT – –

5.1. Real case study

An experiment is ran in a research farm at Isfahan University of Technology to study the

breeding program of safflower plant. This study included observing neutrosophic ninety-nine

cultivars of safflower genotypes using an NARCBD with three blocks. Each block has neutro-

sophic eight control treatments (as checks) and twenty-five neutrosophic genotypes (as new

treatments).

AlAita and Talebi [7] have listed all outcomes concerning oil seed actions resulted from plants.

The two consecutive NANOVA Tables 3 and 4 show the related observed value of test statistics

FN -tests for our experiment.

The NANOVA Tables 3 and 4 clarify how to report the previously proposed test sta-

tistics. As an example, in NANOVA Table 3, the neutrosophic form for treatments is

1.328 + 1.346IFN
; IFN

∈ [0, 0.013], and this in turn states that the measure of indeter-

minacy for treatments equals 0.013. It is noted that, due to the partitioning neutrosophic

treatment effects into check and new treatments, for each effect, FN and pN − values are

computed, separately.

5.2. Simulation study

Under uncertainty and imprecise data framework, the performance of the proposed NAR-

CBD is assessed in sense of test power and controlling type I error at a given nominal level of

α. Two significance levels were chosen, namely α = .05 and α = .01. It will be shown that

this new approach dominates the classical one.

The simulated number of treatments and blocks were taken just as do exist in famous refer-

ences like Federer [17]. The underlying null hypothesis states that data are generated from

the centered standard Gaussian distribution N (0, 1). Above all, it is presumed that the ho-

mogeneity assumption of neutrosophic variances is verified and that all planned neutrosophic

AlAita, Talebi and Al Zaim; Estimating and Testing Augmented Randomized Complete
Block Designs: The Neutrosophic Approach

Neutrosophic Sets and Systems, Vol. 82, 2025                                                                              646



T
a
b
l
e
3
.

N
A
N
O
V
A

T
ab

le
(A

)
su
it
ab

le
fo
r
re
al

ca
se

st
u
d
y

S
o
u
rc
e
s
o
f
v
a
ri
a
ti
o
n

N
d
f

N
S
S

N
M

S
F

N
N
e
u
tr
o
so

p
h
ic

fo
rm

F
N

p
N
-v
a
lu
e

B
lo
ck
s
(u
n
ad

j)
2

[8
89
3
4.
14
5,

88
14
7.
24
5]

[4
44
67
.0
72
,
44
07
3.
62
3]

–
–

–

T
re
at
m
en
ts

(a
d
j)

82
[3
50
90
29
.7
46
,
35
21
66
0.
93
3]

[4
27
93
.0
46
,
42
94
7.
08
5]

[1
.3
28
,
1.
34
6]

1
.3
28

+
1
.3
46
I F

N
;
I F

N
∈
[0
,
0
.0
13
]

[0
.2
85
,
0.
27
4]

C
h
ec
k
s

7
[3
38
36
9.
95
0,

33
98
47
.4
07
]

[4
83
38
.5
64
,
48
54
9.
63
0]

[1
.5
01
,
1.
52
2]

1
.5
01

+
1
.5
22
I F

N
;
I F

N
∈
[0
,
0
.0
14
]

[0
.2
45
,
0.
23
8]

N
ew

an
d
n
ew

×
ch
ec
k

75
[3
17
06
5
9.
05
,
31
81
81
3.
52
6]

[4
22
75
.4
54
,
42
42
4.
18
0]

[1
.3
12
,
1.
33
0]

1
.3
12

+
1
.3
30
I F

N
;
I F

N
∈
[0
,
0
.0
14
]

[0
.2
94
,
0.
28
4]

E
rr
or

1
4

[4
50
9
84
.0
22
,
44
66
62
.3
61
]

[3
22
13
.1
44
,
31
90
4.
45
4]

–
–

–

T
ot
a
l

9
8

[4
04
8
94
7.
91
3,

40
56
47
0.
53
9]

–
–

–
–

T
a
b
l
e
4
.

N
A
N
O
V
A

T
ab

le
(B

)
fo
r
re
al

ca
se

st
u
d
y

S
o
u
rc
e
s
o
f
v
a
ri
a
ti
o
n

N
d
f

N
S
S

N
M

S
F

N
N
e
u
tr
o
so

p
h
ic

fo
rm

F
N

p
N
-v
a
lu
e

B
lo
ck
s
(a
d
j)

2
[3
96
00
1.
13
6,

39
13
61
.0
45
]

[1
98
00
0.
56
8,

19
56
80
.5
22
]

[6
.1
47
,
6.
13
3]

6
.1
4
7
−

6.
1
3
3I

F
N
;
I F

N
∈
[0
,
0.
0
0
2
]

[0
.0
1
2
,
0
.0
1
2
]

T
re
at
m
en
ts

(u
n
ad

j)
82

[3
20
19
62
.7
55
,
32
18
44
7.
13
3]

[3
90
48
.3
26
,
39
24
9.
35
4]

–
–

–

C
h
ec
k
s

7
[3
38
36
9.
95
0,

33
98
47
.4
07
]

[4
83
38
.5
64
,
48
54
9.
63
0]

[1
.5
01
,
1.
52
2]

1
.5
0
1
+

1
.5
2
2I

F
N
;
I F

N
∈
[0
,
0
.0
1
4
]

[0
.2
4
5
,
0
.2
3
8
]

N
ew

tr
ea
tm

en
ts

74
[2
78
09
46
.5
09
,
2
79
52
11
.2
48
]

[3
63
67
.4
07
,
36
55
8.
51
6]

[1
.1
30
,
1.
14
6]

1
.1
3
0
+

1
.1
4
6I

F
N
;
I F

N
∈
[0
,
0
.0
1
4
]

[0
.4
2
2
,
0
.4
0
9
]

N
ew

×
C
h
ec
k

1
[8
26
46
.2
96
,
83
38
8.
47
8]

[8
26
46
.2
96
,
83
38
8.
47
8]

[2
.5
66
,
2.
61
4]

2
.5
6
6
+

2
.6
1
4I

F
N
;
I F

N
∈
[0
,
0
.0
1
8
]

[0
.1
3
1
,
0
.1
2
8
]

E
rr
or

14
[4
50
98
4.
02
2,

44
66
62
.3
61
]

[3
22
13
.1
44
,
31
90
4.
45
4]

–
–

–

T
ot
al

98
[4
04
89
47
.9
13
,
4
05
64
70
.5
39
]

–
–

–
–

AlAita, Talebi and Al Zaim; Estimating and Testing Augmented Randomized Complete
Block Designs: The Neutrosophic Approach

Neutrosophic Sets and Systems, Vol. 82, 2025                                                                              647



designs are balanced.

Recall that, under the null hypothesis, the check treatments all have zero mean. In other

words, HN0 : (µN1, µN2, µN3, µN4) = (0, 0, 0, 0).

Next, we itemize the Monte Carlo (MC) generating steps in order to compute the neutrosophic

empirical type I error rates as well as the test power.

• In each repetition of the a = 10, 000 independent repetitions:

(1) Generate the uth random sample x
(u)
N1, x

(u)
N2, ..., x

(u)
Nn under the null hypothesis, where

u = 1, 2, ..., a.

(2) In the uth sample, extract the test statistics FNu.

(3) Next, assign the value INu = 1 for every rejected HN0 at α, and INu = 0 otherwise.

• The empirical type I error rate is estimated by the ratio of significant tests.

• The empirical test power is estimated by π̂ (µNu) =
1
a

∑a
u=1 INu, where at least one of the

parameters (µN1, µN2, µN3, µN4) is not zero.

It is also helpful to demonstrate all previous steps as diagrams showing in Figures 1 and 2.

By choosing different values of δ = (µ1, µ2, µ3, µ4) in blocks, the results listed in Tables 5 and

Figure 1. MC algorithm to find the empirical rejection rate αEmpirical
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Figure 2. MC algorithm to find the empirical test power PowerEmpirical

6 show each of empirical error rates and empirical tests power. Also, consider the following

different values for δ such as, (0, 0, 0, 1), (0, 1, 2, 2), (1, 2, 2, 3), (1, 1, 3, 3), (0, 1, 2, 4), (0, 1, 3, 4),

(0, 3, 4, 4), and (0, 2, 4, 6).

It is noted that the proposed NARCBD outperforms the classical design, since it controls the

type I error much better and it also has a uniformly higher power. In light of these listed

results, one concludes that the proposed FN test is more informative and flexible than the

existing classical F test under presence of uncertain data.

In addition, Figures 3 and 4 show that as number of treatments increases, a wide gap emerges

which explicitly splits the two power curves to become far apart.

6. Conclusions, further discussions and limitations

In this work, we proposed an augmented randomized complete block design under NS which

is suitable to analyze uncertain, indeterminate, and imprecise data. We defined an NARCBD

model which provides several advantages over classical ARCBD model. It can surmount the

indeterminacy in data, resulting in robust and flexible outcomes along with along with a
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Figure 3. Plotting empirical power curves for NARCBD with parameters

(b = 3, c = 4, v = 8, n = 20). The lower curve represents the classical design.
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Figure 4. Plotting empirical power curves for NARCBD with parameters (b =

6, c = 4, v = 30, n = 54). The lower curve represents the classical design.

valuable increases in statistical precision, accuracy, and power. These are the basic tools in

statistical inference. We believe that the NARCBD will emerge as a very useful model in

different research fields, including farming, agricultural, and biological.
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But the proposed NARCBD model has some limitations. It does require a larger sample size

than the classical design to work perfectly, and this is of course, may lead to more time-

consuming and more expensive experiments. The complex computational nature of NARCBD

really requires a statistician who can give careful readings and interpretations in presence of

indeterminacies.

After defining the neutrosophic hypotheses and the related decision rules, a neutrosophic test

statistics was defined. All case study and simulation studies reflected the fact that the proposed

method is the preferable model to work with uncertain environment.

Other extended directions

It is notably remarked that connecting the design of experiments with artificial intelligence is

hardly found in specialized literatures but one may refer to a few great references, like [19,23].

The need of developing an AI along with experimental designs comes from the fact that AI

procedures can effectively reduce the repetitions and the time inquired to reach the best esti-

mated parameters.
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