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Abstract: Malware detection is one of the critical tasks of cybersecurity, especially considering the growing 

popularity of mobile devices. The integrity and security of mobile ecosystems rely on the capacity to 

identify malware quickly and precisely, as security hacks against these devices become increasingly 

frequent. Due to the requirement for massive volumes of data aggregation, traditional centralized machine 

learning (ML) techniques for malware detection face challenges with data sharing, computational 

complexity, and privacy. This research addresses these challenges by proposing a novel model, called 

"CNN-Fed", which is based on Convolutional Neural Networks (CNN) with Federated Learning (Fed). The 

main goal of this work is to create a global classifier for Android malware detection that is highly accurate 

and does not require centralised data aggregation. Using four benchmark datasets—Drebin, Malgenome, 

Kronodroid, and Tuandromd—the CNN-Fed model is trained across many clients in a federated setting 

under the suggested architecture. Then we use multi-criteria decision-making (MCDM) methodology to 

evaluate the number of clients and number of rounds. We use two MCDM methods such as Entropy 

methodology to compute the criteria weights and the CoCoSo methodology to rank the alternatives. We 

use the interval-valued neutrosophic sets (IVNSs) to deal with uncertainty and vague information. We use 

five criteria such as accuracy, F1-score, precision, recall, and FP and six of alternatives refer to the number 

of clients and number of rounds. The results show the best alternative has a larger number of clients and 

rounds.  

 

Keywords: Malware detection; Deep Learning; Federated Learning; Interval Valued Neutrosophic Sets. 

1. Introduction 

Data security and user privacy are becoming increasingly of a problem with the proliferation of personal 

and large computing systems. Deep learning and conventional machine learning methods become less useful 
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as malware threats rise. Malware is a type of software that targets and steals important data from computer 

systems, digital systems, and mobile devices. The journey of malware began in 1986 with the development of 

the first malware, the brain[1], [2]. 

 

1.1 Malware 

For cyber security services, malware consultation is an essential topic as one of malicious software, requiring 

a large investment of time and human resources. Still, there is a gap between recent research and practical 

implementations. Depending on the type, target, and attacker's target, malware can affect individuals, groups, 

companies, governments, and society. Common effects of malware include [3]: 

• Data Theft and Breaches. 

• Financial Loss. 

• System Disruption. 

• Data Destruction. 

• Privacy Violations. 

• Propagation. 

• Reputation Damage. 

• Resource Consumption. 

• Supply Chain Attack. 

  

The primary reason malware detection is crucial is that it shields users, networks, and computer systems 

from the damaging effects of malicious software. Here are some key arguments supporting the importance of 

malware detection: 

• Security. 

• Data Protection. 

• System Integrity. 

• Financial Impact. 

• Privacy. 

• Mitigating Reputation Damage. 

• Preventing Secondary Infections. 

• Protection against Evolving Threats. 

 

There are three common techniques employed in malware analysis [3]: 

Static Analysis: This approach involves recognizing malware signatures and extracting important information 

from codes or files. It includes establishing the identity of the malware, associated libraries, URLs and the 

programming language. 

Dynamic Analysis: The method looks at how a certain type of malware behaves when it is active in the real 

world under different environmental conditions. This helps in understanding what such software is designed 

for, how it propagates and potential harm that may be caused. 

Hybrid Malware Analysis: Combining both static and dynamic analyses, this method offers a more complete 

and exact assessment of the behaviour of malware with respect to its behaviour, capabilities, effects. 

1.2 Interval valued neutrosophic sets (IVNSs) 

Well-known techniques for handling complicated situations include multicriteria decision-making (MCDM) 

models, which rank, prioritize, and sort various options while considering several criteria. Decision-makers can 

use MCDM models to convey ambiguous viewpoints using a variety of uncertainty sets, such as fuzzy logic[4], 

[5].  

In Boolean logic, a proposition can be true or false, but nothing in between; in optimization, a solution is either 

feasible or not; and in conventional set theory, an element can either belong to a set or not. However, practically 

everything in actual life is imprecise, a question of degree, and outside the scope of conventional reasoning. 
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Zadeh developed the fuzzy sets theory to address this type of ambiguity. It was initially presented in 1965 and 

has since been expanded to include several fuzzy set variations. Zadeh created the type-n fuzzy set to deal with 

the membership function's uncertainty in fuzzy set theory. Zadeh invented interval-valued fuzzy sets 

(IVFSs)[6], [7].  

To properly characterize a membership function with its membership and non-membership degrees, including 

the hesitation of decision-makers, Atanassov introduced intuitionistic fuzzy sets (IFSs). Torra first defined 

hesitant fuzzy sets (HFSs), which are expansions of conventional fuzzy sets in which a single element may 

belong to a set of values. Even with all these additions, the description of membership functions could not 

accurately represent the sentiments of decision-makers. As a result, certain extensions are still needed. 

To overcome this shortcoming, Smarandache extended intuitionistic fuzzy sets to create neutrosophic logic and 

neutrosophic sets (NSs)[8], [9]. Every element of the cosmos has a degree of truthiness, indeterminacy, and 

falsehood inside the nonstandard unit interval, which is known as the neutrosophic set. The degree of 

belongingness or non-belongingness and the indeterminacy value were the factors integrated as relativity or 

absoluteness in the neutrosophic sets, where uncertainty is represented as truth and falsity values. In addition 

to managing system uncertainty, neutrosophic sets also lessen the indecision of contradicting data using this 

notation[10]. As a result, we may independently think of the indeterminacy value as the hesitation degree and 

the truth and falsehood values as membership and non-membership degrees[11], [12]. 

1.3 Learning Techniques 

1.3.1 Deep learning for malware detection 

 

Convolutional Neural Networks, sometimes known as CNNs, have recently been suggested as a DL 

technique for detecting malware. These ideas most certainly do not, however, uphold the DL principle that is 

essential for detecting malware. Instead, a sequence of linear transformations is frequently suggested, which 

makes them difficult to learn efficiently because they may result in limited performance from DL or increase 

classification efficiency in the absence of training data. The challenges prompted a development in Malware 

detection techniques. Malware detection has used a variety of DL models. On the other hand, few deep-learning 

options are available for real-time virus detection in an operational system [13], [14]. 

1.3.2 Federated Learning 

Google introduced Federated Learning (FL) in 2016, providing a workaround for data privacy concerns 

while facilitating cross-device collaborative learning. With this novel approach, devices can work together to 

train ML algorithms without directly exchanging sensitive raw data. Particularly around cybersecurity, FL has 

demonstrated potential as a malware detection technique. FL distributed architecture not only safeguards 

security and privacy on distributed networks but also effectively thwarts malware threats. Here, FL protects 

sensitive information by allowing local clients on various devices to build models using their data. These 

models are then combined by a global server, enabling the construction of an all-encompassing defense system 

against dynamic malware attacks[14].  

 

This paper has the following contributions:  

• CNN-FED, a new model: This model combines Deep Learning (DL) and Federated Learning (FL) 

algorithms to detect malware.  

• Global classifier of high accuracy: CNN-FED has been designed in such a way that it can generate 

highly accurate global classifiers without having access to distributed data. 

• Results from experiments: Four well-known datasets, Drebin, Malgenome, Kronodroid, and 

Tuandromd were used for experiments. The experimental findings show high levels of accuracy for 

CNN-FED. 

• We use interval-valued neutrosophic sets (IVNSs) methodology to evaluate the number of clients with 

the number of rounds after obtaining the results of the DL models.  
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• We use two MCDM methods such as the Entropy method to compute the criteria weights and the 

CoCoSo method to rank the alternatives. 

2. Methodology 

This section shows the steps of the proposed approach. We show some definitions of the IVNSs[15], [16].  

 

Definition 1. 

The neutrosophic sets has three membership functions such as Truth 𝑇𝐶(𝑦), Indeterminacy 𝐼𝐶(𝑦), and Falsity 

𝐹𝐶(𝑦).  

0−≤ sup𝑇𝐶(𝑦) + sup𝑇𝐶(𝑦) + sup𝑇𝐶(𝑦) ≤ 3 +                                                                                                                 (1) 

Definition 2.  

There are two intervals valued neutrosophic numbers (IVNNs) and in this part, we introduce their operations 

such as: 

 

𝐶 + 𝐷 =

(

 
 

[
𝑇𝐶

𝐿(𝑦) + 𝑇𝐷
𝐿(𝑦) − 𝑇𝐶

𝐿(𝑦)𝑇𝐷
𝐿(𝑦),

𝑇𝐶
𝑈(𝑦) + 𝑇𝐷

𝑈(𝑦) − 𝑇𝐶
𝑈(𝑦)𝑇𝐷

𝑈(𝑦)
] ,

 [𝐼𝐶
𝐿(𝑦)𝐼𝐷

𝐿(𝑦), 𝐼𝐶
𝑈(𝑦)𝐼𝐷

𝑈(𝑦)],

[𝐹𝐶
𝐿(𝑦)𝐹𝐷

𝐿(𝑦), 𝐹𝐶
𝑈(𝑦)𝐹𝐷

𝑈(𝑦)] )

 
 

                                                                                                                      (2) 

𝐶𝐷 =

(

 
 
 

[𝑇𝐶
𝐿(𝑦)𝑇𝐷

𝐿(𝑦), 𝑇𝐶
𝑈(𝑦)𝑇𝐷

𝑈(𝑦)],

[
𝐼𝐶
𝐿(𝑦) + 𝐼𝐷

𝐿(𝑦) − 𝐼𝐶
𝐿(𝑦)𝐼𝐷

𝐿(𝑦)

, 𝐼𝐶
𝑈(𝑦) + 𝐼𝐷

𝑈(𝑦) − 𝐼𝐶
𝑈(𝑦)𝐼𝐷

𝑈(𝑦)
] ,

[
𝐹𝐶

𝐿(𝑦) + 𝐹𝐷
𝐿(𝑦) − 𝐹𝐶

𝐿(𝑦)𝐹𝐷
𝐿(𝑦),

𝐹𝐶
𝑈(𝑦) + 𝐹𝐷

𝑈(𝑦) − 𝐹𝐶
𝑈(𝑦)𝑇𝐷

𝑈(𝑦)
]
)

 
 
 

                                                                                                                                          (3) 

𝐶 − 𝐷 =

(

 
 
 
 
 

[
𝑇𝐶

𝐿(𝑦) − 𝑇𝐷
𝑈(𝑦),

𝑇𝐶
𝑈(𝑦) − 𝑇𝐷

𝐿(𝑦)
] ,

[
max(𝐼𝐶

𝐿(𝑦), 𝐼𝐷
𝐿(𝑦)) ,

max(𝐼𝐶
𝑈(𝑦), 𝐼𝐷

𝑈(𝑦))
] ,

[
𝐹𝐶

𝐿(𝑦) − 𝐹𝐷
𝑈(𝑦),

𝐹𝐶
𝑈(𝑦) − 𝐹𝐷

𝐿(𝑦)
]

)

 
 
 
 
 

                                                                                                                                                    (4) 

𝐶

ℵ
=

(

 
 
 

[min (
𝑇𝐶

𝐿(𝑦)

ℵ
, 1) ,min (

𝑇𝐶
𝑈(𝑦)

ℵ
, 1)] ,

[min (
𝐼𝐶
𝐿(𝑦)

ℵ
, 1) ,min (

𝐼𝐶
𝑈(𝑦)

ℵ
, 1)]

[min (
𝐹𝐶

𝐿(𝑦)

ℵ
, 1) ,min (

𝐹𝐶
𝑈(𝑦)

ℵ
, 1)] )

 
 
 

                                                                                                                                      (5) 
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𝐶

𝐷
=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
min{

𝑇𝐶
𝐿(𝑦)

𝑇𝐷
𝐿(𝑦)

,
𝑇𝐶

𝐿(𝑦)

𝑇𝐷
𝑈(𝑦)

,

𝑇𝐶
𝑈(𝑦)

𝑇𝐷
𝐿(𝑦)

,
𝑇𝐶

𝑈(𝑦)

𝑇𝐷
𝑈(𝑦)

} ,

max{

𝑇𝐶
𝐿(𝑦)

𝑇𝐷
𝐿(𝑦)

,
𝑇𝐶

𝐿(𝑦)

𝑇𝐷
𝑈(𝑦)

,

𝑇𝐴
𝑈(𝑥)

𝑇𝐵
𝐿(𝑥)

,
𝑇𝐴

𝑈(𝑥)

𝑇𝐵
𝑈(𝑥)

}

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
min{

𝐼𝐶
𝐿(𝑦)

𝐼𝐷
𝐿(𝑦)

,
𝐼𝐶
𝐿(𝑦)

𝐼𝐷
𝑈(𝑦)

,
𝐼𝐶
𝑈(𝑦)

𝐼𝐷
𝐿(𝑦)

,
𝐼𝐶
𝑈(𝑦)

𝐼𝐷
𝑈(𝑦)

} ,

max{

𝐼𝐶
𝐿(𝑦)

𝐼𝐷
𝐿(𝑦)

,
𝐼𝐶
𝐿(𝑦)

𝐼𝐷
𝑈(𝑦)

,
𝐼𝐶
𝑈(𝑦)

𝐼𝐷
𝐿(𝑦)

,
𝐼𝐶
𝑈(𝑦)

𝐼𝐷
𝑈(𝑦)

}

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
min{

𝐹𝐶
𝐿(𝑦)

𝐹𝐷
𝐿(𝑦)

,
𝐹𝐶

𝐿(𝑦)

𝐹𝐷
𝑈(𝑦)

,
𝐹𝐶

𝑈(𝑦)

𝐹𝐷
𝐿(𝑦)

,
𝐹𝐶

𝑈(𝑦)

𝐹𝐷
𝑈(𝑦)

} ,

max{

𝐹𝐶
𝐿(𝑦)

𝐹𝐷
𝐿(𝑦)

,
𝐹𝐶

𝐿(𝑦)

𝐹𝐷
𝑈(𝑦)

,
𝐹𝐶

𝑈(𝑦)

𝐹𝐷
𝐿(𝑦)

,
𝐹𝐶

𝑈(𝑦)

𝐹𝐷
𝑈(𝑦)

}

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                (6) 

𝐶−1 =

(

 
 

[(𝑇𝐶
𝐿(𝑦))

−1
, (𝑇𝐶

𝑈(𝑦))
−1

] ,

[(𝐼𝐶
𝐿(𝑦))

−1
, (𝐼𝐶

𝑈(𝑦))
−1

] ,

[(𝐹𝐶
𝐿(𝑦))

−1
, (𝐹𝐶

𝑈(𝑦))
−1

]
)

 
 

                                                                                                                                        (7) 

Definition 3.  

We can compute the score function such as: 

𝑆(𝐶) =

(

 
 
 
 

𝑇𝐶
𝐿(𝑦)+𝑇𝐶

𝑈(𝑦)

2
+

(1 −
(𝐼𝐶

𝐿(𝑦)+𝐼𝐶
𝑈(𝑦))

2
) (𝐼𝐶

𝑈(𝑦)) −

(
(𝐹𝐶

𝐿(𝑦)+𝐹𝐶
𝑈(𝑦))

2
) (1 − 𝐹𝐶

𝑈(𝑦))
)

 
 
 
 

                                                                                                                                        (8) 

IVN-Entropy 

This method is used to compute the criteria weights. The steps of the Entropy method are shown as follows[17], 

[18]: 

 

Create the decision matrix. Experts are created the decision matrix using the IVNNs between the criteria and 

alternatives.  

Normalize the decision matrix 

𝑥𝑖𝑗 =
𝑦𝑖𝑗

∑ 𝑦𝑖𝑗
𝑚
𝑖=1

                                                                                                                                                                                    (9) 

Where 𝑦𝑖𝑗 refers to the value in the decision matrix, 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛 
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Determine the entropy  

𝑒𝑗 = −𝑡 ∑ 𝑥𝑖𝑗 ln 𝑥𝑖𝑗
𝑚
𝑖=1                                                                                                                                                            (10) 

𝑡 =
1

ln𝑚
                                                                                                                                                                                  (11) 

Compute the criteria weights 

𝑤𝑗 =
1−𝑒𝑗

∑ 1−𝑒𝑗
𝑛
𝑗=1

                                                                                                                                                                                 (12) 

IVN-CoCoSo Method 

This section shows the steps of the CoCoSo method to rank the alternatives[19], [20]. 

Normalize the decision matrix by the CoCoSo method for positive and negative criteria. 

𝑘𝑖𝑗 =
𝑦𝑖𝑗−min

𝑖
𝑦𝑖𝑗

max
𝑖

𝑦𝑖𝑗−min
𝑖

𝑦𝑖𝑗
                                                                                                                                                                      (13) 

𝑘𝑖𝑗 =
max

𝑖
𝑦𝑖𝑗−𝑦𝑖𝑗

max
𝑖

𝑦𝑖𝑗−min
𝑖

𝑦𝑖𝑗
                                                                                                                                                                  (14) 

Determine the power weight of decision matrix and total weighted decision matrix  

𝑈𝑖 = ∑ 𝑤𝑗𝑘𝑖𝑗
𝑛
𝑗=1                                                                                                                                                                        (15) 

𝑄𝑖 = ∑ (𝑘𝑖𝑗)
𝑤𝑗𝑛

𝑗=1                                                                                                                                                                     (16) 

Compute the relative weights  

𝐻𝑖𝑎 =
𝑈𝑖+𝑄𝑖

∑ (𝑄𝑖+𝑈𝑖)
𝑚
𝑖=1

                                                                                                                                                                 (17) 

𝐻𝑖𝑏 =
𝑈𝑖

min
𝑖

𝑈𝑖
+

𝑄𝑖

min
𝑖

𝑄𝑖
                                                                                                                                                                         (18) 

𝐻𝑖𝑐 =
ℶ(𝑈𝑖)+(1−ℶ)(𝑄𝑖)

(ℶmax
𝑖

𝑈𝑖+(1−ℶ)max
𝑖

𝑄𝑖)
 0 ≤ ℶ ≤ 1                                                                                                                                         (19) 

Rank the alternatives such as 

𝐻𝑖 = (𝐻𝑖𝑎𝐻𝑖𝑏𝐻𝑖𝑐)
1

3 +
1

3
(𝐻𝑖𝑎+𝐻𝑖𝑏+𝐻𝑖𝑐)                                                                                                                                 (20) 

The aim of this study is to utilize a deep-federated approach for identifying malicious software in mobile 

environments. This section gives an overview of CNN-Fed model shown in Figure 1, and discusses data 

preparation, modelling, optimization, and federated training processes:  

Data Preparation: This stage entails changing of data, generating numerical data and applying 

standardization and normalization methods.  

General Overview: At the server level, the proposed CNN-Fed model has a global model, which is a 

convolutional neural network and an aggregator. The server shares a pre-trained global model with all clients 

who train their local models with their own data. Clients then send their updated parameters back to the server, 

which combines all local models’ outputs. The input of the model contains logs on mobile network traffic while 

its output is classified into zero for benign traffic or one for malicious traffic.  



Neutrosophic Sets and Systems, Vol. 82, 2025                                                                                                                                      787 

________________________________________________________________________________________ 

 

________________________________________________________________________________________ 

Mohamed Refaat Abdellah, Hasan H. Oudah, Ahmed Mohamed Ahmed Badawy, Mohamed AbdElFattah AbdElFattah M Hassan, Shady Ahmed Bedier, Ahmed A. Metwaly, Mohamed eassa, Ahmed 

Abdelhafeez, Enhanced Federated Learning Framework based on Deep Learning and Neutrosophic Set for Android Malware Classification 

A Suggested Federated Learning Procedure: To begin the training process for the CNN-Fed model, global 

CNN model parameters are initially set on a global server. These are altered using an optimization algorithm 

thus starting the training phase. The process of training occurs in rounds that are connected and represented 

by n_rounds. Each round involves a random selection of clients who participate to ensure heterogeneous client 

representation called n_client. During this selection, clients are notified about the current global model’s 

parameters, which would help, make their training uniform based on the same basic conditions. Through this, 

they pass their data through local training for n_epocs epochs and share it with the global server after updating 

its parameters; this is what happens during local training phases. Clients undertake a local training phase to 

adjust the models according to their data properties — optimizing their performance. Several rounds of 

communication, local trainings, and model aggregations later resulted in finalizing them. They reflect the 

combined efforts of all contributing clients to develop a common pool of knowledge and expertise in solving 

different computing problems globally. Such parameters can be used for many other downstream tasks. 

 
Fig  1. The proposed IVN-CNN-Fed model 
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. By enabling knowledge exchange among clients, the server eliminates the need for direct data access. As a 

result, there is no requirement to share data with other clients, and the server maintains data privacy. 

3. Experiment 

3.1 Dataset 

Our work has used four publicly accessible datasets. Table 1 presents a summary of the datasets under 

consideration: 

Table 1. Dataset description 

Dataset 

Name 
Ref 

No. of 

Samples 

No. of 

Features 

 

Target Class 

Benign Malware 

Drebin [21] 15036 215 9476 5560 

Malgenome [22] 3799 215 2539 1260 

Kronodrid [23] 78137 463 36935 41382 

Tunadromd [24] 4465 241 903 3565 

3.2 Performance Metric 

The evaluation of the suggested CNN-Fed model for malware detection is assessed using different classification 

metrics. The primary metrics used in this study include: 

True positive (γ): Occurrence in malware samples where the prediction was accurate.  

False positive (μ): A test result indicates that a mobile device has malware while it does not contain malware.  

True negative (σ): A true negative accurately predicts benign ware in samples.  

False negative (ρ): A test result that indicates that the mobile does not contain malware while the mobile does 

indeed contain malware. 

• Precision: 

Precision, also known as Positive Predictive Value, indicates the proportion of correct identifications. It is 

crucial to understand the reliability of the model in identifying malware. 

Precision =
γ

(γ+μ)
                                                                                                                                                              (21) 

Where γ represents true positives and μ represents false positives. 

• Recall: 

Recall, also known as Sensitivity or True Positive Rate, measures the ability of the model to correctly identify 

all relevant instances of the positive class (malware). 

Recall =
γ

(γ+ρ)
                                                                                                                                                                         (22) 

Where ρ represents false negatives. A higher recall indicates that the model is effective at identifying most of 

the malware. 

• Accuracy: 

Accuracy measures the overall correctness of the model by calculating the ratio of correctly predicted instances 

(both true positives and true negatives) to the total number of instances. 

Accuracy=(𝛾 + 𝜎)/(𝛾 + 𝜌 + 𝜎 + 𝜇)                                                                                                                                                   (23) 

• F1-Score: 

The F1-Score is the harmonic mean of precision and recall, providing a single metric that balances both concerns. 

It is particularly useful when dealing with imbalanced datasets. 

F1-Score  =
2∗(Precision∗Recall)

(Precision+Recall)
                                                                                                                                                                        (24) 

• False Positive Rate (FPR): 
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The False Positive Rate measures the proportion of benign instances that are incorrectly classified as malware. 

It is calculated as: 

FPR =
2∗(Precision∗Recall)

(Precision+Recall)
                                                                                                                                                                        (25) 

Where μ represents false positives and σ represents true negatives. A lower FPR indicates a better performance 

in distinguishing benign traffic from malware. 

These metrics collectively offer a robust framework for evaluating the CNN-Fed model. By analysing these 

performance indicators, we can determine the efficacy of the proposed federated learning approach in 

accurately detecting malware in Mobile environments. 

3.3 Results, Analysis, and Discussion 

The experiments are conducted on four datasets for Android malware classification: Drebin, Malgenome, 

Kronodroid, and Tuandromd. Furthermore, a comparative analysis between the performance of our CNN-Fed 

model and other similar models was performed. The evaluation considered different numbers of clients and 

communication rounds to analyze the scalability and robustness of the models. 

We examined three different scenarios based on client numbers, with 5, 10, and 15 clients. For each scenario, 

we conducted experiments with 10 and 20 rounds to assess the impact of the number of clients and rounds on 

model performance. Investigate how changes in client numbers and communication rounds influence the 

effectiveness of our proposed CNN-Fed model compared to Dw-FedAvg. 

Figure 2 and Figure 3 show that CNN-Fed demonstrated competitive accuracy; on the Malgenome dataset 

(20 clients, five rounds), its highest accuracy was 0.9923. In general, DW-FedAvg exhibited larger loss values 

than CNN-Fed, suggesting that CNN-Fed performed better as a model in terms of minimising error. With 

twenty clients and five rounds in the Kronodroid dataset, CNN-Fed's lowest loss was 0.5151. With twenty 

clients and five rounds in the Tuandromd dataset, the lowest loss for DW-FedAvg was 0.3913. High F1 scores 

for both models indicate a favourable trade-off between precision and recall. With twenty clients and five 

rounds in the Tuandromd dataset, the greatest F1-score for DW-FedAvg was 0.9921. With twenty clients and 

five rounds in the Tuandromd dataset, the greatest F1-score for CNN-Fed was 0.9797. All scenarios exhibited 

great precision and recall, with both measures closely matched, suggesting consistent performance in 

minimising false negatives and recognizing real positives. The greatest accuracy and recall values for DW-

FedAvg on the Malgenome dataset (10 clients, five rounds) were 0.9950 and 0.9950, respectively. CNN-Fed's 

best precision on the Malgenome dataset with ten clients and five rounds was 0.9934, while its greatest recall 

on the Tuandromd dataset (10 clients, five rounds) was 0.9950. With AUC values continuously over 0.99, the 

two models showed exceptional performance and a high degree of ability to distinguish between positive and 

negative classifications. With twenty clients and fifteen rounds in the Malgenome dataset showed that CNN-

Fed's greatest AUC was 0.9997. FPR was low across all scenarios, with values mostly below 0.05, indicating that 

both models had a low rate of incorrectly classifying benign samples as malicious. The lowest FPR for CNN-

Fed was 0.0054 on the Malgenome dataset (20 clients, five rounds). 

The comparison in Figure 4 shows the Impact of the number of clients and number of rounds through the 

experiment. 

Impact of the number of clients with every model CNN-Fed: Drebin Dataset: Accuracy slightly decreases 

as the number of clients increases (from 0.9845 with five clients to 0.9770 with fifteen clients in ten rounds). 

Malgenome Dataset: Accuracy decreases with more clients (0.9907 with five clients to 0.9892 with fifteen clients 

in ten rounds). Kronodroid Dataset: Accuracy decreases with more clients (0.9684 with five clients to 0.9628 

with fifteen clients in ten rounds). Tuandromd Dataset: Accuracy decreases with more clients (0.9837 with five 

clients to 0.9778 with fifteen clients in ten rounds). DW-FedAvg: Drebin Dataset: Accuracy slightly decreases as 

the number of clients increases (from 0.9828 with five clients to 0.9734 with fifteen clients in ten rounds). 

Malgenome Dataset: Accuracy also shows a decrease with more clients (0.9943 with five clients to 0.9875 with 

fifteen clients in ten rounds). Kronodroid Dataset: Accuracy decreases with more clients (0.9597 with five clients 

to 0.9479 with fifteen clients in ten rounds). Tuandromd Dataset: Accuracy decreases with more clients (0.9861 

with five clients to 0.9781 with fifteen clients in ten rounds).  
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Figure 2: Performance comparison between CNN-Fed and DW-Fed for 10 Round 

 
Figure 3: Performance comparison between CNN-Fed and DW-Fed for 20 Round 
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Figure 4: Accuracy comparison between CNN-Fed and DW-Fed 

 

Impact of the number of rounds with every model CNN-Fed: Drebin Dataset: Accuracy increases with 

more rounds (from 0.9845 in 10 rounds to 0.9850 in 20 rounds with five clients). Malgenome Dataset: 

Accuracy increases with more rounds (from 0.9907 in 10 rounds to 0.9923 in 20 rounds with five clients). 

Kronodroid Dataset: Accuracy increases with more rounds (from 0.9684 in 10 rounds to 0.9713 in 20 rounds 

with five clients). DW-FedAvg: Drebin Dataset: Accuracy increases with more rounds (from 0.9828 in 10 

rounds to 0.9841 in 20 rounds with five clients). Malgenome Dataset: Accuracy increases with more rounds 

(from 0.9943 in 10 rounds to 0.9923 in 20 rounds with five clients). Kronodroid Dataset: Accuracy increases 

with more rounds (from 0.9597 in 10 rounds to 0.9662 in 20 rounds with five clients). Tuandromd Dataset: 

Accuracy increases with more rounds (from 0.9861 in 10 rounds to 0.9871 in 20 rounds with five clients). 

Then we evaluate the number of clients and rounds using the IVN-Entropy-CoCoSo method. The 

Entropy method is used to compute the criteria weights. Then we rank the alternatives using the CoCoSo 

method. The criteria of this study are accurate, precision, recall, f1-score, and false positive rate. The 

alternatives are shown the number of client and number of rounds. 

In the first dataset 

 Results of IVN-Entropy 

We show the results of the Entropy method. We applied the Entropy and CoCoSo methods into four datasets 

to show the criteria weights and ranking the alternatives.  

Three experts are created the decision matrix using the IVNNs as shown in Table 2. Then we apply the score 

function to obtain the crisp values. Then we combine the decision matrix into a single matrix.  

Eq. (9) is used to normalize the decision matrix as shown in Table 3.  

Then we determine the entropy using Eqs. (10 and 11). 

Then we compute the criteria weights using Eq. (12).  

Table 2. Decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) 

IVNA2 ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) 

IVNA3 ([0.5,0.6],[0.5,0.6],[0.4,0.5]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) 
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IVNA4 ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) 

IVNA5 ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.4,0.5],[0.3,0.4]) 

IVNA6 ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.6,0.7],[0.4,0.5],[0.3,0.4]) 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) 

IVNA2 ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) 

IVNA3 ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) 

IVNA4 ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) 

IVNA5 ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.6],[0.5,0.6],[0.4,0.5]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) 

IVNA6 ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) 

IVNA2 ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) 

IVNA3 ([0.1,0.2],[0.1,0.2],[0.8,0.9]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) 

IVNA4 ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) ([0.2,0.3],[0.3,0.4],[0.7,0.8]) 

IVNA5 ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.6,0.7],[0.4,0.5],[0.3,0.4]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) 

IVNA6 ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.5,0.5],[0.6,0.7],[0.4,0.5]) ([0.3,0.4],[0.4,0.5],[0.6,0.7]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) ([0.4,0.5],[0.5,0.6],[0.5,0.6]) 

Table 3. Normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.150402 0.153207 0.183711 0.185383 0.192135 

IVNA2 0.205511 0.160333 0.132272 0.153298 0.168539 

IVNA3 0.144661 0.157957 0.183711 0.185383 0.182022 

IVNA4 0.176808 0.13658 0.169014 0.170529 0.093258 

IVNA5 0.174512 0.183492 0.18861 0.160428 0.179213 

IVNA6 0.148106 0.208432 0.142682 0.144979 0.184831 

Results of IVN-CoCoSo Method 

We state with the combined decision matrix. Then we normalize the decision matrix using Eqs. (13 and 14) as 

shown in Table 4.  

Then we determine the power weight of decision matrix and total weighted decision matrix suing Eq. (15 and 

16) as shown in Tables 5 and 6. 

Then we compute the relative weights using Eqs. (17-19) 

Then we rank the alternatives based on Eq. (20).  

Table 4. Normalized decision matrix by CoCoSo. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0 0.326087 0.875 1 0.935065 

IVNA2 1 0 0 0.4375 0.688312 

IVNA3 0.796407 0 0.875 1 0.935065 

IVNA4 0.700599 0.021739 0.4375 0.739583 0 

IVNA5 0.676647 0 1 0.71875 0.939394 

IVNA6 0.401198 1 0.322917 0 1 

Table 5. weighed normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0 0.057468 0.142019 0.07846 0.404042 

IVNA2 0.150895 0 0 0.034326 0.297419 

IVNA3 0.120174 0 0.142019 0.07846 0.404042 
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IVNA4 0.105717 0.003831 0.07101 0.058028 0 

IVNA5 0.102103 0 0.162308 0.056393 0.405912 

IVNA6 0.060539 0.176237 0.052412 0 0.4321 

Table 6. Power weighted normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.000 0.820789 0.97856 1 0.971406 

IVNA2 1 0 0 0.937197 0.850956 

IVNA3 0.966233 0 0.97856 1 0.971406 

IVNA4 0.947724 0.509286 0.874436 0.976609 0 

IVNA5 0.942763 0 1 0.974422 0.973347 

IVNA6 0.871262 1 0.83238 0 1 

 

In the second dataset 

 

Table 7 shows the normalization decision matrix.  

Then we determine the entropy using Eqs. (10 and 11). 

Then we compute the criteria weights using Eq. (12).  

Table 7. Normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.175758 0.148276 0.185529 0.191882 0.192135 

IVNA2 0.202424 0.185632 0.150897 0.158672 0.168539 

IVNA3 0.117576 0.183333 0.197279 0.186962 0.182022 

IVNA4 0.198182 0.144828 0.166976 0.190652 0.093258 

IVNA5 0.149697 0.136207 0.155226 0.121771 0.179213 

IVNA6 0.156364 0.201724 0.144094 0.150062 0.184831 

Then we normalize the decision matrix using Eqs. (13 and 14) as shown in Table 8 by the CoCoSo method.  

Then we determine the power weight of decision matrix and total weighted decision matrix suing Eq. (15 and 

16) as shown in Tables 9 and 10. 

Then we compute the relative weights using Eqs. (17-19) 

Then we rank the alternatives based on Eq. (20).  

Table 8. Normalized decision matrix by CoCoSo. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.398496 0.557143 0.842975 0.791667 0.935065 

IVNA2 0.87218 0.847619 0.380165 0.541667 0.688312 

IVNA3 0 0.938095 1 0.736111 0.935065 

IVNA4 1 0.342857 0.719008 1 0 

IVNA5 0.398496 0 0 0 0.939394 

IVNA6 0.481203 1 0.404959 0.347222 1 

Table 9. weighed normalized decision matrix. 
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 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.092222 0.087616 0.079111 0.142454 0.315609 

IVNA2 0.201844 0.133296 0.035678 0.097468 0.232323 

IVNA3 0 0.147525 0.093848 0.132457 0.315609 

IVNA4 0.231425 0.053918 0.067477 0.179942 0 

IVNA5 0.092222 0 0 0 0.31707 

IVNA6 0.111362 0.15726 0.038004 0.06248 0.337526 

Table 10. Power weighted normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.808 0.912117 0.984097 0.958834 0.977594 

IVNA2 0.968846 0.974336 0.913233 0.895545 0.881553 

IVNA3 0 0.990001 1 0.946363 0.977594 

IVNA4 1 0.845069 0.969516 1 0 

IVNA5 0.808217 0 0 0 0.979119 

IVNA6 0.844273 1 0.918663 0.826677 1 

In the third dataset 

Table 11 shows the normalization decision matrix.  

Then we determine the entropy using Eqs. (10 and 11). 

Then we compute the criteria weights using Eq. (12).  

Table 11. Normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.154572 0.14527 0.183711 0.187952 0.165637 

IVNA2 0.211209 0.152027 0.132272 0.146988 0.152723 

IVNA3 0.129204 0.163851 0.183711 0.166265 0.152723 

IVNA4 0.171091 0.14527 0.169014 0.155422 0.147108 

IVNA5 0.171091 0.195946 0.18861 0.177108 0.19708 

IVNA6 0.162832 0.197635 0.142682 0.166265 0.184728 

 

Then we normalize the decision matrix using Eqs. (13 and 14) as shown in Table 12 by the CoCoSo method.  

Then we determine the power weight of decision matrix and total weighted decision matrix suing Eq. (15 and 

16) as shown in Tables 13 and 14. 

Then we compute the relative weights using Eqs. (17-19) 

Then we rank the alternatives based on Eq. (20).  

Table 12. Normalized decision matrix by CoCoSo. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0 0.176991 0.875 1 0.693333 

IVNA2 1 0 0 0 0.186667 

IVNA3 0.540323 0.469027 0.875 0.512195 0 
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IVNA4 0.798387 0.176991 0.4375 0.512195 0.426667 

IVNA5 0.798387 0.628319 1 0.780488 1 

IVNA6 0.685484 1 0.322917 0.219512 1 

Table 13. weighed normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0 0.041333 0.204779 0.086499 0.110918 

IVNA2 0.285961 0 0 0 0.029862 

IVNA3 0.154511 0.109531 0.204779 0.044304 0 

IVNA4 0.228308 0.041333 0.10239 0.044304 0.068257 

IVNA5 0.228308 0.146731 0.234033 0.067511 0.159977 

IVNA6 0.196022 0.233529 0.075573 0.018988 0.159977 

Table 14. Power weighted normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.000 0.667382 0.969232 1 0.943093 

IVNA2 1 0 0 0 0.764517 

IVNA3 0.838589 0.837944 0.969232 0.943771 0 

IVNA4 0.937642 0.667382 0.824094 0.943771 0.872615 

IVNA5 0.937642 0.897158 1 0.978791 1 

IVNA6 0.897639 1 0.767557 0.877076 1 

In the fourth dataset 

Table 15 shows the normalization decision matrix.  

Then we determine the entropy using Eqs. (10 and 11). 

Then we compute the criteria weights using Eq. (12).  

Table 15. Normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.180193 0.175749 0.225225 0.219873 0.239161 

IVNA2 0.229023 0.134877 0.162162 0.154334 0.20979 

IVNA3 0.114168 0.132153 0.145646 0.179704 0.125874 

IVNA4 0.136176 0.156676 0.148649 0.134602 0.116084 

IVNA5 0.189821 0.161444 0.183183 0.139535 0.173427 

IVNA6 0.150619 0.239101 0.135135 0.171952 0.135664 

Then we normalize the decision matrix using Eqs. (13 and 14) as shown in Table 16 by the CoCoSo method.  

Then we determine the power weight of decision matrix and total weighted decision matrix suing Eq. (15 and 

16) as shown in Tables 17 and 18. 

Then we compute the relative weights using Eqs. (17-19) 

Then we rank the alternatives based on Eq. (20).  

Table 16. Normalized decision matrix by CoCoSo. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 
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IVNA1 0.260417 0.557143 1 1 1 

IVNA2 1 0 0.314465 0.363014 0.736111 

IVNA3 0.130208 0 0 0.219178 0 

IVNA4 0 0.357143 0.157233 0 0 

IVNA5 0.557292 0 0.314465 0 0.347222 

IVNA6 0.203125 1 0.333333 0.171233 0 

Table 17. weighed normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.058674 0.105871 0.138234 0.126807 0.319626 

IVNA2 0.225308 0 0.04347 0.046033 0.23528 

IVNA3 0.029337 0 0 0.027793 0 

IVNA4 0 0.067866 0.021735 0 0 

IVNA5 0.125562 0 0.04347 0 0.110981 

IVNA6 0.045766 0.190025 0.046078 0.021714 0 

Table 18. Power weighted normalized decision matrix. 

 IVNC1 IVNC2 IVNC3 IVNC4 IVNC5 

IVNA1 0.738 0.894803 1 1 1 

IVNA2 1 0 0.852212 0.879418 0.906717 

IVNA3 0.631715 0 0 0.824914 0 

IVNA4 0 0.822297 0.774346 0 0 

IVNA5 0.876578 0 0.852212 0 0.713126 

IVNA6 0.698286 1 0.859104 0.799491 0 

 

Then we compute the criteria in each dataset as shown in Fig 5. Then we ranked the alternatives as shown in 

Fig 6. We show the large number of clients and large number of rounds are the best alternative in each dataset. 

 
Fig 5. Criteria weights of four datasets. 
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Fig 6. Rank the alternatives of four datasets. 

4. Conclusions 

In this study, we introduced CNN-Fed, a novel federated learning framework based on CNN, for mobile 

malware detection. The primary objective was to improve the accuracy of the global classifier while preserving 

data privacy through decentralized model training. By leveraging a dynamic weighted aggregation mechanism, 

CNN-Fed improves the contribution of high-performing local models to the global model, resulting in superior 

classification performance. Using four datasets for Android malware classification: Malgenome, Drebin, 

Kronodroid, and Tuandromd We evaluated CNN-Fed and compared the results with the Dw-FedAvg 

technique across all datasets. These findings prove that CNN-Fed is a promising approach for enhancing the 

accuracy of federated learning models in malware detection applications, making it a valuable tool for 

cybersecurity. We used the interval valued neutrosophic set (IVNSs) methodology to evaluate the number of 

clients and number of rounds. We used five criteria such as accuracy, precision, recall, f1-score, and false 

positive rate. Then we used two MCDM methods such as Entropy to compute the criteria weights and the 

CoCoSo method to rank the alternatives. IVNSs are uses to deal with indeterminacy. We applied these methods 

into four datasets. The results show the larger clients and rounds are the best alternatives. 
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