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—————————————————————————————————————————-

1. Introduction

To reveal the inherent algebraic structures and characteristics within ring, the zero divisor

graph proves as a valuable instrument. Beck introduced the concept of zero divisor graph for

a commutative ring R and constructing graph for it containing vertex set and edge set [1].

Selvi et al., discussed cyclic path that covers in zero divisor graphs through theorems [2]. Kup-

pan et al., discussed the zero divisor concept in a commutative ring in the field of fuzzy [3].

We extent, the zero divisor graph concept in the field of neutrosophic graph by using the

following references. Smarandache presented the logic of neutrosophic sets for the basic un-

derstanding [4]. Jun et al., presented the algebraic structures which includes neutrosophic zero
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divisors with examples [5]. Smarandache et al., presented a editorial volume contains alge-

braic structures like, ring, commutative ring, modules with their application [6]. Kandasamy

et al., gave the basics definitions and terminologies for fuzzy and neutrosophic graphs in un-

certainty through modelling graph structures [7]. Vasantha Kandasamy et al., gave a new

dimension to graph theory as a neutrosophic graph theory through basic definition of neu-

trosophic graph with examples [8]. Vasantha Kandasamy et al., presented a book containing

the basic concepts of neutrosophic ring with example and theorem [9]. Rozina ali presented

a review related on the study of neutrosophic groups and their generalizations [10]. Ali et

al., discussed the fuzzy zero divisor graph in multiset dimension associated with commutative

ring [11]. Panda et al., gave the overview of neutrosophic sets in graph theory to understand-

ing the concept of neutrosophic set logic [12]. [13] refers tothe structure and properties of L

A −Γ− semigroups and its generalization by incorporating Γ− semigroup theory. the models

established algebraic operations and homomorphism properties implementing computational

applications. [14] resolves the starphene structure and graphene structure through resolvabil-

ity theory, the mathemaical models and its applications in electronics were discussed. [16]

introduced neutrosophic zero divisor rings by incorporating neutrosophic logic with rign by

addressing uncertainty in algebraic structures, the basic definitions and properties were dis-

cussed with neutrosophic mathematics. [15] represents the hyper ring framework by extending

the zero divisor by addressing new structural properties. The results are given for general

classical non-commutative and hyperstructures. [17] discussed the automorphism of connec-

tivity, diameter and domination properties in algebraic graph theory by zero divisor graph of a

ring. [18] re-evaluated the neutrosophic graphs includes zero divisor graph, layered graphs and

weak graphs with its application in artificial intelliegence, decision making, chemistry. These

concepts and ideas motivated to extend the neutrosophic zero divisor graph for decomposition

of zero divisor graph into cycle, star and bipartite for specifically prime powers. So, initially

the article discuses for prime numbers 2, 3, 5, 7. Also, the evaluation of its examples were

taken into MATLAB to visualize the graph of it to apply future scope. In this article, we

introduce the concept of neutrosophic zero divisor graph for decomposing into neutrosophic

cycles and complete neutrosophic bipartite graph through theorem with examples.

1.1. Preliminaries

The following definitions [1.1 – 1.7] we refer[ [4], [9], [10], [12]] are used to formulate the

theorems in section 3.

Definition 1.1. A graph G (V ,E ,T ,I ,F ) is said to be a neutrosophic graph if:

(1) T : V → [0, 1], I : V → [0, 1], and F : V → [0, 1] such that 0 ≤ Tv + Iv + Fv ≤
3 ∀v ∈ V .
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(2) For any edge e = (u, v) ∈ E , T : E → [0, 1], I : E → [0, 1], and F : E → [0, 1] such

that 0 ≤ Te + Ie + Fe ≤ 3.

Definition 1.2. Let R be any ring. Then, ⟨R ∪ I ⟩ is a neutrosophic ring generated by R

and I under the operations of R.

Example 1.1: Consider R as the ring of real numbers. Then, ⟨R ∪I ⟩ is the neutrosophic
ring of real numbers.

Definition 1.3. Consider ⟨R ∪I ⟩ as a neutrosophic ring. If ∀x, y ∈ ⟨R ∪I ⟩, xy = yx, then

⟨R ∪ I ⟩ is a commutative neutrosophic ring.

If xy ̸= yx, then ⟨R ∪ I ⟩ is a non-commutative neutrosophic ring.

Definition 1.4. Consider ⟨R ∪ I ⟩ as a neutrosophic ring. An element x ∈ ⟨R ∪ I ⟩, where
x = c+dI and c ̸= d or −d, is said to be a neutrosophic zero divisor if there exists y = a+bI

with a ̸= b or −b, such that xy = yx = 0.

We associate G (R), a simple graph to the ring R, with vertices Ẑ(R)∗ = Ẑ(R) \ {0}, the
set of all non-zero zero divisors of R. For distinct u, v ∈ Ẑ(R)∗, vertices u and v are adjacent

if and only if uv = 0. G (R) is an empty graph if and only if R is an integral domain.

The following figure 1 represents the neutrosophic zero divisor graph associated with truth,

indeterminacy and falsity mambership values on it.

A

B

C

D

Zero

(0.5, 0.4, 0.1)

(0.3, 0
.6, 0.1

)

(0.2, 0.7, 0.1)

(0, 0.9, 0.1)

Figure 1. Neutrosophic zero divisor graph

By the theorem [10], let ⟨R ∪I ⟩ be a neutrosophic ring. Then, ⟨R ∪I ⟩ is a ring. We use

R as the ring of reals in the following theorems.

Definition 1.5. Let the neutrosophic graph G be partitioned into a set of neutrosophic sub-

graphs {G 1,G 2,G 3, . . . ,G k} such that:

(1) Each G i = (Vi,Ei,Ti,Ii,Fi) satisfies the bipartite or cycle conditions.

(2) The union of the G i covers the entire neutrosophic graph, i.e., G =
⋃k

i=1 G i, where

E =
⋃k

i=1 Ei and Ei ∩ Ej = ∅ ∀ i ̸= j.
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Definition 1.6. Let G (V ,E ) be a neutrosophic graph with vertex set V and edge set E . A

neutrosophic cycle in G is defined as a closed circuit in the neutrosophic graph if it satisfies

the following:

(1) Let v1, v2, . . . , vn, v1 form a circuit where vi ∈ V for 1 ≤ i ≤ n.

(2) (vi, vi+1) ∈ E for 1 ≤ i ≤ n− 1 and (vn, v1) ∈ E .

(3) For each edge e = (u, v) in the cycle, the neutrosophic values of the edge are

(Te,Ie,Fe).

(4) Except for the initial vertex at the starting and ending points, no vertex is repeated

in the cycle.

The cycle is represented as:

C = v1 −→ v2 −→ . . . −→ vn −→ v1

Consider C as a cycle with edges e1, e2, . . . , en. Then, the cycle is represented as:

C = {(e1,Te1 ,Ie1 ,Fe1), (e2,Te2 ,Ie2 ,Fe2), . . . , (en,Ten ,Ien ,Fen)}.

The characteristics of truth, indeterminacy, and falsity of the cycle C are given by:

TC = min{Te1 ,Te2 , . . . ,Ten},

IC = min{Ie1 ,Ie2 , . . . ,Ien},

FC = min{Fe1 ,Fe2 , . . . ,Fen}.

Example 1.2: The following figure 2 is an neutrosophic cycle, edges associated with truth,

indeterminacy and falsity values.

AB

C

(0.8, 0.1, 0.1)

(0
.7
,
0.
2,

0.
1)

(0.6,
0.3,

0.1)

Figure 2. Neutrosophic cycle of neutrosophic zero divisor graph

Definition 1.7. The neutrosophic bipartite graph G (U ,V ,E ,T ,I ,F ) is defined as follows:

(1) U ∩ V = ∅ for two disjoint vertex sets U and V .

(2) E = {e ∈ E | e = (u, v) where u ∈ U , v ∈ V }.
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(3) (T ,I ,F ) ∈ [0, 1], where T , I , and F represent the truth, indeterminacy, and falsity

degree associated with each edge in E .

A neutrosophic bipartite graph G (U ,V ,E ,T ,I ,F ) is complete if for every pair (u, v) where

u ∈ U and v ∈ V , there exists an edge e = (u, v) ∈ E . Therefore, the total number of edges

is |U | = m and |V | = n, and is denoted by Km,n(T ,I ,F ).

Example 1.3: The figure 3 neutrosophic graph is an example of a complete neutrosophic

bipartite graph with U = 4 distinct vertices and V = 4 distinct vertices. The e = (T ,I ,F )

values of each edge are given as a label for each edge.

1

2

3

4

5

6

7

8

e1

e2

e3e4
e5

e6
e7

e8

e9

e10

e11
e12

e13

e14

e15

e16

Figure 3. A complete neutrosophic bipartite graph

e1: (0.5, 0.4, 0.6) e2: (0.7, 0.2, 0.5) e3: (0.3, 0.2, 0.3)

e4: (0.4, 0.4, 0.4) e5: (0.8, 0.4, 0.3) e6: (0.2, 0.2, 0.4)

e7: (0.8, 0.5, 0.1) e8: (0.5, 0.3, 0.6) e9: (0.4, 0.2, 0.8)

e10: (0.1, 0.3, 0.3) e11: (0.3, 0.3, 0.2) e12: (0.7, 0.2, 0.8)

e13: (0.5, 0.2, 0.7) e14: (0.6, 0.4, 0.2) e15: (0.7, 0.5, 0.1)

e16: (0.8, 0.3, 0.3)

Theorem 1.8. [2] For any distinct prime numbers p and q, Γ(Ẑpq) can be decomposed into

(q − 1)Cp−1, where q > p.

2. Neutrosophic zero-divisor graphs

The following theorems (2.1 – 2.4) discusses special cases of Γ(Ẑn) where n is a prime

number, such as Γ(Ẑ22p2), Γ(Ẑ32p2), Γ(Ẑ52p2), and Γ(Ẑp2q2).

Theorem 2.1. Let p be a prime number greater than 2. The neutrosophic zero divisor graph

K1,2(p−1) is decomposed into:
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(1) a copy of K1,2(p−1) neutrosophic star graph,

(2) a copy of K2(p−1) complete neutrosophic graph, and

(3) p(p− 1) copies of neutrosophic cycle C4.

Proof. Consider p, p > 2 be any prime number, and Γ(Ẑ(22p2)) be a neutrosophic zero-divisor

graph. Its vertex set and edge set are defined as follows:

The vertex set V(T ,I ,F ) is given by:

V(T ,I ,F ) = {(vi,Ti,Ii,Fi) | vi ∈ V ,Ti,Ii,Fi ∈ [0, 1], and 0 ≤ Ti + Ii + Fi ≤ 3}

Similarly, the edge set E(T ,I ,F ) is defined as:

E(T ,I ,F ) = {(ek,Tk,Ik,Fk) | ek ∈ E ,Tk,Ik,Fk ∈ [0, 1], and 0 ≤ Tk + Ik + Fk ≤ 3}

of Γ(Ẑ(22p2)), where T ,I ,F are truth, indeterminacy, and falsity membership values of the

vertex and edge sets of Ẑ(22p2). The vertex set V(T ,I ,F ) ∈ (Γ(Ẑ(22p2))) is given by:

V(T ,I ,F )(Γ(Ẑ(22p2))) = {2, 4, . . . , 22p2 − 2, p, 2p, 3p, . . . , 22p2 − p}

Case (i): Let V1(T ,I ,F ),V2(T ,I ,F ),V3(T ,I ,F ) ∈ V(T ,I ,F ) where

V1(T ,I ,F ) = {2p2},

V2(T ,I ,F ) = {4, 8, 12, . . . , 4p(p− 1)},

V3(T ,I ,F ) = {2, 6, 10, . . . , 2(2p2 − 1)} \ V2(T ,I ,F ).

So,

|V1(T ,I ,F )| = 1, |V2(T ,I ,F )| = p(p− 1), |V3(T ,I ,F )| = p(p− 1).

The vertex set V1(T ,I ,F ) is the middle of a neutrosophic star graph, and v1 ∈ V1(T ,I ,F ) is

adjacent to all vertices of vertex sets V1(T ,I ,F ) and V2(T ,I ,F ). It clearly states that there

exist two neutrosophic star graphs such as K(1,p(p−1)) and K(2p(p−1)), respectively. Hence,

K(1,2p(p−1)) with 2(p− 1) edges.

Case (ii): Let V4(T ,I ,F ) ⊂ V(T ,I ,F ) ∈ Γ̄(Ẑ22p2) be a subset, and

V4(T ,I ,F ) = {2p, 4p, 6p, . . . , 2p(2p− 1)}.

If for any vertices u and v, where u, v ∈ V4(T ,I ,F ), u is adjacent to v, then there exists

e ∈ ET ,I ,F , an edge between u and v.

Thus, it is clear that the vertex set V4(T ,I ,F ) forms a complete neutrosophic graph K2p−1

with 2(p− 1) vertices.

Case (iii): The neutrosophic zero-divisor graph Γ̄(Ẑ22p2) decomposes into three types of

complete neutrosophic bipartite graphs:

K2(p−1),(p−1), K2(p−1), and K2,p(p−1).
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By Theorem 2.1, these three complete neutrosophic bipartite graphs are covered in p(p − 1)

copies of C4. Hence, the theorem.

Example: Let p = 5 > 2, then the following Figure 4 is the decompositions of Γ̄(Ẑ2252)

into a neutrosophic star graph with 8 vertices, a complete graph with 8 vertices and 48 edges

and 20 copies of neutrosophic cycle.

(a) (b)

(b)

Figure 4. a) A neutrosophic star graph b) complete neutrosophic graph c)

neutrosophic cycle

Theorem 2.2. If p, p > 3, is any prime number, then Γ̄(Ẑ32p2) is decomposed into:

(1) 1-copy of a complete neutrosophic graph K3p−1:

This graph has 3p− 1 vertices associated with T ,I ,F and

(3p− 1)(3p− 2)

2

edges described by (Tij ,Iij ,Fij).

(2) 9p(p−1)
2 -copies of C4, the neutrosophic cycle:

Each cycle has the degree of truth membership defined as:

TC4
= min

{
Te1 ,Te2 ,Te3 ,Te4

}
,

where ek ∈ E(T ,I ,F ), k = 1, 2, 3, 4.

Then,

E(T ,I ,F ) =
∑

e∈E(T ,I ,F)

Te =
9p(p− 1)

2
.

Proof. Let p be any prime number and p > 3. Let Γ̄(Ẑ32p2) be a non-zero neutrosophic

zero-divisor graph. The vertex set of Γ̄(Ẑ32p2) is defined as:

V(T ,I ,F ) =
{
3, 6, 9, . . . , 3(3p2 − 1), p, 2p, 3p, . . . , p(9p− 1)

}
.
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Case (i): Let V1(T ,I ,F ) ⊂ V(T ,I ,F ), where

V1(T ,I ,F ) =
{
3p, 6p, 9p, . . . , 3p(3p− 1)

}
.

Therefore, the cardinality of V1(T ,I ,F ) is 3p− 1. The total number of edges in K3p−1 is:(
3p− 1

2

)
=

(3p− 1)(3p− 2)

2
,

and each edge contributes to the degree of the truth function Tij . The total contribution is

given by:

EK3p−1(T ,I ,F ) =
∑

(i,j)∈K3p−1

Tij .

If any two vertices v1, v2 ∈ V1(T ,I ,F ) are adjacent, then the vertex set V1(T ,I ,F ) forms a

complete neutrosophic graph K3p−1 with 3p− 1 vertices.

Case (ii): Let V2(T ,I ,F ),V3(T ,I ,F ),V4(T ,I ,F ),V5(T ,I ,F ),V6(T ,I ,F ),V7(T ,I ,F ) ⊂
V(T ,I ,F )

(
Γ̄(Ẑ32p2)

)
be vertex subsets, where:

V2(T ,I ,F ) = V2(T ,I ,F ) \ V1(T ,I ,F ) =
{
p, 2p, 3p, . . . , 8p

}
,

∣∣V2(T ,I ,F )

∣∣ = 6(p− 1),

V3(T ,I ,F ) =
{
9p, 18p, 27p, . . . , 9p(p− 1)

}
,

∣∣V3(T ,I ,F )

∣∣ = (p− 1),

V4(T ,I ,F ) =
{
p2, 2p2, 3p2, . . . , 8p2

}
,

∣∣V4(T ,I ,F )

∣∣ = 6,

V5(T ,I ,F ) =
{
9, 18, 27, . . . , 9(p2 − 1)

}
,

∣∣V5(T ,I ,F )

∣∣ = p(p− 1),

V6(T ,I ,F ) = V6(T ,I ,F ) \ V5(T ,I ,F ) =
{
3, 6, 9, . . . , 3(3p2 − 1)

}
,

∣∣V6(T ,I ,F )

∣∣ = 2p(p− 1),

V7(T ,I ,F ) =
{
3p2, 6p2

}
,

∣∣V7(T ,I ,F )

∣∣ = 2.

If

(V2(T ,I ,F ),V3(T ,I ,F )), (V3(T ,I ,F ),V4(T ,I ,F )), (V4(T ,I ,F ),V5(T ,I ,F )),

(V5(T ,I ,F ),V7(T ,I ,F )) and (V7(T ,I ,F ),V6(T ,I ,F ))

are pairs of adjacent vertex sets, then there exist the following complete neutrosophic bipartite

graphs in Γ̄(Ẑ32p2):

K6(p−1),(p−1)(T ,I ,F ), K(p−1),6(T ,I ,F ), K6,p(p−1)(T ,I ,F ), Kp(p−1),2(T ,I ,F ), and

K2,2p(p−1)(T ,I ,F ).
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The complete neutrosophic bipartite graphs in Γ̄(Ẑ32p2) are given as follows:

K(6(p−1),(p−1))(T ,I ,F ) =
6(p− 1)(p− 1)

4
, K(p−1),6(T ,I ,F ) =

6(p− 1)

4
, K(6,p(p−1))(T ,I ,F ) =

6p(p− 1)

4
,

K(p(p−1),2)(T ,I ,F ) =
2p(p− 1)

4
, K(2,2p(p−1))(T ,I ,F ) =

4p(p− 1)

4
.

Each of these bipartite graphs is a copy of the complete neutrosophic cycle C4 in Γ̄(Ẑ32p2).

The sum of the complete neutrosophic bipartite graphs is given by:

K6(p−1),(p−1) +K(p−1),6 +K6,p(p−1) +Kp(p−1),2 +K2,2p(p−1)

=
6(p− 1)(p− 1)

4
+

6(p− 1)

4
+

6p(p− 1)

4
+

2p(p− 1)

4
+

4p(p− 1)

4
=

9p(p− 1)

2
.

The values of the edges of the cycle C4 are (T,J,F). The truth values are defined by:

TC4
= min {T (e1),T (e2),T (e3),T (e4)} , ek ∈ E(T ,J ,F )(Γ(Ẑ(32p2))), k = 1, 2, 3, 4.

The total sum of the truth values is:

E(T ,J ,F ) =
∑

e∈E(T ,J ,F)

Te

By Theorem 2.1, since C4 has 9p(p−1)
2 copies of complete neutrosophic bipartite graphs, we

have:

E(T ,J ,F ) =
9p(p− 1)

2
.

Example: Let p = 5 > 3. Then, the following figure 5 neutrosophic graph occurs for the

decomposition of Γ̄(Ẑ3252):

K3p−1 = K14,

with 91 edges and 90 copies of C̄4.

(a) (b)

Figure 5. a) A neutrosophic complete graph K14 b) neutrosophic cycle
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Theorem 2.3. If p > 5 is any prime number, then the complement of the neutrosophic graph

Γ̄(Ẑ52p2) is decomposed into:

(1) 1-copy of the complete neutrosophic graph K̄5p−1 with 5p − 1 vertices associated with

(T ,J ,F ), and

(2) 15p(p− 1)-copies of the neutrosophic cycle C̄4.

Proof. Let p be any prime number and p > 5. Let Γ̄(Ẑ52p2) be a non-zero neutrosophic zero

divisor graph with vertex set defined as:

V(T ,I ,F ) = {5, 10, 15, . . . , 5(5p2 − 1); p, 2p, 3p, . . . , p(25p− 1)} ∈ Γ̄(Ẑ52p2),

where for every v ∈ V(T ,I ,F ), (T ,I ,F ) ∈ [0, 1].

Case (i): Let V1(T ,I ,F ) ⊂ V(T ,I ,F ), where: V1(T ,I ,F ) = {5p, 10p, 15p, . . . , 5p(5p − 1)}.
Therefore, the cardinality of V1(T ,I ,F ) is: |V1(T ,I ,F )| = 5p− 1. If v1 · v2 ≡ 0 (mod 52p2), then

v1 is adjacent to v2 in Γ̄(Ẑ52p2), and this forms a complete neutrosophic graph K̄5p−1.

Case (ii): Let V2(T ,I ,F ),V3(T ,I ,F ),V4(T ,I ,F ),V5(T ,I ,F ),V6(T ,I ,F ),V7(T ,I ,F ) ⊂
V(T ,I ,F ) ∈ (Γ̄(Ẑ32p2)), where the cardinalities are defined as:

V2(T ,J ,F ) = {p, 2p, 3p, . . . , 24p}, |V2(T ,J ,F )| = 20(p− 1),

V3(T ,I ,F ) = {25p, 50p, 75p, . . . , 25p(p− 1)}, |V3(T ,I ,F )| = (p− 1),

V4(T ,I ,F ) = {p2, 2p2, 3p2, . . . , 24p2}, |V4(T ,I ,F )| = 20,

V5(T ,I ,F ) = {25, 50, 75, . . . , 25(p2 − 1)}, |V5(T ,I ,F )| = p(p− 1),

V6(T ,I ,F ) = {5, 10, 15, . . . , 5(5p2 − 1)} \ V5(T ,I ,F ), |V6(T ,I ,F )| = 4p(p− 1),

V7(T ,I ,F ) = {5p2, 10p2, 15p2, 20p2}, |V7(T ,I ,F )| = 4.

If the pairs (V2(T ,J ,F ),V3(T ,J ,F )), (V3(T ,J ,F ),V4(T ,J ,F )),

(V4(T ,J ,F ),V5(T ,J ,F )), (V5(T ,J ,F ),V7(T ,J ,F )), and (V7(T ,J ,F ),V6(T ,J ,F )) are pairs of ad-

jacent vertex subsets, then there exist the following complete neutrosophic bipartite graphs:

K̄20(p−1),(p−1), K̄(p−1),20, K̄20,p(p−1), K̄p(p−1),4, K̄4,4p(p−1). By Theorem 2.1, each K̄Ẑ52p2
con-

tains cycles C̄4. The total number of such cycles is:

20(p− 1)(p− 1)

4
+

20(p− 1)

4
+

20p(p− 1)

4
+

4p(p− 1)

4
+

16p(p− 1)

4
= 15p(p−1) copies of C̄4.

Example: Taking p = 7 > 5, we get the following complete neutrosophic graph in figure 6:

K̄(5p−1) = K̄34, where 5p− 1 = 34 vertices.

The number of edges in a complete graph K̄n is given by:

E =
n(n− 1)

2
.
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Substituting n = 34, we get:

E =
34(34− 1)

2
=

34 · 33
2

= 561.

Thus, K̄34 has 561 edges.

The total number of C̄4 cycles in a complete graph K̄n is given by:

Number of C̄4 =

(
n

4

)
.

Substituting n = 34, we calculate:(
34

4

)
=

34 · 33 · 32 · 31
4 · 3 · 2 · 1

=
34 · 33 · 32 · 31

24
= 46, 376÷ 24 = 630.

Thus, K̄34 forms 630 copies of C̄4.

(a) (b)

Figure 6. a) A neutrosophic complete graph b) Neutrosophic cycle

Theorem 2.4. Let p and q, with p < q, be any distinct prime numbers. Then the neutrosophic

zero divisor graph Γ̄(Ẑp2q2) is decomposed as follows:

(1) A copy of the complete neutrosophic graph K̄pq−1, where pq−1 is the number of vertices.

(2) 3pq(p−1)(q−1)
4 copies of the neutrosophic cycle C̄4.

Proof. Let p and q, with p < q, be distinct prime numbers. The vertex set of the neutrosophic

zero divisor graph Γ̄(Ẑp2q2) is defined as:

V(T ,I ,F ) = {p, 2p, 3p, . . . , p(pq2 − 1); q, 2q, 3q, . . . , q(p2q − 1)},

where each v ∈ V(T ,I ,F ) is associated with neutrosophic components (T ,I ,F ) ∈ [0, 1].

Case (i): Let V1(T ,I ,F ) ⊂ V(T ,I ,F ) be a subset defined as:

V1(T ,I ,F ) = {pq, 2pq, 3pq, . . . , pq(pq − 1)}.

The cardinality of V1(T ,I ,F ) is |V1(T ,I ,F )| = pq−1. If v1, v2 ∈ V(T ,I ,F ), then v1·v2mod p2q2 =

0, hence v1 is adjacent to v2 in Γ̄(Ẑp2q2). Therefore, V1(T ,I ,F ) forms a complete neutrosophic

graph K̄pq−1.
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Case (ii): Let V2(T ,I ,F ),V3(T ,I ,F ),V4(T ,I ,F ),V5(T ,I ,F ) ⊂ V(T ,I ,F ) be the remaining

vertex subsets with their cardinalities defined as follows:

V2(T ,I ,F ) = {p, 2p, 3p, . . . , p(pq − 1)}, |V2(T ,I ,F )| = q(p− 1),

V3(T ,I ,F ) = {q, 2q, 3q, . . . , q(p2 − 1)}, |V3(T ,I ,F )| = p(q − 1),

V4(T ,I ,F ) = {p2, 2p2, 3p2, . . . , p2(q − 1)}, |V4(T ,I ,F )| = q − 1,

V5(T ,I ,F ) = {q2, 2q2, 3q2, . . . , q2(p− 1)}, |V5(T ,I ,F )| = p− 1.

The subsets V2(T ,I ,F ) and V3(T ,I ,F ), V3(T ,I ,F ) and V4(T ,I ,F ), and V4(T ,I ,F ) and

V5(T ,I ,F ) are pairwise adjacent and form complete neutrosophic bipartite graphs as fol-

lows: K̄q(p−1),p(q−1), K̄p(q−1),(q−1), K̄(q−1),(p−1). The edge weights are associated with

(T ,J ,F ) = (1, 0, 0).

By Theorem 2.1, the number of neutrosophic cycles C̄4 contributed by each bipartite graph

is given by:

K̄q(p−1),p(q−1) =
q(p− 1) · p(q − 1)

4
,

K̄p(q−1),(q−1) =
p(q − 1) · (q − 1)

4
,

K̄(q−1),(p−1) =
(q − 1) · (p− 1)

4
.

The total number of neutrosophic cycles C̄4 is:

K̄q(p−1),p(q−1) + K̄p(q−1),(q−1) + K̄(q−1),(p−1) =
3pq(p− 1)(q − 1)

4
.

3. Conclusion

In this article, the decomposition of the neutrosophic zero divisor graph Γ̄(Ẑn), where n is

a prime number, into cycles and complete neutrosophic graphs is discussed for special cases.

Specifically, the following graphs are examined:

Γ̄(Ẑ22p2), Γ̄(Ẑ32p2), Γ̄(Ẑ52p2), and Γ̄(Ẑp2q2).

For each case, example graphs are provided, which illustrate the decomposition into complete

neutrosophic graphs and neutrosophic cycles. These example graphs were generated using

MATLAB. These theorems and its examples contribute to a depth understanding of neutro-

sophic graph structures and their decomposition properties, potentially benefiting mathemat-

ical modeling in uncertain and fuzzy environments.

Future study: Generalization to higher-order prime powers by extending these outcomes to
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more complex structures, where n is higher powers of prime numbers or mixed prime com-

positions. The structural properties of the graph structures developed can be explored for

cryptographic key generation and secure communication systems, ehancing visualization tech-

niques for large-scale neutrosophic graphs involving advanced computational tools beyond

MATLAB, such as Python or TensorFlow and implimenting in applied sciences.

Funding: ”This research received no external funding”

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beck, I. Coloring of commutative rings. Journal of Algebra 1988, 116, 208–226.

2. Rajakumaran, V.; Selvi, N. Cyclic path covers in zero divisor graph. International Journal of Mathematical

Archive 2018, 9, 163–167.

3. Kuppan, A.; Sankar, J.R. Fuzzy zero divisor graph in a commutative ring. TWMS Journal of Applied and

Engineering Mathematics 2021, 11, 42–50.

4. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic; American Research Press: Rehoboth,

NM, USA,1999.

5. Jun, Y.B.; Smarandache, F. Neutrosophic rings, modules, and linear algebra. Neutrosophic Sets and Systems

2018, 22, 96–109.

6. Smarandache, F.; Jun, Y.B. Neutrosophic Algebraic Structures and Their Applications; Pons Editions:

Brussels, Belgium,2019.

7. Kandasamy, W.B.V.; Smarandache, F. Fuzzy, Neutrosophic, and Uncertainty Modeling in Mathematics and

Physics; American Research Press: Rehoboth, NM, USA, 2003.

8. Kandasamy, W.B.V.; Ilanthendral, K.; Smarandache, F. Neutrosophic Graphs: A New Dimension to Graph

Theory ; United States of America, 2015; pp. 9–65.

9. Kandasamy, V.; Smarandache, F. Neutrosophic rings. arXiv Mathematics e-prints 2006. Available online:

https://arxiv.org/abs/math/0607765.

10. Ali, R. A review study on neutrosophic groups and their generalizations. HAL Archives 2021. Available

online: https://hal.archives-ouvertes.fr/hal-03232679.

11. Ali, N.; Siddiqui, H.M.A.; Qureshi, M.I.; Abdalla, M.E.M.; Abd El-Gawaad, N.S.; Tolasa, F.T. On study of

multiset dimension in fuzzy zero divisor graphs associated with commutative rings. International Journal

of Computational Intelligence Systems 2024, 17, 1–10.

12. Panda, N.R.; Raut, P.K.; Baral, A.; Sahoo, S.K.; Satapathy, S.S.; Broumi, S. An overview of neutrosophic

graphs. Neutrosophic Sets and Systems 2025, 77, 450–462.

13. Graph, C. R. U. Z. D. LA − Γ− Semigroups. Communications in Mathematics and Applications 2021,

12 (3), 545–557.

14. Ahmad, A.; Koam, A. N.; Siddiqui, M. H. F.; Azeem, M. Resolvability of the starphene structure and

applications in electronics. Ain Shams Engineering Journal 2022, 13 (2), 101587.

15. Hamidi, M. Zero Divisor Graphs Based on General Hyperrings. Journal of Algebraic Hyperstructures and

Logical Algebras 2023, 4 (2), 131–149.

16. Chalapathi, T.; Madhavi, L. A Study on Neutrosophic Zero Rings. Neutrosophic Sets and Systems Book

Series 2019, 30, 191.

17. Patil, A.; Khairnar, A.; Momale, P. S. Zero-divisor graph of a ring with respect to an automorphism. Soft

Computing 2022, 26 (5), 2107–2119.

Balakrishnan A1, Kanchana M2, Said Broumi3,4, Thirugnanasambandam K∗, Decomposition
of Neutrosophic Zero-divisor graph

Neutrosophic Sets and Systems, Vol. 83, 2025                                                                              146

https://arxiv.org/abs/math/0607765
https://hal.archives-ouvertes.fr/hal-03232679


18. Fujita, T.; Smarandache, F. A reconsideration of advanced concepts in neutrosophic graphs: Smart, zero

divisor, layered, weak, semi, and chemical graphs. Infinite Study 2024.

Balakrishnan A1, Kanchana M2, Said Broumi3,4, Thirugnanasambandam K∗, Decomposition
of Neutrosophic Zero-divisor graph

Neutrosophic Sets and Systems, Vol. 83, 2025                                                                              147

Received: Nov. 2, 2024. Accepted: March 31, 2025


	1. Introduction
	1.1. Preliminaries

	2.  Neutrosophic zero-divisor graphs 
	3. Conclusion
	References

