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Abstract. This paper presents a new method for creating a h-rung reciprocal fraction function. We intro-
duce quadripartitioned neutrosophic sets (QNSS). The reciprocal fraction function applied to quadripartitioned
neutrosophic sets are the neutrosophic sets and f-rung neutrosophic sets. This article will examine weighted
geometric, quadripartitioned neutrosophic set weighted averaging, generalized weighted averaging, and gen-
eralized weighted geometric operators. Boundedness, idempotency, monotonicity and commutativity are also

discussed.
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1. Introduction

Numerous uncertain theories, such as fuzzy set (FS) [19], intuitionistic FS (IFS) [3],
Pythagorean FS (PFS) [18], and spherical FS (SFS) [1], have been created to address the
ambiguities. Subsequently, Atanassov introduced the idea of an IFS that is restricted to one
group according to non-membership degree (NMG) [3]. An FS is a group of objects in a given
set that have a membership degree (MG) ranging from 0 to 1. The decision-making (DM)
process could only be aware of one issue if the MG and NMG scores are both higher than one.
Yager [18] defines PFS as an IFS with a value more than one and a square sum of MG and

NMG less than one. According to Cuong et al. [4], the image F'S concept is composed of three
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characteristics: positive MG, neutral MG, and negative MG. It therefore has certain advan-
tages over PFS and IFS. Liu et al. investigated an image FS extension employing AOs [7]. Liu
et al. have described an AO-based generalized PFS and its applications [8]. AO characteristics
based on interval values and PFS [12]. Liu et al. [7] were the first to present the AO-based
image FS. The total of the positive, neutral, and negative MG scores in the DM approach
challenge never surpasses 1. Ashraf et al. [1] established the idea of SFS, which ensures that
the square sum of the positive, neutral, and negative degrees does not exceed 1. Fatmaa et
al. investigated the idea of SFS [5]. Using AOs and distance measurements, Zeng et al. [20]
explained how to calculate ordered weighted distances. Yager [18] produced several averaging
and geometric AOs under PFS weighted, ordered weighted, and weighted power conditions.
Peng et al. examined a basic PFS based on the features of AOs [13]. Ashraf et al. [2] state
that fuzzy spherical Dombi AOs were developed. The concepts of SFSs and T-SFSs [15, 16].
Temel et al. [14] discussed the use of Muirhead power normal SFS to MADM. MADM is used
by Peng et al. [11] to investigate neutrosophic sets using TOPSIS and MABAC techniques.
The TOPSIS-based extension of PFS was discussed by Zhang and associates [21]. A range
of algebraic structures and aggregation techniques with possible uses were recently covered
by Palanikumar et al. [9] and [10]. Gulistan [6] et al. discussed the concept of Einstein AOs
under g-rung hypersoft sets. Voskoglou [17] et al. introduced the notion of ¢-rung NSSs and

topological spaces.

2. Operations for g-rung QNSN

The fractional part of i, where 7 is a real number, may be expressed as follows, assuming that
f is a fractional part function: Additionally, H[n] = (n) = n — {n}. The difference between a
real number and its largest integer value, which is determined by the biggest integer function,
may also be expressed as a fractional part function. If n is an integer, then the fractional
component of n = 0. H[n| = % is a reciprocal fractional part function, assuming its existence.

It is well known that whenever 7 is an integer, its fractional part equals 0. Consequently,

_ 1
n

it encompasses all real numbers except integers. The g-rung QNSN and its operations were

[ cannot be an integer in order for H[n] = % to be defined. H|[n] is its domain, and
developed after we discussed the idea of the f-rung quadripartitioned neutrosophic number
(b-rung QNSN). The following characteristics make it easy to identify the reciprocal functions.
(i) The form of reciprocal functions is a fraction. Real numbers make up the numerator, and
numbers, variables, or polynomials make up the denominator. (ii) A reciprocal of z is equal
to 1/x. The domain and range of the reciprocal function 1/z are the sets of all real numbers

other than zero and zero, respectively.
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Definition 2.1. The t-rung QNSS 7 = {e, [{(E:)(e), (T-)(€), (A-)(e), () (e))] ‘e e &}, put
(E0), (T, (M), (7)) : X — [0, 1] denote the TMG, contradiction MG, unknown MG and false
MG of € € X to 7, respectively and 0 < (E;)(e)F + (T){(e)f + (A;) () + (2,)(e)f < 1. For
convenience, 7 = [<ET>, (), (A7), (Qf)ﬂ is represent a f-rung QNSN.

7)s (Ar), (7)), 71 = [(Bn), (), (Ar), ()]

Definition 2.2. Let 7 = [(E;), (7
)] be any three f-rung QNSNs, and p > 0. Then

and 7 = [(Z2), (TTa), (A2), (22

+ (E2)
W) 10 = |/ ()4 (T = (T0F- (Ta)%, | »
b

(2) TI M7 = \h/<A1

3. AOs based on f-rung RFFQNSN

Here we describe the AOs using g-rung RFFQNWA, f-rung RFFQNWG, G f-rung RF-
FQNWA, and G f-rung REFQNWG.

3.1. b —rungQNWA

Definition 3.1. Let 7; = [(Z;), (), (As), (Q4)] be the g-rung REFQNSNs, W = (71,792, ..., Tn)
be the weight of 7;, v; > 0 and U}' ;v; = 1. Then g-rung REFQNWA (11,79, ..., 7p) = U, 7;7;.

Theorem 3.2. Let 7; = [(Ei), (T2, (As), <Qi>>} be the t-rung REFQNSNS.
Then (1) QNW A(y, T2, ..., Tn)

T

CII ) ()i, B0 (€))7

Proof. If n = 2, then g-rung REFQNWA(7y, 79) = 7171 U272, put

T = {\h/ _< ' _<El>”>%, \“/| —< : (‘[1>n>”]
(A7 ()7
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Now,

YT Uy = b < l _< ! _<_i1>h>71 T _< ! _<—[2>h 72>

Hence, | — rungRFFQNW A(1y, T9)

_ !\h/ -7, < 1 —(Zi)

B2 ((Ag) 07 B2 ((Q,)8) e

=
~_—
2
|
L]
[
—_
S
|
—~
i |
~
~_—
2
—_

Also, n > 3,
Thus, § — rungRFFQNW A(1y, T2, ..., T1)

o\ i
) ¢ —m, (-G V ~o, (- |
Cf (A %) T ((Q)%)
If n =1+ 1, then g-rung REFQNWA (71,79, ..., 7, Ti+1)

[ (e ()
IR A
B R
=== )-( =)™
Bé:1<<Ai>u>% . (A1H>ﬂ>w+1
0 () 5) 0+ (g )F) 0
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i [\h/ ~en ()" \”/' —m (o <‘ii>u>m’] .

I (A B) e O () ) e

Theorem 3.3. Let 7; = |:<Ez>7<-[z>,<Az>,<Ql>>:| be the §-rung RFFQNSNs. Then §-rung
RFFQNWA (11,72, ...;Tp) =T

Proof. Since (Z;) = (Z) , () = (), (A;) = (A) and (€;) = (Q) and U} ;v = 1. Now,
(QNW A(Ty,To, .oy Tn)

= T

—~
|
B
~
—~

Theorem 3.4. Let 7; = |:<Ez> A2>,<QZ>>} be the h-rung RFFQNSNs. Then f-rung

—~ =
RFFQNWA(T1, T2, ..., Tn), put\E’/ = min(Z;;), () = max(Z;;), () = min(Ty), () =
—~ g
max( 1;;), (A) = min(As;), (A) = max(A;), () = min(€y;), (Q) = max(Q;;) and put
P

L<i<n, j=1,2.i;. Then, [f/@ (), 1]

< <h>QNWA<7_17 72, 77—n>

A~ A~
< @04, @
—

(Boundedness property).

=

Proof. Since, () = min(=;;), (2) = max(Z;;) and (=) < (5;5) < (E)
—
Now,gzvl—mzzl HEDD < - (O —Ea)
<{f-m (@) =
A~ ~~
Since, (77) = min(T;;), () = max(T;;) and () < (T;;) < ()
- -

Yo @ = gfeEa (@) < e (-t s
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—~ —~
Since, ((A)? = min(A;;)%, ((A)F = max(A;;)? and ((A)F < (Ay;)f < (M)
~—— ~——
—~ —~ =
We have, ((A)F = B (((A)5)7 < B2 ((Ag) )7 < B (((A))0 = ((A)%.
~—— ~——
~ = ~ =
Since, ((2)" = min(Q;;), ((2)F = max(Q;;)? and ((2)" < ()7 < ()",
N——~" N~

~ =

We have, ((2)° = B (%)% < T ((Qi)%) < T, ()% = (()F.
—— ——

i=

Therefore,

+1 — (O, (i) )

IN IN
o~ o~
|
| i
— —
S S
| |
—~ [1
0 5
= ~_—
5 2
\) \/w
i 2
N~ <
12 |
= Iy
© T~ /_\
_I |
— 1
) S
~ \j
= 2
2 ~_—
o
\/[\3 +
_l’_ S — |

Henee, | (), (T),A). 1) < (DQNWA(r, 72, o7 < [<5>,ﬁ, (), (@) |.
— —
Theorem 3.5. Let 7; = [<Eaij>7 <-Iaij>7 <A04ij>7 <Qaij>] and w; = [<E’5ij>7 <-Iﬁij>7 <Aﬁz‘j 7<Qﬁij>]7
be the f-rung RFFQNWAs. For any i, if there is (Za,;)* < (Zp,,)% and (Ta,;)? )
(Aay)? > <A/3ij>2 and (Qq,;)? > <Q/3¢j>2 or 7i < w;. Prove that ())QNW A(T1, 72, ..., T) <
(HQNW A(w1, wo, ...,wp), put (i =1,2,...,n),(j =1,2,...,1;) (monotonicity property).

Proof. For any i, (Zq,,)* < <Eﬁij>2'
Therefore, | —(Z,,)? >1 —(Zg,)%
Hence, B, (1 = (Ea))?) " 2 00y (1= (E50)?) "
and \h/ — o, <| — ()
For any 1, (‘laij>h < <-igij>>u.
Therefore, | — <-Ioz¢>>h .
Hence, T2y (1 = (Ta))) " 2 00, (1 = (Ta )
This implies that \“/| - o, <| — <_Iai)>h>

< \h/l — o <| - <1ﬂi>>“>”".

M.Palanikumar, Nasreen Kausar and Dina Said, Reciprocal fraction function tools used for
-rung Quadripartitioned neutrosophic sets

\/
2
IN
|
7‘3
—
FN
|
—
[1]
=
~
~
o
~_
2




Neutrosophic Sets and Systems, Vol. 83, 2025 359

For any 4, <Aaij>>2 > <Aﬁij>>2 and <Aaij>>h 2 <A5ij>>h'
Therefore, — (EI (Aa,,))’ < — (B, (Ag, ).

For any i, <Qaij>>2 > <Q,8ij>> and (Qq,; > > (Q,,) >
Therefore, | — <D?:1<Qaij>>h <i— <D?:1<Qﬁij)> .

(- (7)o if e ()

_ +1 = (B (Aa)h) = (B1(00,)5)°

[ R T )

1 — (TP (A0 — (E, %>“>2

IN

Hence7 <Q>QNWA <T17 T2y eey TTL> < <q>QNWA (wh W2,y vy wn>

3.2. f-rung RFFQNWG

Definition 3.6. Let 7; = [<<5i>, (), (Ay), (Q->>} be the b-rung RFFQNSNs.
Then g-rung REFQNWG (71, 72, ..., 7p) = L7 7.0

1

Corollary 3.7. Let 1; = [(Eﬁ, (), (A4), <QZ)>} be the f-rung RFFQNSNs.
Then f-rung RFFQNWG (11,72, ..., Tn)

) B, (B, B (T,

_ \h/l “E () \h/' — 0, (=)

Corollary 3.8. Let 1; = [(E», (i), (Ai), <QZ>>} be the f-rung RFFQNSNs and all are equal.
Then t-rung RFFQNWG(T1,To, ..., Tn) = T.

It has other properties, including boundedness and monotonicity, as well as having QNWG.

3.3. Generalized §-rung REFFQNWA (G f-rung RFFQNWA)
Definition 3.9. Let 7; = [(E», (i), (A, <Ql)>} be the g-rung RFFQNSN. Then G g-rung

1/
RFFQNWA (11,72, ..., 7n) = <@n:1 %.T.P> 7
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Theorem 3.10. Let 7; = [(EQ, (i), (Ai), <QZ)>} be the h-rung RFFQNSNs. Then G §-rung
RFFQNWA (11,72, ..., Tn)

|
|
—
CJ
3
ﬂ‘
—
|
S
|
s =
~ 2
~_—
~_—
=
1

|
—
|
—
]

T_‘; 3
—
|
P
|
2
N>

)
~_—
\/

=

Proof. We can prove this first by demonstrating that,

”\l e < I —<<Ei>h>h> ,ﬂ o < | _<(1i>h>h>%7
et (i () e (o))

Put n =2, yi71 Uyam

n P
Uil vi1; =
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Hence,

ETEC Y e
()

If n =141, then @ézlfyﬁf + ’ylHTl’fH = @ii%’yﬂf.
Now Ul %7l + y417l 1 = N7 Uremd U .. U yrf Wyt

! P _
Uity =
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1/p
<@§3%‘T ! >

(- {) )" -esa{ o) )
_ |_<| —<D£i% <m>y >h>w,
o{madite) )

Theorem 3.11. If all 7; = [(EQ, (), (Ay), <QZ)>} and all are equal.
Then G t-rung REFQNWA(T1, T2y ..., Tn) = T.

o

=

=

3.4. Generalized §-rung REFFQNWG ( G §-rung RFFQNWG)

Definition 3.12. Let 7; = [(EZ), (i), (A, <QZ>>] be the g-rung REFQNSNs.
Then G b-rung REFQNWG (11, 7o, ..., ) = %< o <pn>%>.

Corollary 3.13. Let 1; = [<E¢>, (i), (Ag), <Ql)>} be the g-rung RFFQNSNs.
Then G g-rung REFQNWG(T1, T2, ..., Tn)

|
—
|
—
T 3
—_
T
|
S
|
0
~>
~_—

2 2
\/
~—

—
=

|
—
—
73
—
/\
|
S
|
i
~_—
2
\/
~—
=

Corollary 3.14. If all 7; = [((EQ, (), (Ay), (QJ)} are equal.
Then G g-rung REFQNWG(T1, T2, ..., Tn) = T.
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