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Abstract: In this paper, we study and define the mathematical form of plithogenic stochastic
processes PSP based on set of three classic stochastic processes. This new definition is a
generalization of neutrosophic stochastic process. characteristics of PSP are defined and theorems
related to it were well-proved. Also, definition of weakly stationary PSP is introduced and it is
proved that a plithogenic stochastic process is weakly stationary if and only if three corresponding
crisp stochastic processes are weakly stationary. We also prove that the autocorrelation function of
a plithogenic stochastic process is an even bounded function. As an application of this new form of
stochastic processes, plithogenic Poisson process is defined and its properties are discussed. Solved
example related to plithogenic Poisson process is successfully presented and solved. This new type
of stochastic processes opens the road to many future researches in stochastic modelling.
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1. Introduction

Neutrosophy and Plithogeny are two generalizations of logic and sets of numbers proposed by
scientist F. Smarandache [1]-[4]. These two new generalizations raised in the literature and have been
applied in many fields of science including pure mathematic, statistics, artificial intelligence, machine
learning, engineering, etc. to handle several types of indeterminacy [5]-[9].

In probability theory, interval neutrosophic sets was applied to generalize classic probability
distributions and it has been used to model many real-life problems [9]-[14]. Single-valued
neutrosophic sets were also applied to study the probability that takes the form (T,L,F) where T is the
chance the an event occurs, I is the indeterminacy of occurring and F is the probability that an event
will not occur [15]-[19]. Literal neutrosophic sets was used to study random variables dealing with
probabilities of the form p; +p,I;I> =1 and many probability distributions were modelled
according to this new definition [20]-[24]. Plithogenic set which is the most general form of any set
is also applied to generalize probability theory and its related concepts in [23]-[27].
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It’s very important to know the mathematical basics of neutrosophic and plithogenic real analysis to
study neutrosophic and plithogenic probability theory and its related fields, these basics and basis
were well-studied by many researchers in [28]-[32].

Stochastic modelling is the most important application of probability theory grows up in queueing
theory, risk theory, financial mathematics, etc. Generalizing theory of stochastic modelling is based
on generalizing main concepts of stochastic processes. A stochastic process is a family of random
variables follow certain probability distribution. Fuzzy stochastic process is one generalization of
classic stochastic processes when random variables are fuzzy random variables, which means that
random variables take vague values or parameters of its probability distribution is uncertain [33]-
[36]. Neutrosophic stochastic processes is another generalization of stochastic processes which was
studied in many cases and first proposed by Zeina et al in [37]. The theoretical and mathematical
study of neutrosophic stochastic process was done assuming that it takes the form N(t) = X;(t) +
X, (1,1 = I which is also called a literal neutrosophic stochastic process. Characteristics of N(t)
including ensemble average function, autocorrelation function, covariance function, concepts of strict
and weak stationary are well studied in [37]. Concepts of continuity, integration, differentiation of a
literal neutrosophic stochastic process is well studied and many theorems related to it were presented
in [38]. Another possible generalization of stochastic processes is studying it in plithogenic case,
where we can define a plithogenic stochastic process by P(t) = Xo(t) + X, ()P, + X,(£)P, + -+ +
Xn(®P, = Xo(t) + X1y X;()Ps; P7 = P, PiP; = P;P; = Pypgy(1j) and when n =1 we return to a literal
neutrosophic stochastic process.

In this paper we will study a special case of this generalization assuming that n = 2, so the produced
process will take the form: P(t) = X,(t) + X;(t)P; + X,(t)P,. We will study the characteristics of this

process and the stationary conditions of it and present some theorems related to these important
concepts which is the base of number of related topics.

As an application to the new defined stochastic process, we will introduce the plithogenic Poisson
stochastic process and study its properties which is the road to define plithogenic queueing theory in
future work directions.

Motivation and Research Gap

Literal neutrosophic stochastic processes were introduced in [35], with a discussion of certain
properties in [36]. Research on this novel type of stochastic process is currently limited, yet it holds
significant importance for modelling both stochastic and dynamic systems. Consequently, the
extension of literal neutrosophic stochastic processes to plithogenic stochastic processes represents a
crucial advancement in unveiling a new realm of stochastic systems. It can be inferred that the results

derived from neutrosophy are a specific instance of those obtained from plithogenic analysis.

Preliminaries
Definition 2.1 [3]

Plithogenic classical numbers are numbers that have the form a + bP; + cP, where P? = P;, P} =
PZ'P].PZ =P2P1 =P2 al’ldwecall Z_SPR ={a+bP1+CP2;a,b,CER;P12 =P1,P22 =P2,P1P2 =P2P1 =
P,} the plithogenic field of reals.

Definition 2.2 [23]

Let ap = ay + a;P; + a,P, and bp = by + b1 P; + b, P, be two plithogenic numbers from 2 — SPg, we
say that ap =, bp iff ag = by, ag + a; = by + by, a9 + a; + a, = by + by + b,

Definition 2.3[25]
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Let ap =ay+aP; + a,P,,bp = by + by Py + b,P, Dbe plithogenic numbers from 2 —SP;, then
arithmetic operations, square root and absolute value are defined as follows:

1. aptbp=aotbytP(a;tb)+P(a;tby)

2. ap X bp = (ao + a1P1 + a2P2)(b0 + blpl + bsz) = aobo + (a0b1 + albo + albl)Pl + (a0b2 +
a;b, + ayby + a,b; + a,b,)P,
ap _ agta,Pi+azPp — % aibg—agbq azbi—aibz+azbg—agb, .

3. bp  bo+biPi+byP; by bo(bo+by) L (bo+b1)(bo+by+b3) Pa;bo # 0,(bo + by) # 0, (bo + by +
b)) #0

4. \/ao +a1P1 +a2P2 =,¢a0 + [ﬂlao‘l’al _ﬂlao]Pl + [\/ao +a1 +a2 _\/ao +a1JP2

5. lag + a;Py + ayPy| = lag| + [lag + a1 = laol]Py + [lag + a3 + az| = lag + a4]]P;

Definition 2.4[23]

2 — SPy plithogenic random variables are defined as follows:

Xp:Qp = R(Py, Py); 02p = 02 X 2 (P) X 2,(P)
XP =X0+X1P1+X2P2;P12 =P1,P22 =P2,P1P2 =P2P1=P2

And for properties of random variable X, see [23].

Definition 2.5[39]

Let Xp be a plithogenic continuous random variable with plithogenic parameter 8, = 6, + 6,P; +
0, P,, then neutrosophic probability density function is defined as follows:

f(xp; 0p) = f(xg;00) + [f(xo + %1500 + 01) — (x5 00)]1P;
+ [f (o + x1 + %5500 + 01 + 60,) — fxg + %1560 + 6,)]P,

Definition 2.6[37]

Literal neutrosophic stochastic process (LNSP) {X(t);t € T} is defined as follows:

X:QxT - R({)
X(t) = Xo(t) + X, (O

Where {X,(t);t € T} and {X;(¢t);t € T} are two classic stochastic processes.

Theorem 2.1

Let X(t) = X,(t) + X, (t)] be a (LNSP) then:

1.
2.

3.
4.

px (£) = px, () + px, (01
Ry(s,£) = Ry, (5,t) + [Ry,x, (5, £) + Ry x, (5, £) + Ry, (s, ]I

Cx(s,t) = Ry(s,t) — px(s)ux(t)
Var(X(t)) = Cx(t,t)

Proof (see [37]).

2. Results and Discussion

Definition 3.1

We define a 2 — SP; stochastic process {Xp(t);t € T} as follows:

Xp:ip X T — 2 — SP,
Xp(t) = Xo(t) + X, (£)P; + X, (D) P, 1)
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Where {X,(t);t € T} {X1(t);t € T} and {X,(¢t);t € T} are three classic stochastic processes.
Definition 3.2

Let {Xp(t);t € T} be (2 — SPg)SP we define the ensemble average function, autocorrelation function
and covariance function as follows:

L px, (0 = E[Xp(D)]

2. Ry, (s, 0) = E[Xp()Xp(D)]

3. Cx,(s,t) = Cov[Xp(s), Xp(t)]
Theorem 3.1
Let {Xp(t);t € T} be (2 — SP;)SP then:

Lo pxp(8) = px, (8) + px, (OPy + pux, (OP,

2. Ry,(s,t) = Ry, (5,8) + [Ry,x, (5, t) + Ry, x, (5, ©) + Ry, (5, )]Py + [Ry,x, (5, ©) + Ry, x, (s, 8) +
Ry, (5,8) + Ry, x,(5,t) + Ry, x, (5, O P;

3. Cxp(s,t) = Cy,(s,t) + [Cxox1 (5,t) + Cx, x,(s,t) + Cx, (s, t)]P1 + [Cxox2 (5,t) + Cx,x,(s,t) +
Cx, (5, ) + Cx,x, (5, ) + Cyx,x, (5, t)]Pz

4. Var(Xp(t)) = Cx, (6,1) + [2Cx,x, (6, 1) + Cx, (t, O]Py + [2Cx,x, (6, 1) + 2Cx x, (6, 1) + Cx, (£, D] P

5. olXp(0)] = \/CXO(t,t)+[ JCXO(t,t)+2CXOX1(t,t)+CX1X1(t,t)— \/Cxo(t,t)] P+

[ J Cx, (6, 8) + 2Cx,x, (£, ©) + Cx, (t, £) + 2Cx,x, (£, £) + 2Cx, x, (£, 1) + Cx, (¢, 1) —

J Gy (6, 1) + 2Cx . (6, 1) + Cy, (2, t)] 3
Proof:
L px, () = E[Xp(0)] = E[Xo(t) + X1 (£)P; + X, (D) P,]
Since X, (t), X,(t), X,(t) become random variables if we fix the value t € T, so:
bxp () = E[Xo ()] + E[X1(O]P; + E[X,(0)]P, = px, (t) + px, )Py + py, ()P,
2. Rx,(s,t) = E[Xp(s)Xp ()] = E[(Xo(s) + X1 (S)Py + X,(s)P,)(Xo(t) + X, ()P + X,(t)P,)] (2)

= E[Xo()Xo(®) + Xo($)X1(O)P; + Xo ()X ()P, + X1 ()Xo () Py + X1 (8)X; (t)PE + X1 ()X, (t) P, P, ]
+ X, ()Xo ()P, + X, ()X, ()PP, + X, (5)X, () PF

= Ry, (5, ) + [Ry,x, (5, 1) + Ry, x, (5, £) + Ry, (5, )Py + [Rx,x, (5, ©) + Ry,x, (5, t) + Ry, (s, 1) +
Ry,x,(s,t) + Ry,x, (s, t)]Pz 3)

3. Cx,(s,t) = Cov[Xp(s), Xp(t)]

= E{[(Xo(8) + X1 ()P, + X5 (5)Py) — (tx, (5) + t1x, (SIPy + i, ()P )| [ (Ko (£) + X1 (O)Py + X3 (£)P,)
- (#XO (@) + px, (OP; + uy, (t)Pz)]}
= E{[(%0(9) = 15, () + (X2(5) = 1, () Py + (Xa(5) — 1y () o] [ (X0 (8) — 15, ()
+ (X0 — 1, () P+ (X2(0) — 1, ©) Po}
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= E [(X0() = 113, () (Xo(8) = 11, (©)) + (Xo(5) = 113, () (X2(6) = 11z, (8)) Py
+ (X0() = 1, () (X2 (8) = 1, () P + (X2 (9) = 15, () (Xo(6) = 1, () Py
+ (X:(9) = 1, (9)) (X1.(O) = 1, () Py + (X2(5) = 113, () ) (X2 (8) = 11y, (8)) Py P
+ (X209 = 1, () (Xo(8) = 11, () Py + (X2(5) = 1y (9)) (X1(8) = 11y, (©)) PoPy
+ (Xz(s) — Ux, (5)) (Xz(t) — Ux, (t)) P2P2]

= E{[(%0(9) = 15, () (X0 (8) — 15, (®))]
+ [(*0() = 1, () (X2 = 11, () + (X25) = 1, () (X0 (O) = 15, )
+ (X(9) = 11, () (X2 (0 — 1y, (O) | Py
+ [ (%6(9) = 1, (9)) (X2 (®) = 13, (©)) + (X2(9) = 112,(9)) (X0 (&) = 115, (©))
+ (X:() = 1, (9)) (X2 (0) = 1, () + (X2(9) = 1, () ) (X2 (®) — 11, (®))
+ (X2(9) = 1, (9)) (Xo(®) = 11y, (0))| P2}
= E{[Xo()X,(t) — Xo($)tx, () — Xo(O)ex, () + ux, ($)px, )]
+ [Xo ()X, (1) — X, (S, (€) = X1 (O px, (8) + iy, (Sy, (€) + X1 ()Xo () — X1 ($)iex, (1)
= Xo(Opx, (8) + iy, ($)ix, () + X1 (8)X1 () — X1 ($)x, (8) — X1 (O)py, ()
+ ux, ($)px, (t)]Pl
+ [Xo ()X, (1) — Xo($)ex, () — Xo(Ox, () + px, (S)px, (£) + X5 ()Xo (£)
= X5 (S)txy () — Xo(Diex, () + px, (S, (6) + X1 ()Xo () — X1 ()i, (t)
- X (t)/lx1 (s) + Hx, (S)MXZ () + X, ()X, () — X, (S)Hxl ) - X, (t).uxz (s)
+ Uy, (S)px, (£) + X2 ()X () — Xo(S)px, () — X (D iy, () + wy, (Suy, (t)]Pz}
= [RXOXO (s,t) — px, (S)px, (t)]
+ [[Rxoxl (s, ) — px, (Spx, (t)] + [Rxlxo (s, ) — ux, ()px, (t)]
+ [RX1X1 (s, t) — px, (S)px, (t)]] Py
+ [[RXOXZ (s, t) — px, (S)px, (t)] + [RX2X0 (s, t) — px, (S)ux, (t)]
+ [RX1X2 (s, t) — px, (S)px, (t)] + [szxl (s, t) — px, (S)ux, (t)]
+ [RXZXZ (s,t) — px, (s, (t)]] P,
= Cy,x, (5, 8) + [Cxyx, (5, 0) + Cxyx, (5, 6) + Cx,x, (5, Py + [Cxox, (5, 8) + Cypy (5,8) + Coyx, (5,0) +
Cx,x,(5,t) + Cx,x, (s, t)]Pz 4)
4. Substituting s =t in 3 yields to:

Var[Xp(t)] = Cxp(t, t)
= Cyox, (6, 1) + [Cxox, (6,0 + Cyx, (8,0 + Cyx, (£, 0] Py
+ [Cxox, (6, 0) + Cx,x, (6,8) + C,x, (6, £) + Cx,x, (£,8) + Cy,x, (£, O] P,

= Cx, (6, 8) + [2Cx,x, (6, 8) + Cx, (£, O]Py + [2Cx x, (&, ©) + 2Cx,x, (&, ©) + Cx, (£, )] P, (5)

5. o[Xp(t)] = Var[Xp(t)]

= J Cx, (£, ) + [2Cx,x, (£, 0) + Cx, (6, )Py + [2Cx,x, (£, 1) + 2Cx,x, (£, 1) + Cx, (t, O] P,

- J G, (6,0 + [ cho (t,6) + 20y, (6,8 + Cyy, (£, 1) — cho @ t)] P+

[\/Cxo(t, t) + 2Cy,x, (t, ) + Cx, (£, t) + 2Cx x, (£, 1) + 2Cx x,(t, 1) + Cy, (£, 1) —

\/Cxo(t, t) + 2Cy,x, (t, 1) + Cx, (, t)] P, (6)
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Definition 3.3

2 — SPy plithogenic stochastic process is called weakly stationary if it satisfies the following two
conditions:
1. ux,(t) = px, = Uy, + tx, P1 + px, P, = constant
2. Ry,(s,t) =Ry, (1);T=|s —t|
Theorem 3.2
2 — SPg plithogenic stochastic process Xp(t) = X, (t) + X, (£)P; + X,(t)P, is weakly stationary if and

only if {Xo(t);t €T}, {Xo(t) +X1(t);t €T}, {Xo(t)+X.(t)+X,(t);t €T} are weakly stationary
classic stochastic processes.

Proof:
e We will first suppose that {Xy(t);t € T}, {Xo(t) +X;(t);t € T}, {Xo(t) +X,(t) + X,(t);t €
T} are weakly stationary and prove that Xp(t) = X,(t) + X, (t)P, + X,(t)P, isalso stationary:
Since {X,(t);t € T} is weakly stationary then uy (t) = uy, = constant and Ry (t,t — ) = Ry, (1)
We also supposed that {X,(t) +X;(t);t €T} is weakly stationary then py ,x, (t) = px +x, =
constant which means that uy, (t) = py, = constant and
Ryyix, (t,t =) = E{[Xo(t) + X, (D][[Xo (t — D) + X, (t = D]} = EXo ()Xot — 1) + Xo ()X, (t — 1) +
X1(OXo(t —7) + X1(OX1(t = 1)} = Ry, (t,t — ) + Rxyx, (£, t = T) + Ry, x, (6, = T) + Ry, (£, £ — 7) (7)
Since {X,(t) + X,(t);t € T} is weakly stationary then Ry, ,x,(t,t —7) must depend only on the
difference 7, so the only possible form of it will be:
Ry,+x,(t,t —T) = Ry (T) + Ry x, () + Ry, x,(t) + Ry, (7)
Which means that Ry y, (t,t —T) = Ry x,(t) , Rx,x,(t,t —T) = Ry, x,(T) , Ry, (t,t —T) = Ry, ()
We also supposed that {X,(t) + X,(t) + X,(¢t);t € T} is weakly stationary then py .y +x,(t) =

Pxo+x,+x, = constant which means that uy, (t) = uy, = constant and

Rxy+x,+x, (6t = 1) = E{[Xp(t) + X1 () + X, (D][[Xo(t — ) + X1 (¢ — ) + X, (t — D]} =
E[Xo(6)Xo(t — ) + Xo(OX1(t — 7) + Xo (D)X (t — 1) + X1 ()Xo (¢ —T) + X1 ()X, (E —T) +
X1 ()X, (t — 1) + X,(O)Xo(t — 7) + X ()X, (t — 7) + X5 ()X, (t —1)] = Ry, (t,t —T) + Ry x, (£, t —T) +
Ryyx,(t,t = T) + Ry x, (6t = T) + Ry, (t,t —T) + Ry x, (t,t —T) + Ry, (t,t —T) + Ry x, (6, t —T) +
Ry, (t,t — 1) (8)
Since {Xo(t) + X,(t) + X,(t);t € T} is weakly stationary then Ry .x,+x,(t,t —T) must depend only

on the difference 7, so the only possible form of it will be:

Ryy+x,4+x, (6t —T) = Ry (T) + Ry, x, (r) + Ry, x, (T) + Ry, x,(T) + Ry, () + Ry, x, (t) + Ry, x,(T) +
Ry,x,(t) + Ry, (t) = Ryy1x,4+x,(T) 9)
Which means that Ry x, (t,t —T) = Ry x,(t) , Ry,x,(t,t —T) = Ry,x,(T) , Rx,(t,t —T) = Ry, (1)
E(Xp(t)) = E[Xo(t) + X, ()P + X, () P,] = px, (t) + px, )Py + piy, (0P, = py, + pix, Py + iy, P,
= constant
Ry, (t,t — 1) = E[Xp()Xp(¢t — 7)]
= Ry, (t,t = 7) + [Ry,x, (6, t = T) + Ry x, (6, t = T) + Ry, (t, t — T)|Py
+ [Ryyx, (6t = T) + Ry, x, (t,t —T) + Ry, (t,t — 7) + Ry, x, (t,t — 7) + Ry, x, (t, t — 7)|P,
= RXO () + [RX0X1 () + Rxlx0 () + Ry, (T)]P1 + [RXOXZ () + Rx2X0 () + Ry, () + Ry, x, () +
RX2X1 (T)]Pz = RXP Q) (10)

So, we conclude that {Xp(t);t € T} is weakly stationary.
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e Now let's assume that {Xp(t);t € T} is weakly stationary and prove that {X,(t);t € T},
{Xo(®) + X1 (t); t € T}, {Xo(t) + X1(t) + X,(t);t € T} are weakly stationary.

Since {Xp(t);t € T} is weakly stationary then E(Xp(t)) = px,(t) = px, = constant but E(Xp(t)) =
Px, () + pix, (OP; + uy, (0P, = constant so py, (t), iy, (t) and py,(t) must be dependent of time,
then

Ix, (6) = px, (11)
iy, () = uy, (12)
Uy, () = py, (13)
which meant that:
Hxorx, (8) = lxy+x, (14)
Uxo+x,+%, (E) = Hxyrx,+x, (15)
Also, we have:

Ry, (t,t —7) = Ry, (1) + [Rxoxl (T) + Ry, x,(T) + Ry, (T)]P1
+ [RXOX2 (1) + Ry,x,(t) + Ry, (t) + Ry, x,(T) + Ry, x, (T)]Pz = Ry, (1)

And since {Xp(t);t € T} is weakly stationary then Ry, (t,t —7) must depend only on the difference
7 so the following equations must hold:

Ry, (t,t — 1) = Ry, (7) (16)
Ryox, (t,t —7) = Ryyx, (1) (17)
Ry, x,(t,t = 1) = Ry, x,(1) (18)
Ry, (t,t —7) = Rx,(7) (19)
Ry,x,(t,t —T) = Ry x, (1) (20)
Ry,x,(t,t —T) = Ry, x, (1) (21)
Rx,(t,t — 1) = Ry, (7) (22)
From equations (11), (16) we conclude that {X,(t);t € T} is weakly stationary.
And using equations (14), (16-19) we conclude that {X,(t) + X,(¢t); t € T} is weakly stationary.

Also, using equations (15), (16-22) we conclude that {X,(t) + X;(t) + X,(t);t € T} is weakly
stationary.

Theorem 3.3

Suppose that {X(t);t € T} is weakly stationary plithogenic stochastic process with autocorrelation
function Ryx,(t) then the following holds:

1. Ry, (1) = Ry, (-7)
2. |Rx, (D] < Ry, (0)

Proof:
1. Wehave
Ry, (1) = Ry, (1) + [Rxoxl (7) + Ry, x,(7) + Ry, @]p + [RXOXZ (7) + Ry, x,(7) + Rx, (T) + Ry,x, (1) +
Ry, x, (T)]P 2 (23)
So:
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Ry, (=7) = Ry,(-7) + [Rxoxl (=7) + Ry, x,(—7) + Ry, (-Dp + [RXOXZ (=7) + Ry, x,(—7) + Ry, (—7) +
Ry, x,(—=T) + Ry, x, (—T)]Pz (24)

And using properties of cross-correlation function in classical stationary processes we get:

RXP (-1 = RX0 (@) + [RX0X1 () + RX1X0 () + RX1 (T)]P1 + [RXOXZ () + RXZXO () + RX2 () + Rxlxz () +
Ry, %, (D|P; = Ry, (1) (25)

2. |RXp | = |Rx0 () + [RX0X1 () + Ry, x,(7) + Ry, @]p + [Rxox2 (T) + Ry,x,(t) + Ry, (1) +
Ry, x,(®) + Rx,x, (T)]le

= |RX0 (T)| + [leo o)+ RXOX1 o)+ Rxlxo o)+ Rx1 (T)| - |RX0 (T)|]P1
+ [|RXO () + RX0X1 (@) + RX1XO (@) + RX1 () + RXOXZ () + RXZXO () + RXZ () + RX1X2 (™
+ RX2X1 (T)| - |RX0 (@) + RX0X1 (@) + Rxlxo () + Rxl (T)”Pz

= |RX0(T)| + [|RX0+X1(T)| - |RXO(T)|]P1 + [|RXO+X1+X2 (T)| - |RX0+X1 (T)”Pz (26)

We have proposed that Xp(t) is a weakly stationary plithogenic stochastic process, which means that
Xo(6), Xo(t) + X1 (1), Xo(t) + X1 (t) + X,(t) are weakly stationary classic stochastic processes
according to theorem 3.2, then:

|Rx, (7] < Ry, (0) (27)
|RX0+X1 (T)| < Ry,+x,(0) (28)
|RX0+X1+X2 | < Ry,+x,+x,(0)  (29)
Proving that |Rxp (‘r)| < Ry, (0) is equivalent to prove that:
|Rx, ()| + [| Ry, D] = |Rty |]P1 + [|Rigx,4%, (0| = |Rxgax, (D|]P2 < Ry, (0)  (30)
Which holds according to definitions 2.2.
4. Comparison with neutrosophic stochastic processes

Comparing definitions 2.6 and 3.1 we can see that neutrosophic stochastic process NSP is a
special case of plithogenic stochastic process PSP, the following table shows main differences
between these two stochastic processes:

Table 1. Comparison between NSP and PSP.

NSP PSP

Definition Xy(t) = Xo(t) + X, ()] Xp(t) = Xo(£) + X, (P, + X,(£)P,

Weakly stationary  Iff X,(t), X, (t) + X1(t) are weakly IffX, (), Xo(£) + X, (1), X, (t) +

condition stationary X, (t) + X,(t) are weakly stationary

_ xp(6) = iy, (€) + pyg, (O P,
Ensemble mean Py () = hg, () + iy, (O] i L #;2 (t)P,
function
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CXP (Sl t) = CX()(SI t)

Cy(s, t) = RXO(S, t) — Ux,(S) + [CX x, (S, t)

— t
ﬂXo( ) +CX1X0(S;t)
+ H{Ry,x, (s, )

. + Cy, (s,0)]Py
Covariance + Ry, x, (5, 1) + [C (s,t)
function + Ry, (s, s

_ + CXZXO (Sl t)
HUx, (S)ﬂxl ®)
+ Cx, (s, 1)
— Hx, (t),uxl (s) +C (s, t)
~ i, ()itx, (D)} o

+ Cx,x, (5, D] P,

Ry, (s,t) = Ry, (s, 1)
+ [Rxox1 (s, t)
+ Ry, x, (s, t)

Ry(s,t) = Ry, (s, 1) + Ry, (s, 0)]P

Autocorrelation + IiR s, t
. (R, (5,0 + [Ryyx, (5, 0)
function + Ry, x, (s, t) R D)
+ Ry, (s, t)} X2Xo V>

+ Ry, (s, t)
+ Ry, x, (s, t)
+ Ry, x, (s, D]P,

5. Application to plithogenic Poisson process
Lemma 4.1
Let {X()}{Y(t)} be two classic Poisson processes with parameters A;,1, respectively, then:

co oo (A S)x _S(A t)y _
Rey(s,8) = EIX©Y(®] = )" Y ay T e e

x=0y=0

) _ o 1,07
=T x “Zy=oy(fv” M= 4dpst (31)

x! !
Definition 4.1

Let {No(®)},{N;(t)},{N,(t)} be three classic Poisson processes with parameters Ag,44,4,
respectively, we define plithogenic Poisson process with parameter Ap = Ay + 4, P; + 4,P, as
follows:

Np(t) = No(t) + Ny ()P + N2 ()P, (32)
and its probability mass function is:

n
P(Np(t) =m)=e -ﬂof“ﬂﬂ +[ —uouotM Y W) ] p1+[ —uoulm)tw

e~ (Ao+A)t [(10+)&1)f ]PZ ‘n=01, 2 (33)
4.1 characteristics of plithogenic Poisson process:
Lo pnp(0) = ung (8) + pin, (OP; + i, (P, = At + 4tPy + A,tP,  (34)

2. Ry,(s,t) =Ry (s, ) + [RNONl(Sr t) + Ry,n, (s, t) + Ry, (s, t)]Pl + [RNON2 (5,) + Ry,n, (5, 8) +
Ry n,(5,t) + Ry,n, (5, ) + Ry, (s, t)]Pz

= (AoS + A3st) + [AgA St + A Apst + (A;s + A2st)]Py
+ [/10/12515 + /‘{zlost + /11/125t + /12/11$t + (/125 + /1%515)]1’2, s<t

= (AoS + A3st) + [AgA15%t2 + A1 + A2t Py + [AgAy52t2 4+ 214,522 + Ays + A3st]Py;s <t (35)
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3. Cxp(s,0) = Cx,(5,0) + [Cxyx, (5, 8) + Cx,x, (5, 8) + Cx, (5, )Py + [Cxox, (5,8) + Cx, (5,0) +
Cx,x,(5,t) + Cx,x, (5, t) + Cx, (5, t)]PZ
= [Ry, (s, ) — sy, () pax, (0]
+ {{[Reyr, (5:6) = by (D, (O] + [Ryyy (5, 0) — o, ($)pag, (0]
+ [Re, (5, ) = o, ()i, O]}P,
+ {[RXOXZ (s, t) — px, (S)px, (t)] + [szxo (s, t) — px, (S)ux, (t)]
+ [Rxlx2 (s,t) — pyx, (Spy, O]+ [RX2X1 (5, ) — ux, (Spx, 0]
+ [sz (s,t) — px, (S)py, (t)]}Pz

+ {[/’{0/125’: - /10/1251,'] + [/12/10515 - /12/105t] + [/’llﬂ.zst /11/12515] + [/12/1151: - /12/11515]
+ [Ays + A3st — A3st]}P,;s <t

= Aos + /115131 + AZSPZ;S S t (36)
4. Var(Xp(t)) = Cx,p(t,8) = Aot + A4 tPy + A,tP, (37)
5. o[Xp(O)] = Aot + [ Aot + At — JAot|Py + [JAot + A4t + Aot — \[Apt + A,t]P, (38)

4.2 Numerical Example

Let Np(t) = Ny(t) + N1 (t)P; + N,(t)P, be a plithogenic Poisson process with an intensity:
AP:6_2P1_3P2

Let’s calculate the probabilities of: Np(2) = n,Np(2) = 0,Np(2) = 1,Np(2) > 1 and the appropriate
characteristics.

Solution:

1. P(Np(2) =n) =e 24

e - —12“]13 +le2Z—es TP in=012.

_ 12 12n ﬁ_ 12" zﬁ_ _8_ L
¢ tle e Py + e Pyin=012,..
n! n! n! n!
0
2. P(NP(Z)—O)_G_lzlz +[ _—6_1212]1’ [_22——6_88]1’2

=e 12 4 [e7® — e712]P, + [e~2 — e8P, = 0.000006 + 0.000329P, + 0.135P,

3. PNp@) =D =e 224 [e0l — o2 p 4 [e2Z — o2 p,
=12e7 12 + [8e78 — 127 12]|P, + [2e7%2 — 8e8]P,
= 0.0000737 + 0.0026P; + 0.27P,
4. P(Np(2)>1) =1— P(Np = 0) = 1 — (0.000006 + 0.000329P; + 0.135P,)
= 0.999994 — 0.000329P; — 0.135P,
5. iy, (2) = Aot + A4 tPy + A,tP, = 6 — 4P, — 6P,

6. Ry, (s,t) = (Aps + A5st) + [AgA;5%t% + Ays + Afst]Py + [AgA,5%t% + A1 A,5%t% + Aps +
A3st]Py;s <t

= (6s + 36st) + [—125%t? — 25 + 4st]P; + [—18s%t? + 65%t? — 35 + 9st|Py;;s < t
7. Cxp(s,t) = Ags + A;SP; + A;5Py;s <t
=65 —2sP; —3sP,;s <t

8. Var(Xp(2)) = At + A tP, + A,tP, = 6 — 4P, — 6P,
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9. J(Xp(t)) = \//101' + Altpl + /‘tth2 = ﬂ/‘tot + [ﬂ/‘lot + /‘11 - "/‘{Ot]Pl + [ﬂ/‘{ot + Alt + /‘lzt -
VAot + A1t|P,
= V12 + [V8 - V12|P, + [V2 — V8|P,
6. Conclusions and future research directions

In this paper, we have defined for the first time the plithogenic stochastic process in the form Xp(t) =
Xo(®) + X, ()P, + X, (t)P, and studied its main characteristics including ensemble mean function,
autocorrelation function, covariance function and variance function. An important theorem about
stationary is proved and results that Xp(t) is stationary iff X,(t), Xo(t) + X1(t), Xo(t) + X1 (t) + X, (¢)
are stationary in classic sense. An application to Poisson process is presented and a solved example
was successfully introduced. This paper is very important to study plithogenic reliability theory,
queuing theory and survival analysis.
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