

University of New Mexico

Exploring Neutrosophic Contra Alpha Generalized Semi-Continuous Maps

V. Banu Priya¹, M. Suresh², *, S. Chandrasekar³ and A. Atkinswestley⁴

Abstract. In this manuscript, we have introduced the concepts of contra alpha generalized semi-continuous mapping and contra alpha semi-irresolute mapping within the Neutrosophic framework. Furthermore, we have derived certain properties associated with these mappings.

Keywords: Neutrosophic contra α -generalized semi- continuous mapping; Neutrosophic contra α -generalized semi-irresolute mapping

1. Introduction

Dontchev [1] initially proposed the notion of contra-continuity, while Jafari and Noiri [3] introduced novel extensions of contra-continuity termed contra- α -continuity in the context of topological spaces. In 2006, Ekici and Etienne Kerre [4] introduced contra-continuous mapping in the domain of fuzzy topological spaces. Additionally, Kresteska and Ekici introduced the concept of intuitionistic fuzzy contra-continuous mapping.

2. Neutrosophic contra α -generalized semi continuous mappings

Definition 2.1. A mapping $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ is called a Neutrosophic contra α-generalized semi continuous ($\grave{N}_{eut}C\alpha GS$ continuous in short) mapping if $\grave{N}_{eut}^{f_*^{-1}}(\hat{E}_{22}^{\grave{*}})$ is a $\grave{N}_{eut}\alpha GSOS$ in $(\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t)$ for every $\grave{N}_{eut}CS$ \hat{E}_{22}^* of $(\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$.

Example 2.2. Let
$$\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$$
, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{4}{5}, \frac{1}{2}, \frac{3}{10}) \rangle$ and $\hat{E}_{22}^* = \langle y, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}) \rangle$. Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$

¹RMK College of Engineering and Technology; spriya.maths@gmail.com

²R.M.D. Engineering College; sureshmaths2209@gmail.com

³Sri Meenakshi Government Arts College for Women; chandrumat@gmail.com

⁴K. Ramakrishnan College of Engineering; ats.wesly@gmail.com

^{*}Correspondence: sureshmaths2209@gmail.com

are $N_{eut}Ts$ on $N_{eut}^{\dot{X}}$ and $N_{eut}^{\dot{Y}}$ respectively. Define a mapping $N_{eut}^{f*}:(N_{eut}^{\dot{X}},N_{eut}^{\dot{X}})\to(N_{eut}^{\dot{Y}},N_{eut}^{\dot{S}})$ by $N_{eut}^{f*}(a_1^*)=a_3^*$ and $N_{eut}^{f*}(a_2^*)=a_4^*$. Then N_{eut}^{f*} is a $N_{eut}C\alpha GS$ continuous mapping.

Theorem 2.3. Every Neutrosophic contra continuous mapping is a $N_{eut}C\alpha GS$ continuous mapping.

Proof. Let $N_{eut}^{f_*}: (N_{eut}^{\dot{X}}, N_{eut}^t) \to (N_{eut}^{\dot{Y}}, N_{eut}^s)$ be a Neutrosophic contra continuous mapping. Let \hat{E}_{11}^* be a $N_{eut}CS$ in $N_{eut}^{\dot{Y}}$. By hypothesis, $N_{eut}^{f_*}(\hat{E}_{11}^*)$ is a $N_{eut}OS$ in $N_{eut}^{\dot{X}}$. Since every $N_{eut}OS$ is a $N_{eut}\alpha GSOS$, $N_{eut}^{f_*}(\hat{E}_{11}^*)$ is a $N_{eut}\alpha GSOS$ in $N_{eut}^{\dot{X}}$. Hence $N_{eut}^{f_*}$ is a $N_{eut}C\alpha GS$ continuous mapping.

Example 2.4. $\hat{N}_{eut}^{\hat{X}} C \alpha GS$ continuous $\not\rightarrow$ Neutrosophic contra continuous. Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}) \rangle$ and $\hat{E}_{22}^* = \langle y, (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{9}{10}, \frac{1}{2}, \frac{1}{10}) \rangle$. Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$ are $\hat{N}_{eut}^{\hat{X}} Ts$ on $\hat{N}_{eut}^{\hat{X}}$ and $\hat{N}_{eut}^{\hat{Y}}$ respectively. Define a mapping $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \rightarrow (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ by $\hat{N}_{eut}^{f_*} (a_1^*) = a_3^*$ and $\hat{N}_{eut}^{f_*} (a_2^*) = a_4^*$. Then $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}^{\hat{X}} C \alpha GS$ continuous mapping. But $\hat{N}_{eut}^{f_*}$ is not a $\hat{N}_{eut}^{\hat{X}}$ contra continuous mapping. Since $\hat{E}_{22}^* = \langle y, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}) \rangle$ is a $\hat{N}_{eut}^{\hat{X}} C S$ in $\hat{N}_{eut}^{\hat{Y}}$ but $\hat{N}_{eut}^{f_*} (\hat{E}_{22}^*) = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}) \rangle$ is not a $\hat{N}_{eut}^{\hat{X}} O S$ in $\hat{N}_{eut}^{\hat{X}}$.

Theorem 2.5. Every $N_{eut}C\alpha$ continuous mapping is a $N_{eut}C\alpha GS$ continuous mapping.

Proof. Let $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ be a $\hat{N}_{eut}C\alpha$ continuous mapping. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. Then by hypothesis $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha OS$ in $\hat{N}_{eut}^{\hat{X}}$. Since every $\hat{N}_{eut}\alpha OS$ is a $\hat{N}_{eut}\alpha GSOS$, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Example 2.6. $\hat{N}_{eut}C\alpha GS$ continuous mapping $\not\rightarrow \hat{N}_{eut}C\alpha$ continuous mapping. Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$ and $\hat{E}_{22}^* = \langle y, (1, \frac{1}{2}, 0), (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$. Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$ are $\hat{N}_{eut}Ts$ on X and Y respectively. Define a mapping $\hat{N}_{eut}^f: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \rightarrow (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ by $\hat{N}_{eut}^f(a_1^*) = a_3^*$ and $\hat{N}_{eut}^f(a_2^*) = a_4^*$. Then \hat{N}_{eut}^f is a $\hat{N}_{eut}C\alpha GS$ continuous mapping. But \hat{N}_{eut}^f is not a $\hat{N}_{eut}C\alpha$ continuous mapping. Since $\hat{E}_{22}^* = \langle y, (0, \frac{1}{2}, 1), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$ but $\hat{N}_{eut}^{f^*}(\hat{E}_{22}^*) = \langle x, (0, \frac{1}{2}, 1), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ is not a $\hat{N}_{eut}\alpha OS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore \hat{N}_{eut}^f is a $\hat{N}_{eut}C\alpha GS$ continuous mapping but not a $\hat{N}_{eut}C\alpha C\alpha$ continuous mapping.

Remark 2.7. $\hat{N}_{eut}C\gamma$ continuous mapping and $\hat{N}_{eut}C\alpha GS$ continuous mapping are independent of each other.

Example 2.8. $\hat{N}_{eut}C\gamma$ continuous mapping $\neq \hat{N}_{eut}C\alpha GS$ continuous mapping. Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ and $\hat{E}_{22}^* = \langle y, (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$. Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$

Exploring Neutrosophic Contra Alpha Generalized Semi-Continuous Maps

are $\hat{N}_{eut}Ts$ on $\hat{N}_{eut}^{\hat{X}}$ and $\hat{N}_{eut}^{\hat{Y}}$ respectively. Define a mapping $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ by $\hat{N}_{eut}^{f_*}(a_1^*) = a_3^*$ and $\hat{N}_{eut}^{f_*}(a_2^*) = a_4^*$. Since $\hat{E}_{22}^{\hat{*}} = \langle y, (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$ is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$ but $\hat{N}_{eut}^{f_*}(\hat{E}_{22}^{\hat{*}}) = \langle x, (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$ is not a $\hat{N}_{eut}CSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\gamma$ continuous mapping but not a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Example 2.9. $N_{eut}C\alpha GS$ continuous mapping $\neq N_{eut}C\gamma$ continuous mapping.

Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$, $\hat{E}_{22}^* = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ and $\hat{E}_{33}^* = \langle y, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$.

Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{33}^*, 1_{\hat{N}_{eut}}\}$ are $\hat{N}_{eut}Ts$ on $\hat{N}_{eut}^{\hat{X}}$ and $\hat{N}_{eut}^{\hat{Y}}$ respectively. Define a mapping $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ by $\hat{N}_{eut}^{f_*}(a_1^*) = a_3^*$ and $\hat{N}_{eut}^{f_*}(a_2^*) = a_4^*$. Since $\hat{E}_{33}^*{}^c = \langle y, (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$ is a $\hat{N}_{eut}CS$ in Y but $\hat{N}_{eut}^{f_*-1}(\hat{E}_{33}^*{}^c) = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$ is not a $\hat{N}_{eut}\gamma OS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping but not a $\hat{N}_{eut}C\gamma$ continuous mapping.

Remark 2.10. $\dot{N}_{eut}CP$ continuous mapping and $\dot{N}_{eut}C\alpha GS$ continuous mapping are independent of each other.

Example 2.11. $N_{eut}CP$ continuous mapping $\neq N_{eut}C\alpha GS$ continuous mapping.

Let $\grave{N}_{eut}^{\grave{X}} = \{a_1^*, a_2^*\}$, $\grave{N}_{eut}^{\grave{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \left\langle x, (\frac{1}{5}, \frac{1}{2}, \frac{7}{10}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \right\rangle$ and $\hat{E}_{22}^* = \left\langle y, (\frac{1}{10}, \frac{1}{2}, \frac{4}{5}), (\frac{1}{10}, \frac{1}{2}, \frac{7}{10}) \right\rangle$. Then $\grave{N}_{eut}^t = \{0_{\grave{N}_{eut}}, \hat{E}_{11}^*, 1_{\grave{N}_{eut}}\}$ and $\grave{N}_{eut}^* = \{0_{\grave{N}_{eut}}, \hat{E}_{22}^*, 1_{\grave{N}_{eut}}\}$ are \grave{N}_{eut}^* and $\grave{N}_{eut}^{\grave{Y}}$ respectively.

Define a mapping $N_{eut}^{f_*}: (N_{eut}^{\hat{X}}, N_{eut}^t) \to (N_{eut}^{\hat{Y}}, N_{eut}^s)$ by $N_{eut}^{f_*}(a_1^*) = a_3^*$ and $N_{eut}^{f_*}(a_2^*) = a_4^*$. Then $N_{eut}^{f_*}$ is a $N_{eut}C\alpha GS$ continuous mapping. But $N_{eut}^{f_*}$ is not a $N_{eut}C\alpha GS$ continuous mapping. Since $E_{22}^{\hat{X}^c} = \langle y, (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}), (\frac{7}{10}, \frac{1}{2}, \frac{1}{10}) \rangle$ is a $N_{eut}CS$ in $N_{eut}^{\hat{Y}}$ but $N_{eut}^{f_*^{-1}}(E_{22}^{\hat{X}^c}) = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{7}{10}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$ is not a $N_{eut}\alpha GSOS$ in $N_{eut}^{\hat{X}}$.

Example 2.12. $N_{eut}C\alpha GS$ continuous mapping $\neq N_{eut}CP$ continuous mapping.

Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$,

 $\hat{E_{22}^*} = \left\langle x, (\tfrac{2}{5}, \tfrac{1}{2}, \tfrac{3}{5}), (\tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{2}) \right\rangle \text{ and } \hat{E_{33}^*} = \left\langle y, (\tfrac{3}{10}, \tfrac{1}{2}, \tfrac{7}{10}), (\tfrac{3}{5}, \tfrac{1}{2}, \tfrac{2}{5}) \right\rangle.$

Then $N_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E_{11}}^*, \hat{E_{22}}^*, 1_{\hat{N}_{eut}}\}$ and $N_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E_{33}}^*, 1_{\hat{N}_{eut}}\}$ are N_{eut} and N_{eut}^s are N_{eut} are N_{eut} and N_{eut}^s respectively. Define a mapping $N_{eut}^s : (N_{eut}^s, N_{eut}^s) \to (N_{eut}^s, N_{eut}^s)$ by $N_{eut}^s = a_3^s$ and $N_{eut}^s = a_3^s = (N_{eut}^s, N_{eut}^s) = a_3^s = (N_{eut}^s, N_{eut}^s)$ is a $N_{eut}^s = N_{eut}^s = (N_{eut}^s, N_{eut}^s)$ is a $N_{eut}^s = N_{eut}^s =$

Theorem 2.13. A mapping $\hat{N}_{eut}^{f_*}: \hat{N}_{eut}^{\dot{X}} \to \hat{N}_{eut}^{\dot{Y}}$ is a $\hat{N}_{eut}^{f_*}CaGS$ continuous if and only if the inverse image of each $\hat{N}_{eut}^{f_*}OS$ in $\hat{N}_{eut}^{\dot{Y}}$ is a $\hat{N}_{eut}^{f_*}aGSCS$ in $\hat{N}_{eut}^{\dot{X}}$.

Proof. Necessary Part: Let \hat{E}_{11}^* be a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Y}}$. This implies \hat{E}_{11}^* is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping, $\hat{N}_{eut}^{f_*}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$.

Since $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*{}^c) = (\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*))^c$, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Sufficient Part: Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. This implies $\hat{E}_{11}^*{}^c$ is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Y}}$. By hypothesis, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*{}^c)$ is $\hat{N}_{eut}G\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Since $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*{}^c) = (\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*))^c$, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Theorem 2.14. Let $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ be a mapping and let $\grave{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*{}^c)$ be a $\grave{N}_{eut}ROS$ in $\grave{N}_{eut}^{\grave{X}}$ for every $\grave{N}_{eut}CS$ \hat{E}_{11}^* in $\grave{N}_{eut}^{\grave{Y}}$. Then $\grave{N}_{eut}^{f_*}$ is a $\grave{N}_{eut}C\alpha GS$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. Then by hypothesis, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}ROS$ in $\hat{N}_{eut}^{\hat{X}}$. Since every $\hat{N}_{eut}ROS$ is a $\hat{N}_{eut}\alpha GSOS$, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Theorem 2.15. Let $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ be a $\grave{N}_{eut}C\alpha GS$ continuous mapping, then $\grave{N}_{eut}^{f_*}$ is a Neutrosophic contra continuous mapping if $\grave{N}_{eut}^{\grave{X}}$ is a $\grave{N}_{eut}\alpha gaT_{1/2}$ space.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. Then by hypothesis $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Since $\hat{N}_{eut}^{\hat{X}}$ is a $\hat{N}_{eut}\alpha gaT_{1/2}$ space, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{f_*}$ is a Neutrosophic contra continuous mapping.

Theorem 2.16. Let $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ be a $\grave{N}_{eut}C\alpha GS$ continuous mapping and $\grave{N}_{eut}^{g_*}: (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ is a Neutrosophic contra continuous mapping, then $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*}): (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ is a $\grave{N}_{eut}\alpha GS$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then by hypothesis, $\hat{N}_{eut}^{g_*-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping, $\hat{N}_{eut}^{f_*-1}(\hat{N}_{eut}^{g_*-1}(\hat{E}_{11}^*))$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})$ is a $\hat{N}_{eut}\alpha GSCS$ continuous mapping.

Theorem 2.17. Let $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ be a $\grave{N}_{eut}\alpha GS$ continuous mapping and $\grave{N}_{eut}^{g_*}: (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d$ is a Neutrosophic contra continuous mapping, then $\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ is a $\grave{N}_{eut}C\alpha GS$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then $\hat{N}_{eut}^{g_*}^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Y}}$, by hypothesis. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}\alpha GS$ continuous mapping, $\hat{N}_{eut}^{f_*}^{-1}(\hat{N}_{eut}^{g_*}^{-1}(\hat{E}_{11}^*))$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Theorem 2.18. $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \ and \ \grave{N}_{eut}^{g_*}: (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d) \ be$ mappings. Then the given conditions are equivalent if $\grave{N}_{eut}^{\grave{X}}$ is a $\grave{N}_{eut}\alpha gaT_{1/2}$ space.

(1) $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

(2) \hat{N}_{eut} - $cl(\hat{N}_{eut}$ - $int(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(B)) \subseteq (\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22})$ for every $\hat{N}_{eut}OS$ \hat{E}_{22}^* in Z.

Proof. (1) \Rightarrow (2) Let \hat{E}_{22}^* be any $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then $(\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$, by hypothesis. Since $\hat{N}_{eut}^{\hat{X}}$ is a $\hat{N}_{eut}\alpha gaT_{1/2}space$, $(\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore $\hat{N}_{eut}^{-1}cl((\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)) = (\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$. Now $\hat{N}_{eut}^{-1}cl(\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore $\hat{N}_{eut}^{-1}cl((\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)) = (\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$. Now $\hat{N}_{eut}^{-1}cl(\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)) = \hat{N}_{eut}^{-1}cl((\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*))$. This implies $\hat{N}_{eut}^{-1}cl(\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*) = (\hat{N}_{eut}^{g*} \circ \hat{N}_{eut}^{f*})^{-1}(\hat{E}_{22}^*)$.

(2) \Rightarrow (1) Let \hat{E}_{22}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then its complement \hat{E}_{22}^* is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{Z}}$. By hypothesis, $\hat{N}_{eut} - cl(\hat{N}_{eut}\text{-}int(\hat{N}_{eut}\text{-}cl(\hat{N}_{eut}^{g_*}\circ\hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*))) \subseteq (\hat{N}_{eut}^{g_*}\circ\hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$. Hence $(\hat{N}_{eut}^{g_*}\circ\hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}\alpha CS$ in $\hat{N}_{eut}^{\hat{X}}$. Since every $\hat{N}_{eut}\alpha CS$ is a $\hat{N}_{eut}\alpha CSCS$, $(\hat{N}_{eut}^{g_*}\circ\hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}\alpha CSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{g_*}\circ\hat{N}_{eut}^{f_*}$ is $\hat{N}_{eut}C\alpha GS$ continuous mapping.

3. Neutrosophic contra alpha generalized semi irresolute mappings

Definition 3.1. A mapping $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ is called a Neutrosophic contra alpha generalized semi irresolute $(\hat{N}_{eut}C\alpha GS)$ irresolute in short) mapping if $\hat{N}_{eut}^{f_*}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $(\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t)$ for every $\hat{N}_{eut}\alpha GSOS$ \hat{E}_{11}^* of $(\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$.

Theorem 3.2. If $N_{eut}^{f_*}:(N_{eut}^{\dot{X}},N_{eut}^t)\to(N_{eut}^{\dot{Y}},N_{eut}^s)$ is a $N_{eut}C\alpha GS$ irresolute mapping, then $N_{eut}C\alpha GS$ continuous mapping but the converse is not necessarily true.

Proof. Let N_{eut}^{f*} be a $N_{eut}C\alpha GS$ irresolute mapping. Let \hat{E}_{11}^* be any $N_{eut}CS$ in $N_{eut}^{\hat{Y}}$. Since every $N_{eut}CS$ is a $N_{eut}\alpha GSCS$, \hat{E}_{11}^* is a $N_{eut}\alpha GSCS$ in $N_{eut}^{\hat{Y}}$. By hypothesis, $N_{eut}^{f*}(\hat{E}_{11}^*)$ is a $N_{eut}\alpha GSOS$ in $N_{eut}^{\hat{X}}$. Hence N_{eut}^{f*} is a $N_{eut}C\alpha GS$ continuous mapping.

Example 3.3. $N_{eut}C\alpha GS$ continuous mapping $\neq N_{eut}C\alpha GS$ irresolute mapping.

Let $\hat{N}_{eut}^{\hat{X}} = \{a_1^*, a_2^*\}$, $\hat{N}_{eut}^{\hat{Y}} = \{a_3^*, a_4^*\}$, $\hat{E}_{11}^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ and $\hat{E}_{22}^* = \langle y, (\frac{7}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$. Then $\hat{N}_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $\hat{N}_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$ are \hat{N}_{eut}^* and $\hat{N}_{eut}^{\hat{Y}}$ respectively.

Define a mapping $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ by $\hat{N}_{eut}^{f_*}(a_1^*) = a_3^*$ and $\hat{N}_{eut}^{f_*}(a_2^*) = a_4^*$. Since $\hat{E}_{22}^* = \langle y, (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ is a $\hat{N}_{eut} \alpha GSOS$ in $\hat{N}_{eut}^{\hat{Y}}$,

but $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{22}) = (x, (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}))$ is not a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Therefore $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping but not a $\hat{N}_{eut}C\alpha GS$ irresolute mapping.

Theorem 3.4. Let $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ be a $\hat{N}_{eut}C\alpha GS$ irresolute mapping, then $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}GSCS$ in $\hat{N}_{eut}^{\hat{X}}$ for every $\hat{N}_{eut}OS$ \hat{E}_{11}^* in $\hat{N}_{eut}^{\hat{Y}}$.

Proof. Let $N_{eut}^{f_*}$ be a $N_{eut}C\alpha GS$ irresolute mapping. Let \hat{E}_{11}^* be any $N_{eut}CS$ in $N_{eut}^{\hat{Y}}$. Since every $N_{eut}CS$ is a $N_{eut}\alpha GSOS$, \hat{E}_{11}^* is a $N_{eut}\alpha GSOS$ in $N_{eut}^{\hat{Y}}$. By hypothesis, $N_{eut}^{f_*-1}(\hat{E}_{11}^*)$ is a $N_{eut}\alpha GSCS$ in $N_{eut}^{\hat{X}}$. This implies $N_{eut}^{f_*-1}(\hat{E}_{11}^*)$ is a $N_{eut}GSCS$ in $N_{eut}^{\hat{X}}$.

Example 3.5. Let $N_{eut}^{f*}(a_1^*) = a_3^*$ and $N_{eut}^{f*}(a_2^*) = a_4^*$, $\hat{E}_{11}^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ and $\hat{E}_{22}^* = \langle y, (\frac{7}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$. Then $N_{eut}^t = \{0_{\hat{N}_{eut}}, \hat{E}_{11}^*, 1_{\hat{N}_{eut}}\}$ and $N_{eut}^s = \{0_{\hat{N}_{eut}}, \hat{E}_{22}^*, 1_{\hat{N}_{eut}}\}$ are $\hat{N}_{eut}Ts$ on X and Y respectively. Define a mapping $\hat{N}_{eut}^f: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$. Then $\hat{N}_{eut}^{f*}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}GSCS$ in $\hat{N}_{eut}^{\hat{X}}$ for every $\hat{N}_{eut}OS$ $\hat{E}_{11}^* = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$ in $\hat{N}_{eut}^{\hat{Y}}$. But \hat{N}_{eut}^f is not a $\hat{N}_{eut}C\alpha GS$ irresolute mapping. Since $\hat{E}_{22}^* = \langle y, (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{Y}}$ but \hat{N}_{eut}^{f*} but \hat{N}_{eut}^{f*}

Theorem 3.6. Let $\dot{N}_{eut}^{f_*}: (\dot{N}_{eut}^{\dot{X}}, \dot{N}_{eut}^t) \to (\dot{N}_{eut}^{\dot{Y}}, \dot{N}_{eut}^s)$ is a $\dot{N}_{eut}C\alpha GS$ irresolute mapping, then $\dot{N}_{eut}^{f_*}$ is a Neutrosophic contra continuous mapping if $\dot{N}_{eut}^{\dot{X}}$ is a $\dot{N}_{eut}\alpha gaT_{1/2}$ space.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. We know that every $\hat{N}_{eut}CS$ is a $\hat{N}_{eut}\alpha GSCS$, \hat{E}_{11}^* is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{Y}}$. By hypothesis, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Since $\hat{N}_{eut}^{\hat{X}}$ is a $\hat{N}_{eut}\alpha gaT_{1/2}$ space, $\hat{N}_{eut}^{f_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}OS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{f_*}$ is a Neutrosophic contracontinuous mapping.

Theorem 3.7. If $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\dot{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\dot{Y}}, \hat{N}_{eut}^s)$ and $\hat{N}_{eut}^{g_*}: (\hat{N}_{eut}^{\dot{Y}}, \hat{N}_{eut}^s) \to (\hat{N}_{eut}^{\dot{Z}}, \hat{N}_{eut}^d)$ are $\hat{N}_{eut}C\alpha GS$ irresolute mapping, then $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\dot{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\dot{Z}}, \hat{N}_{eut}^d)$ is a $\hat{N}_{eut}\alpha GS$ irresolute mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\dot{Z}}$. Then $\hat{N}_{eut}^{g_*-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\dot{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ irresolute mapping, $\hat{N}_{eut}^{f_*-1}(\hat{N}_{eut}^{g_*-1}\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\dot{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^{\hat{*}})$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\dot{X}}$. Hence $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}\alpha GSCS$ irresolute mapping.

Theorem 3.8. If $\hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s)$ is a $\hat{N}_{eut}C\alpha GS$ irresolute mapping and $\hat{N}_{eut}^{g_*}: (\hat{N}_{eut}^{\hat{Y}}, \hat{N}_{eut}^s) \to (\hat{N}_{eut}^{\hat{Z}}, \hat{N}_{eut}^d)$ is a $\hat{N}_{eut}C\alpha GS$ continuous mappings, then $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}: (\hat{N}_{eut}^{\hat{X}}, \hat{N}_{eut}^t) \to (\hat{N}_{eut}^{\hat{Z}}, \hat{N}_{eut}^d)$ is a $\hat{N}_{eut}\alpha GS$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then by hypothesis, $\hat{N}_{eut}^{g_*^{-1}}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ irresolute mapping, $\hat{N}_{eut}^{f_*^{-1}}(\hat{N}_{eut}^{g_*^{-1}}\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}\alpha GS$ continuous mapping.

Theorem 3.9. If $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ is a $N\alpha GS$ irresolute mapping and $\grave{N}_{eut}^{g_*}: (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ is a $NC\alpha GS$ continuous mappings, then $\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ is a $NC\alpha GS$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then by hypothesis, $\hat{N}_{eut}^{g_*}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}\alpha GS$ irresolute mapping, $\hat{N}_{eut}^{f_*}(\hat{N}_{eut}^{g_*}\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Theorem 3.10. Let $\grave{N}_{eut}^{f_*}: (\grave{N}_{eut}^{\grave{X}}, \grave{N}_{eut}^t) \to (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s)$ and $\grave{N}_{eut}^{g_*}: (\grave{N}_{eut}^{\grave{Y}}, \grave{N}_{eut}^s) \to (\grave{N}_{eut}^{\grave{Z}}, \grave{N}_{eut}^d)$ be any two mappings. If the mapping $\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*}$ is a $\grave{N}_{eut}C\alpha GS$ irresolute mapping and X is a $\grave{N}_{eut}\alpha gaT_{1/2}$ space, then

- (1) $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut} \alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$ for each $\hat{N}_{eut} \alpha GSCS$ in $\hat{N}_{eut}^{\hat{Z}}$.
- (2) \hat{N}_{eut} - $cl(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(Neu-int(\hat{E}_{22}^*)) \subseteq (\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ for each Neutrosophic set \hat{E}_{22}^* of $\hat{N}_{eut}^{\hat{Z}}$.

Proof. (1) Let \hat{E}_{22}^* be a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\dot{Z}}$. Then \hat{E}_{22}^* is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\dot{Z}}$. By hypothesis, \hat{E}_{22}^* is a $\hat{N}_{eut}\alpha GSCS$ in $\hat{N}_{eut}^{\dot{X}}$. This implies \hat{E}_{22}^* is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\dot{X}}$. (2) Let \hat{E}_{22}^* be any $\hat{N}_{eut}S$ in $\hat{N}_{eut}^{\dot{Z}}$ and \hat{N}_{eut} -int $(\hat{E}_{22}^*) \subseteq \hat{E}_{22}^*$. Then $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{N}_{eut}$ -int $(\hat{E}_{22}^*)) \subseteq (\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$. Since \hat{N}_{eut} -int (\hat{E}_{22}^*) is a $\hat{N}_{eut}SSOS$ in $\hat{N}_{eut}^{\dot{Z}}$.

Therefore by hypothesis, $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\grave{N}_{eut}\text{-}int(\hat{E}_{22}^*))$ is a $\grave{N}_{eut}\alpha GSCS$ in $\grave{N}_{eut}^{\grave{X}}$. Since $\grave{N}_{eut}^{\grave{X}}$ is a $\grave{N}_{eut}\alpha gaT_{1/2}$ space, $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\grave{N}_{eut}\text{-}int(\hat{E}_{22}^*))$ is a $\grave{N}_{eut}CS$ in $\grave{N}_{eut}^{\grave{X}}$. Hence $\grave{N}_{eut}\text{-}cl((\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\grave{N}_{eut}\text{-}int(E))) = (\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\grave{N}_{eut} - int(\hat{E}_{22}^*)) \subseteq (\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$. Therefore $\grave{N}_{eut}\text{-}cl((\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\grave{N}_{eut}\text{-}int(\hat{E}_{22}^*))) \subseteq (\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ for each $\grave{N}_{eut}S$ \hat{E}_{22}^* of $\grave{N}_{eut}CS$.

Theorem 3.11. If $\grave{N}^{f*}_{eut}: (\grave{N}^{\grave{X}}_{eut}, \grave{N}^t_{eut}) \to (\grave{N}^{\grave{Y}}_{eut}, \grave{N}^s_{eut})$ is a $\grave{N}_{eut} C \alpha G S$ continuous mapping and $\grave{N}^{g*}_{eut}: (\grave{N}^{\grave{Y}}_{eut}, \grave{N}^s_{eut}) \to (\grave{N}^{\grave{Z}}_{eut}, \grave{N}^d_{eut})$ is a Neutrosophic continuous mappings, then $\grave{N}^{g*}_{eut} \circ \grave{N}^{f*}_{eut}: (\grave{N}^{\grave{X}}_{eut}, \grave{N}^t_{eut}) \to (\grave{N}^{\grave{Z}}_{eut}, \grave{N}^d_{eut})$ is a $\grave{N}_{eut} \alpha G S$ continuous mapping.

Proof. Let \hat{E}_{11}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$. Then by hypothesis, $\hat{N}_{eut}^{g_*-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Y}}$. Since $\hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping, $\hat{N}_{eut}^{f_*-1}(\hat{N}_{eut}^{g_*-1}(\hat{E}_{11}^*))$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. That is $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{11}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\hat{X}}$. Hence $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha GS$ continuous mapping.

Theorem 3.12. Let $\dot{N}_{eut}^{f_*}: (\dot{N}_{eut}^{\dot{X}}, \dot{N}_{eut}^t) \to (\dot{N}_{eut}^{\dot{Y}}, \dot{N}_{eut}^s)$ and $\dot{N}_{eut}^{g_*}: (\dot{N}_{eut}^{\dot{Y}}, \dot{N}_{eut}^s) \to (\dot{N}_{eut}^{\dot{Z}}, \dot{N}_{eut}^d)$ be any two mappings. Then the given conditions are equivalent if $\dot{N}_{eut}^{\dot{X}}$ is a $\dot{N}_{eut} \alpha gaT_{1/2}$ space.

- (1) $\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*}$ is a $\hat{N}_{eut}C\alpha G$ continuous mapping.
- (2) $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*) \subseteq \hat{N}_{eut} int(\hat{N}_{eut} cl(\hat{N}_{eut} int(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)))$ for each $\hat{N}_{eut}CS$ \hat{E}_{22}^* of $\hat{N}_{eut}^{\hat{Z}}$.

Proof. (1) \Rightarrow (2) Let \hat{E}_{22}^* be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\dot{Z}}$. By hypothesis, $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}\alpha GSOS$ in $\hat{N}_{eut}^{\dot{X}}$. Since $\hat{N}_{eut}^{\dot{X}}$ is a $\hat{N}_{eut}\alpha gaT_{1/2}$ space, $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\hat{N}_{eut}OS$

in $\hat{N}_{eut}^{\hat{X}}$. Therefore $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*) = \hat{N}_{eut}\text{-}int((\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*))$. But \hat{N}_{eut} - $int((\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)) \subseteq \hat{N}_{eut}\text{-}int((\hat{N}_{eut}\text{-}int((\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*))))$. This implies $(\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*) \subseteq \hat{N}_{eut}\text{-}int((\hat{N}_{eut}\text{-}int((\hat{N}_{eut}\text{-}int((\hat{N}_{eut}^{g_*} \circ \hat{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)))))$ for every $\hat{N}_{eut}CS\hat{E}_{22}^*$ in $\hat{N}_{eut}^{\hat{Z}}$.

(2) \Rightarrow (1) Let $\hat{E_{22}}$ be a $\hat{N}_{eut}CS$ in $\hat{N}_{eut}^{\hat{Z}}$.

By hypothesis, $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*) \subseteq \grave{N}_{eut}\text{-}int(\grave{N}_{eut}\text{-}int((\grave{N}_{eut}\text{-}int((\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*))))$. This implies $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\grave{N}_{eut}\alpha OS$ in $\grave{N}_{eut}^{\grave{X}}$ and hence $(\grave{N}_{eut}^{g_*} \circ \grave{N}_{eut}^{f_*})^{-1}(\hat{E}_{22}^*)$ is a $\grave{N}_{eut}\alpha GSOS$ in $\grave{N}_{eut}^{\grave{X}}$. Therefore $\grave{N}_{eut}^{f_*}$ is a $\grave{N}_{eut}C\alpha GS$ continuous mapping.

References

- J. Dontchev, Contra Continuous Functions and Strongly S Closed spaces, Neutrosophic Sets and Systems,
 No 2 (1996), 303–310.
- [2] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On Some New Notions and Functions In Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, **16** (2017), 16–19.
- [3] R. Dhavaseelan, S.Jafari and Hanifpage, Neutrosophic generalized α contra-continuity, *Creat. Math. Inform.*, **27(2)**, (2018), 133–139.
- [4] Erdal Ekici and Etienne E. Kerre, On fuzzy contra continuities, Advances in Fuzzy Mathematics, (2006), 35–44.
- [5] V. Banu Priya and S. Chandrasekar, Neutrosophic α generalized semi homeomorphism, *Malaya Journal of Matematik*, Volume 8, No.4 (2020), 1824–1829.
- [6] V. Banu Priya and S. Chandrasekar, Neutrosophic αgs continuity and Neutrosophic αgs irresolute maps, Neutrosophic Sets and Systems, 28 (2019), 162–170.
- [7] V. Banu Priya and S. Chandrasekar, M. Suresh, Neutrosophic strongly α generalised semi closed set, Advances in Mathematics: Scientific Journal, 9(10) (2020), 8605–8613.
- [8] R. Dhavaseelan and S. Jafari, Generalized Neutrosophic Closed Sets, New Trends in Neutrosophic Theory and Applications, 2 (2018), 261–273.
- [9] Florentin Smarandache, Neutrosophic and Neutrosophic Logic, Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics, University of New Mexico-Gallup, (2002).
- [10] Floretin Smaradache, Neutrosophic Set, Generalization of Intuitionistic Fuzzy set, Journal of Defense Resourses Management, 1 (2010), 107–116.
- [11] D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology, Special Issue-ICRMIT, (2018), 88–91.
- [12] C. Maheswari, M. Sathyabama and S. Chandrasekar, Neutrosophic generalized b-closed Sets in Neutro-sophic Topological Spaces, *Journal of physics: Conference Series* 1139, (2018).
- [13] C. Maheswari and S. Chandrasekar, Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity, Neutrosophic Sets and Systems, 29 (2019), 89–100.
- [14] A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, *Computer Science and Engineering*, **2(7)** (2012), 129–132.
- [15] A.A. Salama and S.A.Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, *IOSR Journal of Mathematics*, **3(4)**, (2012), 31–35.

[16] V.K. Shanthi and S.Chandrasekar and K.Safina Begam Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, *International Journal of Research in Advent Technology*, 6(7) (2018), 1739–1743.

Received: Nov. 5, 2024. Accepted: April 9, 2025