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Abstract. This paper introduces a novel framework, Pentapartitioned Single-Valued Neutrosophic Z-Numbers
(PSVNZNs), to model uncertainty in decision-making problems. By integrating the five-component uncer-
tainty representation of Pentapartitioned Neutrosophic Sets (PNSs) with the reliability aspect of Z-numbers,
PSVNZNs offer a comprehensive approach to tackle complex decision scenarios. A novel scoring function and
various aggregation operators, including weighted arithmetic, geometric, and hybrid averages, are developed
to facilitate decision-making processes. The proposed PSVNZN framework adheres to the properties of linear
averaging operators. To demonstrate its practical application, a multi-criteria decision-making (MCDM) prob-
lem involving electric vehicle selection is considered. A graphical representation of the obtained scores further

enhances the clarity and interpretability of the results.
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1. Introduction

Fuzzy set theory, pioneered by Zadeh [29] in 1985, provides a mathematical framework

for representing and manipulating imprecise or vague information. By allowing elements to
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have degrees of membership within a set, fuzzy sets effectively capture the inherent ambiguity
present in many real-world phenomena. This powerful concept has found widespread applica-
tion across diverse domains, including industrial engineering [3], risk assessment [14], system
analysis [4] and predictive modeling, where it enables more robust and nuanced decision-
making processes. Although fuzzy set theory effectively addresses uncertainty, its limitations
have spurred the development of various extensions.

To address the limitations of fuzzy set theory, several extensions have been developed.
These include: Atanassov’s intuitionistic fuzzy sets (IFS) [1], proposed in 1986, which incor-
porate both membership and non-membership degrees; Pawlak’s rough sets [19], introduced in
1982, which provide a framework for dealing with uncertainty and vagueness in data analysis;
Molodtsov’s soft sets [18], proposed in 1999, which offer a general mathematical framework for
handling uncertainty; and Goguen’s L-fuzzy sets [11], which extend the concept of fuzzy sets
by allowing membership degrees to be defined over a more general lattice structure. While
IF'S offer enhanced flexibility, the inherent dependence of the hesitation margin on membership
and non-membership degrees limits their capacity to represent independent uncertainty.

To accommodate complex forms of uncertainty, authors have developed models with inde-
pendent hesitation parameters. Smarandache [21] introduced neutrosophic sets (NSs), a pow-
erful generalization of fuzzy sets, characterized by three independent membership functions.
Wang et al. [24] made a significant contribution by introducing single-valued neutrosophic
sets (SVNSs). Shapique and Mathivadhana [17] introduced modified neutrosophic numbers to
analyse integral equations. While SVNSs provide greater flexibility than IFSs, the meaning of
indeterminacy in SVNSs remains unclear. Chatterjee et al. |7] addressed this by introducing
Quadripartitioned SVNS (QSVNSs), which differentiate between contradiction and ignorance
within the indeterminacy component.

Building upon the foundations of neutrosophic logic, Smarandache [22] introduced five-
valued neutrosophic logic, which further subdivides the indeterminacy component into ‘un-
known’, ‘ignorance’, and ‘contradiction’. Mallick and Pramanik [15] expanded upon this
concept by proposing Pentapartitioned neutrosophic sets, which incorporate an additional
‘unknown’ component. This extension enables a more comprehensive approach to represent-
ing uncertainty and incompleteness in information, accommodating complex decision-making
scenarios where traditional models may fall short.

In decision-making theory, models that can efficiently manage and process large amounts
of uncertain information are highly valued. QSVNSs have become a well-established math-
ematical tool for handling complex data. QSVNSs classify information into four primary
components: truth, contradiction, ignorance, and falsity, providing a structured approach to

analysing uncertainty across multiple dimensions. However, specific decision-making contexts

A. Mohammed shapique, R. Sudharani, K. Karuppiah, H. Prathab, M. Karthigeyan & S.
Senthil Pentapartitioned Single-Valued Neutrosophic Z-Numbers



Neutrosophic Sets and Systems, Vol. 83, 2025 E

involve an additional element of ‘unknown’ that QSVNSs do not fully capture. To address this
limitation, Pentapartitioned Single-Valued Neutrosophic Sets (PSVNSs) introduce an addi-
tional component, ‘unknown’. Thus Pentapartitioned framework offers a distinct advantage in
scenarios where the unknown plays a significant role, enabling a more nuanced understanding
of uncertainty by addressing ambiguity beyond the scope of the other four categories.

To expand the potential of these sets, a quantitative assessment of reliability can be assigned
to each individual neutrosophic component. Zadeh’s Z-numbers |28| offer a suitable frame-
work for this scenario. A Z-number is composed of two fuzzy numbers: the first component
defines the range of possible values for an uncertain variable, while the second component
represents the degree of confidence in the accuracy of this information. Reliable information
is essential for effective decision-making, as relying on vague or uncertain data can lead to
financial losses, wasted resources, and inefficiencies. By integrating Z-numbers into PSVNSs,
decision-makers gain a dual advantage: they can quantify both cognitive information and its
associated reliability. This combination makes Z-numbers and PSVNSs a powerful tool for cap-
turing and managing imprecise, ambiguous information with greater accuracy. A substantial
advancement arises from integrating Z-numbers with PSVNSs, allowing for the representa-
tion of truth, contradiction, ignorance, unknown, and falsity degrees, each with an associated
reliability measure. This innovative framework enables decision-makers to manage highly un-
certain information more effectively, capturing the complex nature of uncertainty through the
five-dimensional structure of PSVNSs.

Integrating Z-numbers into the PNSVNSs framework can significantly improve the accuracy
and reliability of multi-criteria decision-making (MCDM) when dealing with complex uncer-
tainty. Recognizing the potential of combining Z-numbers with PNSVNSs to enhance flexi-
bility and reliability, a novel hybrid mathematical framework is introduced: Pentapartitioned
Single-Valued Neutrosophic Z-numbers (PNSVNZNs). PNSVNZNs represent Pentapartitioned
neutrosophic values augmented with Pentapartitioned reliability measures, providing a more
comprehensive structure for managing uncertainty. This paper presents the definitions and
operations of PNSVNZNSs, including a score function for ranking. Additionally, three ag-
gregation operators for PNSVNZNs are explored: PNSVNZN Weighted Arithmetic Averag-
ing, PNSVNZN Weighted Geometric Averaging, and PNSVNZN Weighted Hybrid Averag-
ing. These operators are thoroughly validated against essential properties. To demonstrate
the practical application of PNSVNZNs, an MCDM algorithm is developed that leverages
the proposed score function and aggregation operators to rank alternative solutions. This
framework empowers decision-makers to tackle complex scenarios involving imprecise and un-
certain information across five components—truth, contradiction, ignorance, unknown, and

falsity—providing a comprehensive tool for high-stakes decision-making under uncertainty.

A. Mohammed shapique, R. Sudharani, K. Karuppiah, H. Prathab, M. Karthigeyan & S.
Senthil Pentapartitioned Single-Valued Neutrosophic Z-Numbers



Neutrosophic Sets and Systems, Vol. 83, 2025 7|Ujll

The paper is structured as follows. Section 1.1 provides a literature review. Section 1.2
outlines the contributions of this work. Section 2 presents the preliminaries and introduces
the proposed framework. Section 3 defines and investigates the properties of three aggregation
operators. Section 4 applies the proposed framework to a MCDM problem. Section 5 evaluates

electric vehicles (EVs) using the proposed score function. Finally, Section 6 concludes the

paper.

1.1. Literature review

In recent years, there has been a significant increase in interest in Z numbers, resulting in
extensive research in both qualitative and quantitative areas. Researchers have examined vari-
ous aspects of Z numbers, including their utility, distance measures, arithmetic operations, and
applications in decision-making processes. Kang et al. [12] introduced an innovative concept of
total utility for Z numbers, which serves as a powerful tool for representing human knowledge.
This measure allows for a comprehensive assessment of Z numbers, facilitating their ranking
and simplifying decision-making. Importantly, the proposed method is derived directly from
the Z number format, thus avoiding subjective judgments. Shen and Wang [23] developed
a new comprehensive distance measure for Z numbers, which is instrumental in representing
uncertain information. Their measure takes into account both the reliability and uncertainty
components of Z numbers by utilizing fuzzy cut-set theory and Hellinger distance. This con-
tribution enhances the theoretical framework of Z numbers and provides a valuable tool for
decision-making under uncertainty. Aliev et al. [2] presented a general method for constructing
Z number functions and arithmetic operations, essential for addressing both probabilistic and
fuzzy uncertainties in human-centric fields such as economics and decision-making. Yang and
Wang [26] proposed a novel Multi-Criteria Decision-Making (MCDM) method based on dis-
crete Z numbers and the Stochastic Multi-criteria Acceptability Analysis (SMAA) technique.
This approach is particularly beneficial for managing uncertain and incomplete information in
decision-making scenarios.

Several authors have explored various applications of Z-numbers such as renewable energy
selection, multi-criteria group decision-making, and healthcare waste management. Chatter-
jee and Kar [8] proposed a novel method for selecting renewable energy alternatives based
on Z-numbers and the COPRAS framework. Peng et al. [20] introduced a new multi-criteria
group decision-making (MCGDM) method that utilizes uncertain Z-numbers and cloud mod-
els. Chai et al. [9] presented Z-uncertain probabilistic linguistic variables (Z-UPLVs) to over-
come the limitations of traditional probabilistic linguistic term sets in capturing the credibility
of information. Z-UPLVs take into account both linguistic evaluations and probabilistic dis-
tributions, as well as the reliability of information. Furthermore Chen et al. |[10] proposed
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a new group decision-making framework for selecting the best healthcare treatment. This
framework employs Z-numbers to represent expert opinions and their reliability, alongside the
TODIM method, which accounts for bounded rationality to enhance decision-making. Borah
and Dutta [5] analysed mask selection problem using quadripartitioned single-valued neutro-
sophic Z-numbers.

In recent years, researchers have developed several powerful aggregation operators designed
to combine and analyze neutrosophic information. Wei and Wei [25] proposed a novel approach
to address single-valued neutrosophic multiple attribute decision-making (MADM) problems.
They developed single-valued neutrosophic Dombi prioritized aggregation operators. Zhao
et al. [27] proposed a new method for multi-attribute group decision-making problems with
single-valued neutrosophic numbers (SVNNs). They introduced several power Heronian aggre-
gation operators for SVNNs. These operators consider the interrelationship between attributes
and can handle uncertainty and imprecision in decision-making. Khan et al. [13] developed
a new methodology to evaluate air pollution by employing neutrosophic cubic sets (NCSs).
The authors also introduced several aggregation operators specifically designed for NCSs to
facilitate the integration of neutrosophic information. Muniba et al. [16] developed a climate
change prediction model by applying the neutrosophic soft set function integrated with aggre-
gate operators, utilizing the MCDM technique to address uncertainties and enhance prediction
accuracy. Baser and Ulucay [6] introduced the concept of energy, lower energy, and upper en-
ergy of neutrosophic soft sets based on the singular values of their matrix representation. By
analyzing the product of a set and its transpose under a specific norm, they developed a
quantitative method for decision-making in uncertain environments.

The primary goal is to enhance the reliability of MCDM processes, particularly in situa-
tions marked by complex uncertainty. Traditional MCDM seeks to identify the best alternative
from a set based on established criteria. However, when faced with complex uncertainty, repre-
sented by PNSVNs—including truth, contradiction, ignorance, the unknown, and falsity—the
decision-making process becomes more complicated. The varying perspectives of multiple
decision-makers, combined with such uncertainty, can result in suboptimal outcomes unless

reliability is explicitly addressed.

1.2. Scope of the Proposed work

The scope of the proposed work are as follows:

e The notation of Pentapartitioned Single-Valued Neutrosophic Z-Numbers (PSVNZN)
is introduced to model uncertainty and imprecision in decision-making scenarios.
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e A novel score function for PSVNZNs is proposed to rank alternatives effectively. Ad-
ditionally, weighted averaging and geometric aggregation operators for PSVNZNs are
introduced to aggregate information from multiple sources.

e A novel MCDM framework based on PSVNZNs is developed to address the complex
and uncertain nature of EV selection. This framework leverages the proposed score
function and aggregation operators to rank EV alternatives based on multiple criteria,
such as battery range, charging time, initial cost, and environmental impact.

e The proposed work is illustrated by means of a case study on EV selection. Various
uncertain factors, such as the battery range, charging time, safety features and mainte-
nance are considered. By employing PSVNZNSs, these uncertainties can be effectively
modelled and informed decisions can be made.

In summary, our research significantly advances the field of decision-making under
uncertainty by introducing the innovative concept of PSVNZNs and developing a robust
MCDM framework. This framework empowers decision-makers to handle complex and
uncertain information, leading to more accurate and reliable decisions in the context

of EV selection and other real-world applications.

2. Preliminaries

Definition 2.1. [15] A pentapartitioned single-valued neutrosophic set (PSVNS), denoted
by A, maps each element x € X to five independent membership functions: truth T4 (x),
contradiction C4(z), ignorance I4(x), unknown Uga(x), and falsity Fla(z). These functions

Ta,Ca, 14, Uy, Fa: X — [0,1] collectively satisfy the condition:

0 <Ty(x)+Ca(z) +I1a(x) + Us(x) + Fa(z) <5

For simplicity, we represent a PSVNS A in X as A = (Ta,Ca, 14, U, Fa).
Example 2.1 A =(0.9,0.6,0.5,0.3,0.1).

Definition 2.2. [2§] A Z-number is an ordered pair Z = (S1,S52), where S; is a fuzzy
set representing constraints on an uncertain variable, and S is a fuzzy set representing the

certainty or reliability of 5.
Example 2.2 Z = (0.9,0.6).

Definition 2.3. (PSVNZN) A pentapartitioned single-valued neutrosophic Z-number
(PSVNZN) set, denoted Pz in X, is represented as:

Py = [Tp(f, C)(x), CP<£7 C) (:L'), GP({, C) ($)7 UP(Ev C)(CE’), FP<£7 C) (.%')] )
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where Tp, Cp, Gp, Up, and Fp are membership functions over x € X, parameterized by &
and C Each component TP(ga C)($)> CP(&) C)(x)v GP(Ea ()(ZE)’ UP(Ea g)($)> and FP(Ea ()(ZE) is

an ordered pair of functions X — [0,1]% and is defined as:
Tp(&,)(@) = (Tp(x), Th(x)),
Cp(&, Q) () = (Ch(x), Cp(x)),
Gp(€,Q) () = (G (), G (),
Up(¢,¢)(x) = (Up(x), Up(x)),
Fp(&,Q)(@) = (Fp(x), Fp(@)).
The components T5(z), C%(z), G5(x), Us(x), F5(x) satisfies the conditions:
0 < Th(z) + Cp(z) + Go(x) + Up(x) + Fp(x) < 5,
0 < Tp(x) + Cp(w) + Go(x) + Up(w) + Fp(x) < 5.

Here, & denotes the PSVN values for the element x in the universe, while ( represents the
measure of reliability associated with these values. For simplicity, the PSVNZN Py is expressed

as:

Py = [(T5, T5), (C. CF). (G5, G%), (U}, Up), (F5. Ff)|
Example 2.3 P, = [(0.9,0.8),(0.7,0.8), (0.5,0.6), (0.8,0.8), (0.5,0.4)] .

Definition 2.4. (Null PSVNZN) A null PSVNZN set Pz is one where, for each = € X, the

membership values are:

Example 2.4 P; = [(0,0),(0,0),(1,1),(1,1),(1,1)]

Definition 2.5. (Absolute PSVNZN)A absolute PSVNZN set Py is one where, for each

x € X, the membership values are:
TS =T5=1, C4=C%=1, G5=G%=0, US=US=0, F5=F,=0,
Example 2.5 P, =[(1,1),(1,1),(0,0),(0,0),(0,0)]
Definition 2.6. (Complement) The complement of a PSVNZN set P, is defined as:
i [(5.55).(05.05)  (65.65)  (5.05). (1519

Example 2.6 If P; = [(0.9,0.8), (0.7,0.8), (0.5,0.6), (0.8,0.8), (0.5,0.4)] then
P}, = [(0.5,0.4),(0.8,0.8), (0.5,0.6), (0.7,0.8), (0.9,0.8)] .
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Definition 2.7. (Inclusion) Consider two PSVNZNs

= (9.15).(c.8).(0.8). (c5.05). 455
and

o [(1.15).(c1.5).(6.68). (5.05). (o5.55)]
Then, for every x € X, Pz, is said to be included in Pz,, denoted as Pz, C Pg,, if

TR <Ty, CF <Cp, Gp <Gy, UJ<Up, Fi<Fy

and
Ty <Tg, Cp<Cg, Gp<GE, Up<UR, Fp<Fg
Example 2.7
Pz, =1(0.6,0.8),(0.4,0.7),(0.3,0.6),(0.5,0.9) , (0.2,0.5)]
and

Py, = [(0.7,0.9),(0.5,0.8), (0.4,0.7), (0.6,1.0) , (0.3,0.6)] .

For every = € X, we check whether Pz, C Pg,:

(1) First Components:

T8 =06<07=T%, T§ =08<09=T.
(2) Second Components:

C5 =04<05=C%, CY=07<08=C%.
(3) Third Components:

G% =03<04=G%, G%=06<07=GS3
(4) Fourth Components:

US =05<06=U2, UY=09<1.0=U%.
(5) Fifth Components:

Fy =02<03=F2, F§ =05<06=F2.

Since all the conditions hold, we conclude that:

Pz C Pz,.
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Definition 2.8. (Equality) Two PSVNZNs

o [(1.78).(8.8).(.5).(05.08). (.
and
o (157 (F.8). (. 8). (.07 (.5
is said to be equal, in the universe X, if
T =Tg, C3=C%, Gp=G%, U=U2 Fy=Fg
and
TH =T, Cy=0g, G=G%, Up=Up Fp=F2
We can also express this as Pz, = Pz, & Pz, C Pz, and Pz, 2 Pz,.
Example 2.8

Pz, =1(0.7,0.8),(0.6,0.7), (0.9,0.95) , (0.5,0.6) , (0.8,0.85)]

and

Pz, =1(0.7,0.8),(0.6,0.7),(0.9,0.95), (0.5,0.6) , (0.8,0.85)] .
Definition 2.9. (Union) Let
o [(15.75).(5.65). (.5 (.05 (55.79)]
and
o [(15.75).(5.5). (6.8 (05 (55.79)]
be two PSVNZNs. Then Pz, U Py, is defined by
Py UPy, — [ (18 VTS, T8 v TE) . (08 v C§.08 v 0F) . (68 1 65,65 A GE),
(VB nUEUE AU, (FF A FR R AFE) } .
Example 2.9 Let two PSVNZNs be defined as follows:
Pz, =1(0.7,0.8),(0.6,0.7),(0.9,0.95),(0.5,0.6) , (0.8,0.85)]

and

Py, =[(0.6,0.75) , (0.5,0.7) , (0.85,0.9) , (0.6,0.65) , (0.75,0.8)] .

Now, we compute the union Pz U Pz, using the following operations for each pair of
components:
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TS VTS = max(0.7,0.6) = 0.7, T& VTE = max(0.8,0.75) = 0.8,

C8 v O = max(0.6,0.5) = 0.6, C% v O =max(0.7,0.7) = 0.7,

G5 AGS = min(0.9,0.85) = 0.85, G A G = min(0.95,0.9) = 0.9,

US AU =min(0.5,0.6) = 0.5, Us AU = min(0.6,0.65) = 0.6,

FE& A F2 =min(0.8,0.75) = 0.75, F& A FS? = min(0.85,0.8) = 0.8.
Thus, the union of the two PSVNZNs Pz, U Pz, is given by:

Py, U Py, = [(0.7,0.8),(0.6,0.7) , (0.85,0.9), (0.5,0.6) , (0.75,0.8)] .

Definition 2.10. (Intersection) Let

o (5.15). (5.5 (.8).(5.08). (o35
and

o= [(5.15).(05.5).(05.8). (c5.05). (455

two PSVNZNs. Then Pz, N Pgz, is defined by
Py 0 Py, — [ (18 AT, T8 ATE). (08 ACE.08 A 0E) . (G5 v G568 v aE),
(g vug v vUg), (Ff v R FR Y FR) } .

Example 2.10 Let two PSVNZNs be defined as follows:

Pz, =1(0.7,0.8),(0.6,0.7), (0.9,0.95) , (0.5,0.6) , (0.8,0.85)]

and
Pz, =1(0.6,0.75), (0.5,0.7), (0.85,0.9) , (0.6, 0.65) , (0.75,0.8)] .

Now, we compute the intersection Pz, N Pz, using the following operations for each pair of

components:

TS AT = min(0.7,0.6) = 0.6, TS ATS =min(0.8,0.75) = 0.75,

C& A C% = min(0.6,0.5) = 0.5, C% AC$ =min(0.7,0.7) = 0.7,

G5 Vv G2 = max(0.9,0.85) = 0.9, G$ VGE = max(0.95,0.9) = 0.95,

US VU2 = max(0.5,0.6) = 0.6, US VU = max(0.6,0.65) = 0.65,

FE&' v F2 = max(0.8,0.75) = 0.8, FS' v F2 = max(0.85,0.8) = 0.85.
Thus, the intersection of the two PSVNZNs Pz, N Pz, is given by:

Py, N Py, =[(0.6,0.75) , (0.5,0.7), (0.9,0.95) , (0.6, 0.65) , (0.8, 0.85)] .
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Definition 2.11. (Arithmetic operations on PSVINZNs)

o Addition
_(Tgl + Tf)z o nglT]éz,T]gl 4 T]@;2 _ Tlng]?) ’ E
(cf + 0 - cfcp.op + o - cpcg),

Pz, @ Pz, =

&1 C1 G &1 r7é G 776
(6hes.cheg). (vhug upug),
(Ff;l F§2, F}C;} Féz)

e Multiplication

THTE TRTE ), (CRCR . CRCR).
G} + G - GG, GE + G - GRGE),

UR + U - URUR, U + UR —URUE),

(
Pz®PZ:(
B
(

Ffl + Fft — FRFR PR+ F — FRFR)
e For any scalar a
o[0T (-3 o i) - (k).
((e5)"(e5) ) ((5) - (vi)) - ((75) - (5))
e For any scalar a
o, () (18))-((c8)"(c5)) (1= (1-68) 1= (1-68) 7).
oGm0 6 0omya o))
Clearly, the results of the above operations are still PSVNZNs.

Example 2.11 If P, = [(0.5,0.6), (0.4,0.5),(0.8,0.85), (0.6,0.7), (0.7,0.75)] ,
Py, = [(0.3,0.4),(0.5,0.6), (0.7,0.8), (0.65,0.75) , (0.6,0.7)] and a = 2, then

Py, @ Pz, = [(0.65,0.76) , (0.7,0.8) , (0.56,0.6375) , (0.39, 0.525) , (0.42, 0.525)] .

Py, ® Py, = [(0.15,0.24) , (0.2,0.3), (0.94,0.9625) , (0.86,0.925) , (0.88,0.925)] .
2P, = [(0.75,0.84) , (0.64,0.75) , (0.64,0.7225) , (0.36,0.49) , (0.49, 0.5625)] ,
(P2)? = [(0.25,0.36) , (0.16,0.25) , (0.96,0.9775) , (0.84,0.91) , (0.91, 0.9375)] .

Definition 2.12. (Score Function) For comparing and ranking PSVNZNs Py ,i = 1,2 we

define a score function as follows:
S(Pg) =TSTS + C5HCE — GSGS —USUS — FSFS,i=1,2

and S (Pz,) € [-3,2] Thus, between two Pyz,,i = 1,2 the ranking between them can be found
as,
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o If S(le) > S(PZ2) then PZ1 > PZ2
o If S(Pz,) < S (Pgz,) then Pz, < Pgz,
] IfS(PZl) = S(PZQ) then Py = P22

Example 2.12. Assume two PSVNZNs

Py, = (0.9,0.8),(0.5,0.8) , (0.9,0.4), (0.1,0.5), (0.7,0.6)

and
Pz, =(0.5,0.4),(0.7,0.8),(0.4,0.3) ,(0.5,0.8) , (0.1,0.6) .
Then,
S(Pz,)=09x%x0.8+05x08-0.9x04-0.1x0.5-0.7x0.6=0.29
and

S(Pgz,) =0.5% 044 0.7%x 0.8 — 0.4 x 0.3 —0.5x 0.8 — 0.1 x 0.6 =0.18.

Since S(Pz,) > S(Pz,), their ranking is Pz, > Py,.

3. Operators of PSVNZNs

This section introduces three weighted aggregation operators designed specifically for com-

bining information represented by PSVNZNSs.

3.1. PSVNZN weighted arithmetic averaging operator(PSVNZNWAA)

Definition 3.1. Let (Pyg,, Pz,,..., Pz,) be a group of PSVNZNs. Then the PSVNZNWAA
operator is given by PSVNZNW AA (Py,, Pz,, ..., Pz,) = Y -, €;Pz, where ¢; represents the
weight assigned to Pz,. The weights ¢; satisfies the conditions 0 < eg; < 1and e1+ea+...+¢, =
1.

Theorem 1. Let P; = [(Tf:‘,Tﬁi) , (Cg,c%) , (G%,G%) , (Uf;‘, U};i) , (FIEF]%)} i =
1,2,3,...n be the set of PSVNZNs. Then the aggregated value of the operator PSVNZNWAA
is defined as PSVNZNW AA(Pz,, Py,,...,Pz,) = > """ Pz,

(1—ﬁ (1-7)" -

=1

[t
—~
—
2
~—

O
~~
VRS

[S—y
|
[P
o~
[S—y
<%
—
—
|
[t
/~
—
<2
~—
~_
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Theorem 1 can be proved using mathematical induction.

Proof. Setting n = 2 in Equation , we get

1 (1-78)" 1= (1-18) - (1= (1-78)")
(1) e () (- (1))

|1 e (o) (- (1-0))

B ) e ) (o))
((c8)"(c5)" (c#)" (%)) ()" (v5)
(CINGINCINCIN

II

=1

=) (-

) . _ 2
(LT os)" 0 (o5)") (I (08)" T 05 ) (LT ()" T 0%)
L \i=1 i=1 =1 i=1 i=1 i=1
Let n = m be true, then PSVNZNWAA(Pyz,, Pz,,....,Pz,) =Y i~ Pz,

) <1 —}:[1 (1-78) "1 Ul (1 —T]@)Ei) , (1 —21:[1 (1-cf) " _11:[1 (1-cf)
(T (e8) X1 (o)) (TT(05) " 0T (05" ) (11 (5) " 11 (55)
L \i=1 =1 =1 i=1 i=1 i=1
Setting n = m + 1 in Equation ().
PSVNZNWAA(Py,, Py, ... Py, ) = i &Py, @ emi1 Pry s
=1
1—ﬁ(1 TH) ﬁ(1 T ) < ﬁ(l cf) —ﬁ
=1 =1 =1 =1

1=

1
2

T (#5)". 1 (#5)

=1

1— (1 Tfmﬂ)gm“, 1— (1 - Tf;ﬂﬂ)s'”“) : (1 - (1 - C§m+1)5m“, 1—

(o-c5)

)

)

(1-cf) - ﬁ (1- Cf;’)gi> :

)

)

5)

)

(1 - Cﬁm“fmﬂ) :

sy ) (o) ) ) () ()
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After some manipulation, we get

i . T - T&-)Ei - "ﬁl (1 N Tcz-)si) (1 _ Tﬁl (1 - C&)gi 1- Tﬁl (1 - CQ>Ei>
_ ( . 11;[1 ( v i=1 ! 7 i=1 i i=1 g ’
| /mt ., mtl . m+1 ., mtl . m+1 ., Ml . :
(1 (o) T (e5)") (10 (o)™ T0 (09)") (10 (e5)" T0 (55)")
L \ =1 =1 =1 =1 =1 =1 J

It is observed that Equation holds for n € Z7.

3.2. Properties of PSVNZNW AA

The PSVNZNWAA operator exhibits the following properties:
Theorem 2 (Idempotency).
— §i G & G & (G & 776G & G
Let Py, Ty, Ty ), | Cp.Cp ), (G, Gp ), (Up,Up ), (Fp,Fp )|, be aset of PSVNZNSs.
If P, = Pz,i=1,2,..n then PSVNZNW AA(Pyz,, Pz,,...,Pz,) = Pz.
Proof. If PZi = Pz,i = 1, 2, I O then PSVNZNWAA(PZNPZQ, ceey PZn) = Z:’L:l 52'PZZ~

After some simple manipulation, we get

-<1 - (1 - Tg)é&, 1 (1 - Tg)ifj , (1 - (1 - Cﬁ)i;ai, 1- (1 - ij)iiai> :
(6857 e9)% ) (1005 00) %) (9)5 ()%

= [(75.75) . (5 c5) . (65.6%) . (Uh.Up)  (FfFE)| = P

Theorem 3 (Boundedness).

Let Pz, = |(TF,TF), (C§,CF), (G5, GH), (U, UR), (F§, Ff)| i = 1,2,..n be PSVNZNS.
Define,

PZ(min) = |:m1n (TPi (57 C)) ’ Hliin (sz (57 C))v Hliin (GPz (57 C))7 Inz.in (UPi (57 C))’ mz.in (FPi (57 C)):|

(2

_ [ (m (78) min (Tg)) , (m (%) min (cg)) , (m}n (%) min (a%)) ,
(m () min (Ug)) | (m (F) min @g)) ]
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and

Pty = [ (T (€,0) i (Cr (&) (G, (€16, ma (U, (€.6). s (P (.|
= | (e (1) s (75) ) (o (05 ) e () ) (e (65) s (65) ).
(e (15 ) e (U5) ) (mae (757) o (5 )|

Putmin) < PSVNZNWAA(Py,, Pgy, ey P2,) < Pafamao)

then

Proof. Since P, (yin) and P, (yayx) represents the minimum and maximum of PSVNZN respec-

tively, then
Pz(min) < PZZ‘ < Pz(max)'

Introducing the weighted sum on both sides of the above inequality, we get

n n n
> eiPz(min) < Y &Pz <D €iP(max):
i=1 i=1 =1

Using the idempotency property, the above expression becomes
n
Pz (min) < ZEiPZi < Pz(max)-
i=1

Thus
Pz(min) < PSVNZNWAA (Pyz,, Pz,,...,Pz,) < Pz(max).

Theorem 4 (Monotonicity). Let
Pz, = (T8, T5), (CF, CF), (G5, GF). (U, UR), (FE Ff) | and
= [(r5 ) (08,08 (6508 ). (v ) ()
be two sets of PSVNZNs. If Pz, < P} then
PSVNZNW AA (Pyz,, Py, ...,Pz,) < PSVNZNWAA (P}, P;,, ..., P} )

Proof. Since

then
n n
Sebn <3 ar
i—1 i=1

From the above it is concluded that

PSVNZNWAA (Pz,, Pz, ..., Pz,) < PSVNZNWAA (Py,, P}, ... P} ) .
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Theorem 5 (Shift Invariant). Let

pu = [(15.75). (8.05). (68.65) (0%.0%).(s5.75)
and
= (1519 (c5.5) (05.09) (6508) 55 )
be two PSVNZNs. Then

PSVNZNWAA (Py, &~,Pz, ®7, ..., Pz, ®v) = PSVNZNWAA (Py,,Pz,,....Pz,) &~

Proof.
i '3 Eirp€ i ¢ Ci G
TP +T,B _TPT,B7TP +T5 _TPT,B) ,

Cf + C§ = CHC5, Cft + CF - CECE)

G%G%,G%.Gg) : (U%Ug, U]%Ug) ,

I

Pz, &~ = (
B
I

F{FS, FF)

‘We know that

n
PSVNZWAA(Py, ©7, Pz, ©7, s Pz, ©7) =Y _&i(Pz, ©7)
=1

Gi Gi “i ]
(178 -7 + TRTY) ) ,

(1-cf-cs+ C%cg)ai> ,

(Ug.Ug)“> ,

=1

(I (o509)"

n
i=1 =1

@
I
—
-
I

(1-T1-78) e rs T (-7) =TT -78) T (1-75))

<1ﬁl(1c§;) +c§ﬁl(1c§;)“,1ﬁ@cﬁ)»@ﬁ@cﬁ)“)
(T s T ). (TT8)" w5 T 5)705).

(H (r5) " .11 (1) ZF;;) |
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_<1 - ﬁ (1-78)"1- ﬁ (1 —Tj%')a> : (1 —f[ (1-cf) " —f[(1 - C%>€i> ,_

i=1 i=1

(L1(es) " T0(#)") . (TT(o8) TT0%)") (D10) T0C)7)

o[(757).(¢5 &5). (. ¢%) . (05.05), (5. 75

— PSVNZWAA (Py,, Py, ..., Pz.) ® 7.

Theorem 6 (Homogeneity).

Let P, = |(75,75) , (Cf.c5). (65.63) . (Uf Uf), (Ff Ff)| and

y = [(T§,T§) ,(05,05) : (Gé,Gg) , (U§,U§) , (Fé,F§)] be two PSVNZNs.  Then
PSVNZWAA (yPyg,,APy,,....APz.) = vPSVNZW AA (Py,, Py, , ... Pz,

Proof.

PSVNZW AA(yPz,,vPz,, .7 Pz,) = > i (1Pz,)
=1

,_.
|

I 1

— —~ Il
PN
~
2
~—

—
|
=

I 1
7~ N -~ N -~ N -~

=Ry

I
=

/N N
-,
N———
2
N———
o o
T T
on R SR o
N ~
o o

,_.
|

3

1
/\/\/:\/_\
|

PR
=Rl =B

L \z
Thus, we conclude that

PSVNZWAA (yPy, ,¥Py,.....vPz,) = YPSVNZW AA(Py,, Py, ..., Py,)
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3.3. PSVINZN weighted geometric averaging operator (PSVNZNWGA)

Definition 14. Let Pz, = | (T8, 75, (CF. %), (65,68, (UF.UR), (Ff FE)| bea
set of PSVNZNs. Then, the PSVNZN weighted geometric averaging operator is defined as

n
PSVNZNWGA(Py,, Py, ... Pz,) = | [ P%
i=1
where €; is the weight of Pz ,¢ = 1,2,..n and satisfies the condition 0 < ¢; < 1 and

Theorem 7. Let Py, = |(T5, 7). (CF,C5), (G5.6%), (vh,up), (Ff F)]. i =
1,2,3,...n be PSVNZNs. Then, the collected value of the PSVNZNWGA operator is also a
PSVNZN which is defined by the following formula.

PSVNZNWGA (Py,,Py,,....Py,) =

Proof. Setting n =2, we get

PSVNZNWGA (Pz,, Pz,) = Py' ® Py
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After some simplification, the equation reduces to

(T0(r5)" 11 (5)" ) (I (e5)" 1 (c5)°)
=1 =1 =1 =1
) (1—}5[1 (1—G§;)Ei,1—ilj[1(1—(;§;)€i> ,
(1 —f[l (1-uf) "1 —f[l (1- Uf;’)ai> ,
(Teem) o))
Let n=m
PSVNZNWGA (Pgz,,Pgz,,...,Pz,) = ﬁ Py
=1

(L) 1)) (1L (e5) " LT e5)°)
) (1—15[1(1—G§§)€i,1—§(l—G§§>€i>,
) (1—}'[1(1—U§i)5i,1—i1'[1(1—U§)5i),
_<1—f[1(1—F§i)€i,1—f[l<1—F§i)Ei> |

Setting n = m + 1, we get

m
PSVNZNWGA (Pz,, Pz,, ... Pz,.,,) = | | Pz @ Py
=1

r /m+1 e m+1 e m-+1 e m-+1 . 7
(T ()" T (59)") - (TT ()" T (c5))
=1 =1 =1 =1
m-+1 551 m-+1 ggi
1-— 1-G%) ,1— 1-G$ ,
(-Teey T o))
- m—+1 e m—+1 -
(1— (1-u) -1 (1-uf) )
=1 =1
m+1 €\ 5 m+1 ¢\
1-— 1—-F5) 11— 1—-FS
(I -To-m)
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3.4. Properties of PSVNZNWGA operator

In this section the properties of PSVNZNWGA operator such as Idempotency, Monotonic-

ity, Shift Invariant, Homogeneity are presented.

Theorem 8 (Idempotency) Let

o= [(1575). (6. 5) (0.8).(0.05) (. 9)

be a set of PSVNZNs. IfPZ@ = Pz,i = 1,2, ...nthen PSVNZNWGA (PZ17PZ27 ...,Pzn) = Pz.

Theorem 9 (Boundedness). Pz, = [(Tfj,Tlgi), (C’}'S},C%), (G%,G%), (U%,Ufj), (F%,F}gi)]
be a set of PSVNZNs. If

)

_ <mim (7§) min (Tg)> | <mim (%) min (og)) | <m}n (%) min (a%)) |
(m (%) min (Ug)) , (m (F5) min (F,gf)> ]

PZ(min) = |:miin (TPi (57 C)) ’ miin (CPz (é; C))v miin (sz (57 C))? min (UPz (57 C))? miin (FPz (57 C)):|

and

Pt = |1 (T, (6,6)) max (i, (6 6)) i (G (€16 (U, (6 €). max (i, 6.))
= (o (75) e (1) ). (e (05) s (5 ) (e (657) e (65) )
(o (05) e (U) ) - (e (1) e (5 )|

Pymin) < PSVNZNWGA (P, Pzy, ey Pz,) < Prmax)

then

Theorem 10 (Monotonicity). Let Pz and P, be two groups of PSVNZNs. If Pz, < P
then PSVNZNWGA (Pz,, Pz,, ..., Pz,) < PSYNZNWGA (P} , P}, ,....P} ).

Theorem 11 (Shift Invariant). Let

= [(175). (5.0, (6.05) (0.05). (1558
and
= (s 5) 5.9, (. 08) (050 o)

be two PSVNZNs. Then

PSVNZNWGA (Py, ® v, Pz, ®7,..., P, ®~) = PSVNZNWGA (Pyz,,Pz,,....Pz,) &~
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Theorem 12 (Homogeneity). Let

o= [(1575) (c5.3). (6.05). (15.08) (15.55)
and

= [(1575) (05.9) (0. 5)  (v5.05)  (m5.79)]

be two PSVNZNs. Then
PSVNZNWGA (vPz,,vPz,,...,vPz,) = YyPSVNZNWGA (Py,,Pyz,,...,Pz,) .

The proof of Theorems 8-12 is similar to that of Theorems 2-6.

3.5. PSVNZN weighted hybrid averaging operator (PSVNZNWHA)

Definition 14. Let Pz, = (75,75, (Cf.C5), (65.63) . (U UR), (F§ Ff)| bea
set of PSVNZNs. Then, for any v € [0, 1] the PSVNZNWHA operator is defined as

n v n 1-v
PSVNZNWGA (Py,, Py,, ..., Pz,) = <Z 5Z-PZZ.) R <H PZ’_)
i=1 =1

where ¢; is the weight of Pz,,i = 1,2,3..n and satisfies the condition 0 < ¢ < 1 and

e1+es+...+e, =1.

Theorem 13. Let Py,

(15.15) (c5.05) (05.65).(v5.05). (5.)] b

set of PSVNZNs. Then, the collected value of the PSVNZNWGA operator is also a PSVNZN,

which is expressed by the following formula: PSVNZNWGA (Py)

(it ) (e

S (C)

i=1

The proof of Theorem is similar to that of Theorem 7.
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3.6. Properties of PSVNZNWHA operator

This section presents the properties of PSVNZNWHA operator such as Idempotency, Mono-

tonicity, Shift Invariant and Homogeneity.

Theorem 14 (Idempotency)
Let Py, = [ (T8, 75), (Cf,CR). (65.63) (US UR) . (FR. Ff )| be a set of PSVNZNS.
If Py, = Py,i=1,2,..n then PSVNZNWHA (Py,, Py,, ..., Ps,) = Py.

Theorem 15 (Boundedness).Pz, = [(Tg,Tfj), (C%,C’%), (G%,G%), (U%,U%), (F]%’,Fg)]
be a group of PSVNZNs. If

Py min) = [mgn (Tp, (€.€)) . min (Cp, (€.0)), min (G, (£.€)), min (Up, (£.¢)). min (Fp, <5,c>>}
= [ (s (2) cin (75) ) (in (05 ) i (€5) ) (sin (65) i (c5) ).
(1in (0) i (05) ) (min (75 min (7)) |

and

Py = | (T, (€.0)) i (Ch, (€.6))-max (G, (6.0 max (U (€.€). s (P, (6.0))
= | (o (1) s (75) ) (s (05 ) e (C5) ) (e (65) max (65) ).
(o (0) cm (05) ) (e () e (£5) ) |

Pemin) < PSVNZNWHA(Py,, Pz, ooy Pz,) < Pufman)

then

Theorem 16 (Monotonicity). Let Pz, and P, be two groups of PSVNZNs. If Pz < P
then PSVNZNWHA (Py,, Pz,, .., P7,) < PSVNZNWHA (P, P}, ..., P} ).

Theorem 17 (Shift Invariant) Let
b= (15.75) (5.5 5.5 (.05) (.5
and 7 = [(T§,T§> , <C§,C§) , (Gg,ag) : (U§,U§) : <F§,F§)} be two PSVNZNs. Then
PSVNZNWHA (Py, &+, Pz, ®7,..., Py, ®7) = PSVNZNWHA (Py,, Py,,....Py,) &~

Theorem 18 (Homogeneity). Let

o= [(175)c5.5).(65.8).(v.05). (0.15)
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v=[(#5)  (65.05) (65.65) . (05.05) . (5. 7]

be two PSVNZNs. Then

and

PSVNZNWHA (yPz,,vPyz,,....7Pz,) = yPSVNZNWHA (Py,, Pys,, ..., Py,) .

The proof of Theorems 14—-17 is similar to that of Theorems 2—6.

3.7. Mathematical relationship between the operators

Theorem 19. The PSVNZNWHA operator is a generalization of the PSVNZNWGA and
PSVNZNWAA operators. The aggregated value produced by the PSVNZNWHA operator
is bounded by the values obtained from the PSVNZNWGA and PSVNZNWAA operators.
The parameter v € [0, 1] controls the degree of influence of each operator. Specifically, when
v =1, the PSVNZNWHA operator reduces to the PSVNZNWAA operator, and when v = 0,
it becomes the PSVNZNWGA operator.Mathematically, we can express this relationship as:

S(PSVNZNWGA (Py,,Py,,....Pz,)) < S(PSVNZNWHA (P, Py,,....Pz,))
< S(PSVNZNWAA(Py,, Py, ..., Pz.))

Proof. We know that

n n n n

H <T1§i)5i <1-— H <1 — Tjgi)aiwhere H <T1§i)8i > 0and1 — H (1 B Tfj)si <1

i=1 i=1 i=1 =1

and

n n n n
' AN i\ ¢ N\ Ei
H (Tf;)a <1- H (1 — TICJ) where H (T}C;)8 >0and1— H (1 _ TIC;) <1.
' i=1 i=1

i=1 1=1
Raising the power 1 — v on both sides of the above expression we get

) (i) ()< (-

i=1 =

‘ 1—v
(1-18) )

The above equation reduces to

<1 Sit _Tg)&>”<ﬁ (15 ) < <1 St _Tg)ﬂ |
)

=1

<1 - f[ (1- Tlﬁf)ei>v (lf[l (78)" B < (1 = ﬁ (1- Tg)&) .

i=1
Similarly, we can write

1(c5)" <1 -TT(-c8) T (cs) <1 -TT (- c8)"

=1 1= =1 1=
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ﬁ<G%)ai S 1_13[(1_(;%)@,12[@%)@ <1-T (1-¢%)".
i—1 i1 .

()" <1 10" 11 ()" <110

i=1 i=1 i=1 i=1
; S _ & G G
By replacing T = Cp and Ty = Cp, we get

(1 - ﬁ (1- C%)Ei>“ (ﬁ (0153)6) 1 < (1 ﬁ (1-c5) >

=1 i=1

(1 - ﬁ (1- C%)EZ)“ (ﬁl ((J}%)5> v < (1 ﬁ (1- CQ) )

=1 =

Replacing 1 — Tfj and 1 — T}_:f by G% and G%, we get

- (1 11 (a%)“)v (ﬁ (- ag)“) ()

=1

Similarly we can obtain

Using the score function S (PSVNZNW AA (Pgz,, Pyz,,...,Pz,))
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1) f ) ) e e )
(et () (s ) (i)

(- freee) (fie) (-fie-a)) (fie))
(ot (fne o) ) (v (o dne) (o))
(e o)) (- (e o)
(e men ) (o)) (- () (i)

Similarly, we can prove

S(PSVNZNWGA (Py,,Py,,....Pz.)) < S(PSVNZNWHA (Py,,Py,,....Pz.)).

4. MCDM application based PSVNZN Approach and score function

This section presents the application of our proposed PSVNZNw a4, PSVNZNwaa, and
PSV NZNw s operators, in conjunction with a novel score function, to address MCDM
problems. The proposed framework is specifically designed to accommodate decision scenarios
where information is expressed in terms of PSVNZN, each associated with a corresponding
reliability measure. Consider an MCDM problem involving a set of m alternatives, denoted
as A = {A1, Ao, ..., A, }, evaluated against a set of n criteria, C' = {C1,Cy, ..., Cy, }. Decision-
makers assign weights €; to each criterion C; (i = 1,2,...,n) using a weight vector W =
{w1,ws, ...,w,}. The performance of each alternative A; (j =1,2,...,m) with respect to each
criterion Cj is assessed by decision-makers using ordered pairs of fuzzy values. The given

information can be represented by an PSVNZN, as follows:

Py = [ 1) () (e ) (v vR)  (F E)]
To facilitate the decision-making process, the decision-makers’ assessments of the alternatives
are structured into a decision matrix, denoted as Pz = [Pz, |mxn. Each element Pz, within

this matrix represents the evaluation of alternative A; with respect to criterion C; and is
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&

expressed using the innovative concept of PSVNZNs.

Algorithm:

(1) Employ one of the aggregation operators to aggregate the individual criteria evaluations

Pz, for each alternative Aj, resulting in an overall performance Py;.

e PSVNZNWAA (PZl,PZZ, ...,Pzn) = Z?:l 52‘PZ¢
o PSVNZNWGA(Py,, Pz,,....Pz,) = ] Py
i=1
n v n 1-v
e PSVNZNWHA (P217PZQ7"'7PZn) = <Z 5iPZ,L-> X <H Pz) R
i=1 =1

(2) Calculate the score value of each alternative Pz, using the proposed score function.

S(Pg) =TSTS + CHCY — GLGS —USUS — FFS

(3) Rank the alternatives based on their calculated score values, with the highest score

indicating the best alternative.

5. An illustrative example : Evaluation of EV

This section presents a MCDM problem which deals with the performance of 6 EV models
E‘/la E‘/za E‘/Sg E‘/ZL, E‘/f), and E‘/G
identified : C1-Battery Range, C2-Charging Time, C3-Safety Features, C4- Maintenance Cost.

To evaluate these EVs, four critical criteria have been

C, Cy Cs Cy

(0.7, 0.8), (0.7, 0.7), (0.8, 0.8), (0.5, 0.8), (0.6, 0.7), (0.7, 0.8), (0.5, 0.6), (0.6, 0.7),
EVi (0.1,0.2), (0.2, 0.4), (0.5,0.6), (0.4,0.3), (0.5,0.6), (0.3, 0.2), (0.4, 0.5), (0.3, 0.4),

(0.3, 0.5) (0.6, 0.5) (0.5, 0.4) (0.2, 0.1)

(0.8, 0.9), (0.7, 0.6), (0.7, 0.9), (0.5,0.7), (0.4, 0.5), (0.3, 0.4), (0.3,0.2), (0.2, 0.3),
EVy (0.4, 0.3), (0.2, 0.2), (0.4,0.4), (0.3,0.2), (0.7,0.6), (0.7, 0.9), (0.7, 0.6), (0.7, 0.9),

(0.3, 0.4) (0.4, 0.3) (0.8, 0.9) (0.5, 0.6)

(0.3, 0.4), (0.5, 0.5), (0.2, 0.4), (0.4, 0.6), (0.8, 0.7), (0.7, 0.6), (0.7, 0.6), (0.6, 0.5),
EVz (0.8, 0.9), (0.8,0.9), (0.7,0.7), (0.8,0.9), (0.2,0.3), (0.3,0.3), (0.1,0.2), (0.2, 0.2),

(0.7, 0.8) (0.5, 0.6) (0.4, 0.5) (0.3, 0.4)

(0.2, 0.3), (0.4, 0.5), (0.3,0.3), (0.4, 0.5), (0.6, 0.6), (0.6, 0.4), (0.5, 0.5), (0.6, 0.4),
EVy (0.7,08), (0.9, 0.9), (0.7,0.5), (0.7, 0.5), (0.3,0.4), (0.3,0.2), (0.3, 0.4), (0.3, 0.2),

(0.8,0.9) (0.6,0.4) (0.4,0.5) (0.7,0.8)

(0.7, 0.6), (0.7, 0.7), (0.6, 0.6), (0.7, 0.6), (0.3, 0.2), (0.4, 0.3), (0.2, 0.1), (0.3, 0.2),
EVs (0.4, 0.6), (0.6, 0.5), (0.4, 0.6), (0.6,0.9), (0.7,0.9), (0.9, 0.9), (0.7, 0.9), (0.7, 0.7),

(0.8,0.9) (0.5,0.4) (0.8,0.5) (0.8,0.9)

(0.2, 0.4), (0.4, 0.5), (0.3, 0.4), (0.5, 0.6), (0.2,0.2), (0.3, 0.3), (0.3,0.3), (0.4, 0.4),
EVs (0.7,0.8), (0.8, 0.9), (0.6,0.5), (0.7,0.9), (0.6,0.8), (0.7, 0.8), (0.7, 0.9), (0.8, 0.9),

(0.5,0.8) (0.8,0.9) (0.5,0.6) (0.5,0.8)

TABLE 1. Preference Ratings of EV Alternatives in Terms of PSVNZNs
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The weight vector is given by € = (0.4,0.2,0.3,0.1) and v = 0.5 The preference information
for each EV (EVy, EVa, EV3, EVy, EVs, EVg) with respect to each criterion (Cq, Cy, Cs, Cy) is
presented in Table 1 in the form of PSVNZNs. This matrix encapsulates the expert evaluations
and preferences for each EV-criterion pair, enabling a comprehensive comparison. By applying
our proposed scoring function, we calculated the scores for each EV under three different
aggregation scenarios. The results are summarized in Table 3. The ranking order of the
6 alternatives EV; > EV, > EVs > EVy > EVs > EVy. Our analysis reveals that EV;
consistently achieves the highest score across all scenarios. This indicates that EV; is the

most reliable and suitable choice among the evaluated EVs.

——PSVNZNWAA
0.5 ——PSVNZNWGA
—=—PSVNZNWHA
O =
I
9]
3]
n
-0.5
q+
_1 5 | 1 | |

EV

FIGURE 1. Score Values for EVs using Different Operators

T T T T T T
[ B GASEA A DA A

0.5

-0.5

Score values of PSVNZNWHA

15 1 1 1 1 1 1 1 1 1 1 1

FIGURE 2. Score Values of PSVNZNWHA vs v
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EV \Operators PSVNZNWAA PSVNZNWGA PSVNZNWHA
(0.6826, 0.7579),  (0.6637, 0.7468),  (0.6731, 0.7523),
(0.6580, 0.7551),  (0.6444, 0.7483),  (0.6512, 0.7517),
EV; (0.2569, 0.3797),  (0.3558, 0.4603),  (0.3081, 0.4214),
(0.2702, 0.3067),  (0.2840, 0.3254),  (0.2771, 0.3162),
(0.3857, 0.3981)  (0.4266, 0.4399)  (0.4065, 0.4194)
(0.6582, 0.8005),  (0.5736, 0.6491),  (0.6144, 0.7208),
(0.5274, 0.5490),  (0.4478, 0.5112),  (0.4860, 0.5298),
EVy (0.5004, 0.4193),  (0.5453, 0.4574),  (0.5233, 0.4387),
(0.3580, 0.3650),  (0.4739, 0.6518),  (0.4188, 0.5298),
(0.4488, 0.5016),  (0.5493, 0.6529)  (0.5016, 0.5840)
(0.5464, 0.5320),  (0.4041, 0.4927),  (0.4699, 0.5120),
(0.5649, 0.5528),  (0.5387, 0.5477),  (0.5517, 0.5502),
EV; (0.4174, 0.5296),  (0.6179, 0.7250),  (0.5282, 0.6404),
(0.5189, 0.5569),  (0.6655, 0.7793),  (0.5988, 0.6873),
(0.5084, 0.6120)  (0.5548, 0.6625)  (0.5321, 0.6381)
(0.3964, 0.4278),  (0.3305, 0.3887),  (0.3619, 0.4078),
(0.4898, 0.4622),  (0.4704, 0.4573),  (0.4800, 0.4597),
EV, (0.4988, 0.5519),  (0.5790, 0.6272),  (0.5406, 0.5913),
(0.5515, 0.4384),  (0.7287, 0.6830),  (0.6512, 0.5781),
(0.6053, 0.6340)  (0.6674, 0.7514)  (0.6377, 0.6984),
(0.5480, 0.4659),  (0.4644, 0.3607),  (0.5045, 0.4100),
(0.5980, 0.5480),  (0.5437, 0.4644),  (0.5702, 0.5045),
EV; (0.5004, 0.7056),  (0.5453, 0.7703),  (0.5233, 0.7400),
(0.6881, 0.6938),  (0.7436, 0.7875),  (0.7172, 0.7449),
(0.7282, 0.6340),  (0.7598, 0.7514)  (0.7445, 0.6984)
(0.2314, 0.3358),  (0.2259, 0.3157),  (0.2286, 0.3256),
(0.3941, 0.4613),  (0.3837, 0.4351),  (0.3889, 0.4480),
EVg (0.5264, 0.7369),  (0.5903, 0.7759),  (0.5595, 0.7571),
(0.7483, 0.8688),  (0.7551, 0.8769),  (0.7517, 0.8729),
(0.5493, 0.7513)  (0.5837, 0.7856)  (0.5668, 0.7691)

TABLE 2. Aggregated values of the EV

5.1. Sensitive analysis

This section analysis two key factors. Firstly, variation in the score values of the operator
PSVNZNWHA for different values of the parameter v. Secondly, a change in the criteria
weights affects the score values for each EV are aggregated under the operators. Table 4
reveals the variation in PSVNZNWHA score values for different EVs as the parameter v
ranges from 0 to 1. EV; demonstrates a clear positive trend, with its PSVNZNWHA values
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Operators

Score values

PSVNZNWAA PSVNZNWGA PSVNZNWHA

S(EV?)
S(EV3)
S(EV:)
S(EV})
S(EV3)

S(EVs)

0.680273072 0.534038504 0.607969219
0.250801858 -0.31563944 -0.044048216
-0.218197152 -0.839919065 -0.545217105
-0.504936422 -1.018728374 -0.773173466
-0.709114935 -1.156474936 -0.946955968
-1.191194441 -1.340429022 -1.267111309

TABLE 3. Score Values of the operators

S(EV1) S(EV;)

S(EVs)

S(EVy) S(EVs) S(EVe)

Rank

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.5340
0.5489
0.5638
0.5786
0.5933
0.6080
0.6226
0.6371
0.6516
0.6660
0.6803

-0.3156
-0.2633
-0.2100
-0.1556
-0.1003
-0.0440
0.0132
0.0713
0.1303
0.1902
0.2508

-0.8399
-0.7839
-0.7264
-0.6674
-0.6070
-0.5452
-0.4821
-0.4177
-0.3522
-0.2856
-0.2182

-1.0187 -1.1565 -1.3404
-0.9717 -1.1167 -1.3260
-0.9236 -1.0758 -1.3114
-0.8745 -1.0340 -1.2968
-0.8243 -0.9910 -1.2820
-0.7732 -0.9470 -1.2671
-0.7211 -0.9018 -1.2521
-0.6681 -0.8554 -1.2371
-0.6144 -0.8079 -1.2219
-0.5599 -0.7591 -1.2066
-0.5049 -0.7091 -1.1912

EVy > EVy > EVy > EVy > EVs > EVg

consistently increasing as v grows, indicating strong and improving performance. EVs begins

with negative values for PSVNZNWHA at lower v values, transitions to positive values around

TABLE 4. Score values of PSVNZNWHA for various v with weights ¢ =
(0.4,0.2,0.3,0.1)

v = 0.6, and continues to show steady improvement thereafter.

In contrast, EVs, EV4, EVs, and EVg maintain predominantly negative PSVNZNWHA
values across the range of v. However, the magnitude of negativity for these models decreases
slightly as v increases, indicating marginal improvement. Among these, EVg performs the

worst, with the most negative PSVNZNWHA values throughout the range, while EV3, EVy,

A. Mohammed shapique, R. Sudharani, K. Karuppiah, H. Prathab, M. Karthigeyan & S.
Senthil Pentapartitioned Single-Valued Neutrosophic Z-Numbers



Neutrosophic Sets and Systems, Vol. 83, 2025 @

Operators

Score Values PSVNZNWAA PSVNZNWGA PSVNZNWHA

S(EWVI) 0.539492046 0.401504237 0.470465988
S(EV,) -0.209214306 -0.787338533 -0.520011862
S(EV3) 0.1831887 -0.316442285 -0.072382084
S(EVy) -0.161957724 -0.445789819 -0.304691556
S(EVs) -0.992134345 -1.353170293 -1.183130234
S(EVg) -1.136478808 -1.314663194 -1.227332371

TABLE 5. Score Values of the operators

0.6

—O6—PSVNZNWAA | |
—*— PSVNZNWGA

—=—PSVNZNWHA | |

Score

FIGURE 3. Score Values for EVs using PSVNZNWAA, PSVNZNWGA &
PSVNZNWHA

and EVj5 show slightly better but still negative results. Overall, EV; is the best performer,
exhibiting a steady upward trend in PSVNZNWHA values, followed by EVa, which shows
moderate improvement. The remaining models lag behind significantly.

Table 5 is presented with the weight vector £ = (0.1,0.3,0.4,0.2) and v = 0.5, yielding the
ranking order EVy > EVs > EVy > EV, > EVs > EVg. Across both Table 3 and Table 4, EV;
consistently ranks first, demonstrating its robustness and superiority regardless of the weight
distribution for criteria. This consistency highlights E'V; as the most favorable alternative
among the six options. However, the rankings of mid-tier alternatives (EV;, EV3, and EVj)
show significant variability. In Table 3, where the first criterion has the highest weight (0.4),
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v |S(EVy) S(EVs) S(EVs) S(EV4) S(EVs) S(EVe) Rank
0 | 0.4015 -0.7873 -0.3164 -0.4458 -1.3532 -1.3147 |EV; > EV3 > EV, > EV, > EV > EV;

0.1| 0.4153 -0.7371 -0.2689 -0.4178 -1.3207 -1.2975|EV; > EV3 > EV,4 > EV; > EVg > EV;

0.2] 0.4291 -0.6853 -0.2207 -0.3897 -1.2875 -1.2802 |EV; > EV3 > EV, > EV, > EVg > EV;

0.3] 0.4429 -0.6319 -0.1718 -0.3614 -1.2535 -1.2627 |EV; > EV3 > EVy > EV,y; > EV5; > EVy

0.4| 0.4567 -0.5768 -0.1224 -0.3331 -1.2187 -1.2451|EV; > EV3 > EV, > EV; > EVs > EVj

0.5] 0.4705 -0.5200 -0.0724 -0.3047 -1.1831 -1.2273 |EV; > EV3 > EVy > EV, > EVs > EVg

0.6] 0.4843 -0.4615 -0.0219 -0.2762 -1.1467 -1.2094 |EV; > EV3 > EVy4 > EVy > EVy > EVy
0.7| 0.4981 -0.4012 0.0290 -0.2477 -1.1094 -1.1914|EV; > EV3 > EV, > EV; > EVs > EVj

0.8/ 0.5119 -0.3390 0.0802 -0.2191 -1.0712 -1.1732|EV; > EV3 > EV,y > EV,y; > EV5 > EVyg

0.9] 0.5257 -0.2751 0.1316 -0.1905 -1.0322 -1.1549 |[EV; > EV3 > EVy4 > EVy > EVy > EVy

1 10.5395 -0.2092 0.1832 -0.1620 -0.9921 -1.1365|EV; > EV3 > EV, > EVa > EVs > EVj

TABLE 6. Score values of PSVNZNWHA for various v with weights W =
(0.1,0.3,0.4,0.2)

EV, ranks second, leveraging its strong performance in that criterion. Conversely, in Table
4, where the third criterion has the highest weight (0.4), EV3 overtakes EV; to secure the
second position. This shift illustrates the sensitivity of the rankings to the weight distribution
of criteria. Meanwhile, E'V5 and EVg consistently rank at the bottom in both tables, reflecting
their inability to compete across all criteria configurations.

From Table 6 it is observed that, across all values of v, EV consistently achieves the highest
score, indicating its dominance under the given weight distribution ¢ = (0.1,0.3,0.4,0.2). The

impact of v on the rankings is evident:

EVy > EVy > EVy > EVo > EVg > EVy, for v <0.2,
EVi > EVy > EVy > EVo > EVs > EVg, for v > 0.3.

Ranking of EV =

The scores of EV1, EVs, EVy, and EVs increase with increasing v, suggesting a positive
influence of v on their performance. In contrast, the scores of EV5; and EVg decrease as v
increases, indicating a negative effect. Notably, the rankings of EVq, EV3, EVy, and EV,
remain stable across all values of v, demonstrating consistency in their comparative positions.

The score difference between EV; and the other events widens with increasing v, underscor-
ing its robustness across the parameter range. Additionally, the scores of EV5 and EVy are
closely spaced, particularly for v > 0.3, leading to a change in their rankings. The weight dis-
tribution £ = (0.1,0.3,0.4,0.2) appears to favor EVy, which remains the top performer for all
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v. These observations highlight the stability of EV; and the dynamic behavior of lower-ranked
events like EVs and EVg as v varies.

These results underscore the importance of weight selection in multi-criteria decision-
making, as changes in criteria prioritization significantly influence the ranking of alternatives.
While mid-tier alternatives are sensitive to weight variations, E'V; emerges as the most ro-
bust and reliable choice across all configurations. This analysis highlights the need for careful

consideration of criteria weights to ensure alignment with decision-making objectives.

6. Conclusion

This research introduces a novel decision-making framework utilizing PSVNZNs. By in-
tegrating the granular uncertainty representation of PNSs with the reliability of Z-numbers,
PSVNZNs offer a powerful tool for addressing complex decision-making challenges. The pro-
posed score function and aggregation operators—weighted arithmetic, geometric, and hybrid
averages—provide reliable methods for evaluating and aggregating information. These op-
erators have been rigorously validated to ensure robustness and consistency. The practical
application of the framework is demonstrated through a case study on electric vehicle selec-
tion, showcasing the ability of PSVNZNs to handle complex uncertainties and imprecisions

effectively.
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