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Abstract. A novel technique used to generate quadripartitioned neutrosophic interval-valued sets applied to
the reciprocal fraction function is presented in this paper. A new extension of neutrosophic interval-valued
sets and interval-valued fuzzy sets are quadripartitioned neutrosophic interval-valued sets. Quadripartitioned
neutrosophic interval-valued weighted averaging, geometric, and generalized concepts will all be covered in this
article. To obtain the weighted average and geometric, we employed an aggregating model. Using algebraic

approaches, a number of sets with significant properties will be further examined.
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1. Introduction

A basic idea that arises in many real-world situations, reciprocal functions describe inverse
connections that are essential for comprehending and forecasting behavior in a variety of
domains. Their adaptability and significance in analytical tasks are demonstrated by their
applications in both the scientific and social sciences. Numerous theories have been proposed
to explain uncertainty, such as fuzzy sets (FS), which have membership grades (MG) ranging
from 0. An intuitionistic FS (IFS) for o, p € [0, 1] was built by Atanassov utilizing two MGs:
0 < 0+ p < 1 and positive o and negative p. The Pythagorean FSs (PFS) concept was
established by Yager [9] and is characterized by its MG and non-MG (NMG) with o +p > 1 to
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0% 4 p? < 1. The use of IFSs and PFSs in several domains has been the subject of numerous
research. They still have limited information-communication capabilities.

Shahzaib et al. |1| defined the SFS for certain AOs using MADM. SFS requires that 0 <
0% + p?> < 1 rather than 0 < 0 + p < 1. Hussain et al. first proposed the concept of an
intelligent decision support system for SFS [2]. Rafiq et al. [4] were the first to present SFSs
and their uses in DM. For example, the DM problem o2 + p? > 1 has a feature. Fermatean FS
(FFS) was developed in 2019 by Senapati et al. [5], with the stipulation that 0 < o3 + p3 < 1.
Yager was the first to suggest the idea of generalized orthopair FSs [§8]. In the RFF-rung
orthogonal pair FS (RFF-ROFS), both the MG and the NMG have power RFF; nevertheless,
their aggregate can never be more than one. In order to solve MADM issues (AOs), aggregation
operators are necessary. A range of IFS averaging operators can be used to average IFS data,
according to Xu et al. [6]. Based on IFSs, Xu et al. [7] developed geometric operators, such as
weighted, ordered weighted, and hybrid operators. Li et al. [3] proposed generalized ordered
weighted averaging operators (GOWSs) in 2002. Zeng et al. |10] explained how to compute
ordered weighted distances using AOs and distance measurements. Reciprocal functions may
be used to represent the flow rate of liquids via pipes. In systems with laminar or turbulent
flow, the relationship between flow rate and pressure drop frequently shows inverse features.
Instead of utilizing exponentiation or logarithms for particular decision making problems,
we use quadripartitioned neutrosophic interval-valued aggregation operators, which are more

accurate.

2. Operations for RFFIVQNN

Assuming that € is a fractional part function, the fractional part of w, where w is a real
number, may be written as follows: € = €¢|w]| = (w) = w — {w} is also included. A fractional
part function can also be used to describe the difference between a real number and its highest
integer value, which is established using the greatest integer function. The fractional compo-
nent of w = 0 if w is an integer. Here, provided it exists, €|w]| = % is a reciprocal fractional
part function. It is commonly known that the fractional portion of w equals 0 whenever it
is an integer. Therefore, for e|w| = % to be defined, w cannot be an integer. Its domain is

elw| = %, which includes all real numbers with the exception of integers.

Definition 2.1. The NS 1= {c, { | [[¥']|s], [¥J s)J, LL€'J s), L€*] Ls] ], L1£¥) s,
Lumgu,uglﬂq,mﬂmmg € A}, where T, ¢\ 8§ : A — [0,1] denote the
truth MG, contradiction MG, unknown MG and false MG of ¢ € A to J, respec-
tively and 0 < |T%||¢]€ + €] [c]¢ + [4][s] + [[F'|s]¢ < 1. For convenience, 1 =
<U‘Zl, |Tu ], (e e ], [ (e ], |3, LS“JJJ> is represent a IVQNSN.
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We use RFFIVQNWA, RFFIVQNWG, GRFFIVQNWA, and GRFFIVQNWG to describe
the AOs.

3.1. RFFIVQNWA

Definition 3.1. Let J; = (| [T}, T¢], [e, ¢v], [, u¥], [F,5¢]]) be the RFFIVQNNs, W =

|vi,v2,...,un] be the weight of J;, v; > 0 and ||:,;v; = 1. Then RFFIVQNWA
1,32, 03] = L vidi

Theorem 3.2. Let J; = (|| T, T¥|, €}, ey, (UL 4], |5, &4]]) be the REFIVQNNs. Then
RFFIVQNWA 11,32, ..., 1,

M.Palanikumar, Nasreen Kausar, Cuauhtemoc Samaniego, Properties of quadripartitioned
neutrosophic interval-valued set to the reciprocal fraction function via various operators




Neutrosophic Sets and Systems, Vol. 83, 2025

= -l o s ]
= \/ J \/I ®<_>1 | — L@“ B
@’LMJ @y 4]
B (B @ [

Proof If n = 2, then REFIVQNWA|Jy,15] = v1Jy | Jvada, where

o= \6/"['—1@16U17{/'—L|—L¢%J6J“l

ﬂﬂ
|
|
%)
ICES N~

|
—_—
|
c

vUody =

'_
=
N~ DO~

cR
—_ | — | I—
o s m [0

Now, vy | |veds

I_I_

J
= \6/'_®2<—>1 \"_LQ:HEJW?
@ L] J @, [ ]e] v
@71 S ®F, 18

M.Palanikumar, Nasreen Kausar, Cuauhtemoc Samaniego, Properties of quadripartitioned
neutrosophic interval-valued set to the reciprocal fraction function via various operators




Neutrosophic Sets and Systems, Vol. 83, 2025 EF

It valid for n > 3. Thus, RFFIVQNWA |Jy, 15, ..., ;]
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Theorem 3.3. Let J; = (|| T, T¢], |l e, |Ub v |, (&L, 54| |) be the RFFIVQNNs. Then
RFFIVQNWA |11,32,...,3,] = 1.

Proof Since |Tj| = [T, [¢]] = [¢'], [¢(] = [&), [3}] = [§') and |T}] = [T"] ,
leu] = [ev), (4] = (4], [34) = 3] and [J2,, v; = 1. Now, RFEFIVQNWA (11, T, ..., 1,
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Theorem 3.4. Let J; = (|| T, T¥|, (€}, ey, (UL 4], |3, &4]]) be the REFIVQNNs. Then

RFFIVQNWA|11, 15, ..., 3,
= ~~
where@ = minLTéjJ, 15 = max[féjj, L\@E = min[(’iéjj, ¢l = max[(’léjj, ELZ/J = min[ﬂﬁjj,
~~ ~~
LﬂlJ = maXLLléjJ, @ = min[&’ﬁ-jj, LSZJ = maXLSéjJ
and |T'] = min|[TY], [T] = max|TY], |€
min |45 ], [4"] = max|[ ], [§*] = min[F}], [
—~
1,2,...,%5. Then,

—
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A
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A
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IN
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IN
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Proof Since, [T'] = minLTlijJ, 1T = maxLTéjJ and |T'] < |T};] < [T'] and [T¥] =

~~ —~~
min| T, [T] = max [T} ] and [T¢] < [T ] < [T,
——
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Theorem 3.5. Let J; = (|| T, T¥|, |}, e, |ub, a0 ], | 54]))

17 T

and Wi = (LI}, 1, 1%5, 1) L&, ) L€ 10 LI, L L 11 LS, L ST, 10D, be the RE-
FIVQNWAs. For any i, zf there is | T}, J2 LTZ J2 and Let J2 < Lthi],JQ and Lﬂéij_ﬂ >
16,12 and (81,12 > (8}, 12 and |52, 2 < |Sp, [ ond € )2 < L€}, 2 ond )2 >
Luzijﬁ and [}, |* > L%,-JQ or J; < W;. Prove that RFFIVQNWA |11,Js,...,1,] <
REFIVQNW AWy, Wa, ..., Wa.
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Hence, RFFIVQNWA [J1,1,...,J,] < REFIVQNWA | Wi, Wa, ..., W,|.

3.2. RFFIVQNWG
Definition 3.6. Let 1; = (| [T}, T¢[, €L, ¢¥[, (UL, 4], |3, 4]]) be the RFFIVQNNs. Then
RFFNWG Dl,:lz,...,:l | = Zf_ﬂ.-lvl

Corollary 3.7. Let 1; = (|| T}, T4, |el, ey, |4 84|, |F,T4||) be the RFFIVQNNs. Then
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Corollary 3.8. Let J; = (||TL, ¥, |, &), (Ul a4 ], [, 34| ]) be the RFFIVQNNs and all

17 1

are equal. Then RFFNWG|31,32,...,3,] = 3.

In addition to possessing RFFNWG, it also possesses boundedness and monotonicity.

3.3. Generalized RFFIVQNWA (GRFFIVQNWA)

1) 1

Definition 3.9. Let J; = ([ [T}, T¢[, €}, ¢¥ ), (UL, 404], |5, T%]]) be the RFFIVQNN. Then
GRFFIVQNWA [T, T2, ..., ] = L|_|“ U,J“J e
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3.4. Generalized RFFIVQNWG (GRFFIVQNWG)
Definition 3.11. J; = ([|TL, Ty, €, ¢y, [ul, 4], |3, 3%]]) be the RFFIVQNNs. Then

GRFFIVQNWG (11,1, ..., T, = l[ i Lo JiJ“iJ-

[e¢
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Corollary 3.12. Let J; = (| |TL, 3], |&}, ¢, (s, 42, |, 34 ]) be the REFIVQNNs. Then
GRFFIVQNWG|11,72, ..., 3n

v; €t

v; ettt

i '_®?f—>l _LgéJEJe A _®?;>1 _L ﬂeJe

Uj

4. Conclusion:

This paper introduces new weighted operators, including averaging and geometric operators.
These operators are characterized by boundedness, idempotency, commutativity, associativity,
and monotonicity. We examined many standard metrics in order to characterize the weighted
vector. Numerous criteria for aggregation operators have been examined. A few aggregating

methods for these RFFIVQNNs have been studied, and some conclusions have been drawn.
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