

University of New Mexico



# Neutrosophic e-open Sets in a Neutrosophic Topological Spaces

Thangaraja P<sup>1</sup>, Vadivel A<sup>2,\*</sup>, Bobin A<sup>3</sup>, Thayalan S<sup>4</sup>, John Sundar C<sup>5</sup> and Manivannan P<sup>6</sup>
<sup>1</sup>Department of Mathematics, Panimalar Engineering College, Chennai - 600 123, India; thangarajap1991@gmail.com
<sup>2</sup>Department of Mathematics, Arignar Anna Government Arts College, Namakkal - 637 002; Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India; avmaths@gmail.com
<sup>3</sup>Department of Mathematics, IFET College of Engineering, Villupuram - 605 108, India; bobinalbert@gmail.com
<sup>4</sup>Department of Mathematics, Government Arts and Science College, Komarapalayam - 638 183, India; ssthayalan@gmail.com
<sup>5</sup>Department of Mathematics, Sri Venkateshwaraa College of Engineering and Technology, Puducherry - 605 102, India; johnphdau@hotmail.com
<sup>6</sup>Department of Mathematics, Government College of Engineering, Salem - 636 011, India; pamani1981@gmail.com
\*Correspondence: avmaths@gmail.com; Tel.: (+91 9442353356 )

Abstract. This study presents the concept of a neutrosophic *e*-open set, defined as the union of neutrosophic  $\delta \mathcal{P}$ -open sets and  $\delta \mathcal{S}$ -open sets within the framework of neutrosophic topological spaces. It also explores near open sets, highlighting their characteristics and providing illustrative examples of neutrosophic *e*-open sets. Furthermore, we examine fundamental properties and offer examples related to the neutrosophic *e*-interior and *e*-closure. In addition, we demonstrate the application of the neutrosophic score function and its negative counterpart in solving a mobile phone selection problem. This is achieved by utilizing neutrosophic topological spaces structured around various attributes and alternatives, ultimately determining score values to support decision-making.

**Keywords:** Neutrosophic set, Neutrosophic *e*-open set, Neutrosophic *e*-closed set, Neutrosophic *e* interior, Neutrosophic *e* closure, Neutrosophic score function and Neutrosophic negative score function.

### 1. Introduction

The concept of fuzzy sets was initially introduced by Zadeh [46] within the framework of logic and set theory. Chang [7] extended this notion to general topology, establishing the foundation of fuzzy topological spaces. Atanassov [4] later proposed intuitionistic fuzzy

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

sets, incorporating both membership and non-membership degrees, which were further developed topologically by Coker [8]. The theory of neutrosophy and neutrosophic sets was initiated by Smarandache [21, 22] in the early 20th century. Subsequently, Salama and Alblowi [18, 19] introduced neutrosophic sets and neutrosophic crisp sets within the framework of neutrosophic topological spaces. Saha [24] defined  $\delta$ -open sets in fuzzy topological spaces, and Vadivel et al. [10, 29, 30, 32, 33, 40] extended this notion to neutrosophic topological spaces. Ekici [9] introduced e-open sets in general topology, which was further extended to fuzzy and intuitionistic fuzzy contexts by Seenivasan et al. [20] and Chandrasekar et al. [6], respectively. Smarandache [22] also defined single-valued neutrosophic sets characterized by three components: truth (T), indeterminacy (I), and falsehood (F), which were further explored by Wang et al. [43]. Applications of neutrosophic sets in various fields can be found in [1, 2, 5, 11, 12, 16, 17, 25, 26, 28, 31, 36, 44, 45]. In [23], Smarandache introduced the neutrosophic score, accuracy, and certainty functions. Recent contributions by Vadivel et al. [34, 35] involve open set structures in neutrosophic nano topological spaces. Moreover, authors in [27, 37–39, 41, 42] have investigated e-open sets and corresponding classes of continuous and irresolute functions in N-neutrosophic crisp topological spaces. Additional results in nano ideal, neutrosophic, and neutrosophic support soft topological spaces have been studied by Parimala et al. [13-15].

Motivation: In topology, *e*-open sets is defined and introduced in fuzzy topological spaces and intuitionistic topological spaces but not in neutrosophic topological spaces. By these motivation, we have introduce and discuss neutrosophic *e*-open sets in neutrosophic topological spaces.

The organization of this paper is as follows: Section 2 presents the fundamental definitions related to neutrosophic sets. In Section 3, we introduce the concept of neutrosophic *e*-open sets within neutrosophic topological spaces, along with a discussion of their essential properties and illustrative examples. This section also includes an examination of neutrosophic *e*-interior and *e*-closure operators. In Section 4, we demonstrate the application of the neutrosophic score function and neutrosophic negative score function to a mobile phone selection problem. The analysis is carried out using neutrosophic topological spaces, structured around specific attributes and alternatives, to compute score values and determine the optimal choice.

#### 2. Preliminaries

In this section, we present the fundamental definitions and preliminary concepts of neutrosophic sets, which serve as the foundation for the developments in the subsequent sections.

**Definition 2.1.** [18] Let Z be a non-empty set. A neutrosophic set (in-short,  $N_s s$ ) H is an object having the form  $H = \{\langle q, \mu_H(q), \sigma_H(q), \nu_H(q) \rangle : q \in Z\}$  where  $\mu_H, \sigma_H, \nu_H \to [0, 1]$ Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces denotes the degree of membership, indeterminacy and non-membership functions respectively of each element  $q \in Z$  to the set H and  $0 \le \mu_H(q) + \sigma_H(q) + \nu_H(q) \le 3$  for each  $q \in Z$ .

**Definition 2.2.** [18] Let Z be a non-empty set & the  $N_s s$ 's H & H<sub>o</sub> in the form  $H = \{\langle q, \mu_H(q), \sigma_H(q), \nu_H(q) \rangle : q \in Z\}, H_o = \{\langle q, \mu_{H_o}(q), \sigma_{H_o}(q), \nu_{H_o}(q) \rangle : q \in Z\}$ , then

- (i)  $0_N = \langle q, 0, 0, 1 \rangle$  and  $1_N = \langle q, 1, 1, 0 \rangle$ ,
- (ii)  $H \subseteq H_{\circ}$  iff  $\mu_H(q) \le \mu_{H_{\circ}}(q), \sigma_H(q) \le \sigma_{H_{\circ}}(q) \& \nu_H(q) \ge \nu_{H_{\circ}}(q) : q \in \mathbb{Z},$
- (iii)  $H = H_{\circ}$  iff  $H \subseteq H_{\circ}$  and  $H_{\circ} \subseteq H$ ,
- (iv)  $1_N H = \{ \langle q, \nu_H(q), 1 \sigma_H(q), \mu_H(q) \rangle : q \in Z \} = H^c,$
- (v)  $H \cup H_{\circ} = \{ \langle q, \max(\mu_H(q), \mu_{H_{\circ}}(q)), \max(\sigma_H(q), \sigma_{H_{\circ}}(q)), \min(\nu_H(q), \nu_{H_{\circ}}(q)) \rangle : q \in Z \},$
- (vi)  $H \cap H_{\circ} = \{ \langle q, \min(\mu_H(q), \mu_{H_{\circ}}(q)), \min(\sigma_H(q), \sigma_{H_{\circ}}(q)), \max(\nu_H(q), \nu_{H_{\circ}}(q)) \rangle : q \in Z \}.$

**Definition 2.3.** [18] A neutrosophic topology (in-short,  $N_s t$ ) on a non-empty set Z is a family  $\Psi_N$  of neutrosophic subsets of Z satisfying

- (i)  $0_N, 1_N \in \Psi_N$ .
- (ii)  $H_{\phi} \cap H_{\varphi} \in \Psi_N$  for any  $H_{\phi}, H_{\varphi} \in \Psi_N$ .
- (iii)  $\bigcup H_{\phi} \in \Psi_N, \forall H_{\phi} : \phi \in Z \subseteq \Psi_N.$

Then  $(Z, \Psi_N)$  is called a neutrosophic topological space (in-short,  $N_s ts$ ) in Z. The  $\Psi_N$  elements are called neutrosophic open sets (in-short,  $N_s os$ ) in Z. A  $N_s s G$  is called a neutrosophic closed sets (in-short,  $N_s cs$ ) iff its complement  $G^c$  is  $N_s os$ .

**Definition 2.4.** [18,40] Let  $(Z, \Psi_N)$  be  $N_s ts$  on Z and G be an  $N_s s$  on Z, then the neutrosophic interior (resp. closure,  $\delta$  interior &  $\delta$  closure) of G (in-short,  $N_s int(G)$  (resp.  $N_s cl(G)$ ,  $N_s \delta int(G)$  &  $N_s \delta cl(G)$ )) are defined as

$$N_sint(G) = \bigcup \{G_\circ : G_\circ \subseteq G \& G_\circ \text{ is a } N_sos \text{ in } Z\},$$
$$N_scl(G) = \bigcap \{G_\circ : G \subseteq G_\circ \& G_\circ \text{ is a } N_scs \text{ in } Z\},$$
$$N_s\delta int(G) = \bigcup \{B_\circ : B_\circ \subseteq G \& B_\circ \text{ is a } N_sros \text{ in } Z\} \&$$
$$N_s\delta cl(G) = \bigcap \{A_\circ : G \subseteq A_\circ \& A_\circ \text{ is a } N_srcs \text{ in } Z\}.$$

**Definition 2.5.** [3] Let  $(Z, \Psi_N)$  be  $N_s ts$  on Z and H be an  $N_s s$  on Z. Then H is said to be a neutrosophic regular (resp. pre, semi,  $\alpha \& \beta$ ) open set (in-short,  $N_s ros$  (resp.  $N_s \mathcal{P}os$ ,  $N_s \mathcal{S}os$ ,  $N_s \alpha os \& N_s \beta os$ )) if  $H = N_s int(N_s cl(H))$  (resp.  $H \subseteq N_s int(N_s cl(H))$ ,  $H \subseteq N_s cl(N_s int(H))$ ,  $H \subseteq N_s int(N_s cl(N_s int(H))) \& H \subseteq N_s cl(N_s int(N_s cl(H)))$ ).

The complement of an  $N_s \mathcal{P}os$  (resp.  $N_s \mathcal{S}os$ ,  $N_s \alpha os$ ,  $N_s ros \& N_s \beta os$ ) is called a neutrosophic pre (resp. semi,  $\alpha$ , regular &  $\beta$ ) closed set (in-short,  $N_s \mathcal{P}cs$  (resp.  $N_s \mathcal{S}cs$ ,  $N_s \alpha cs$ ,  $N_s rcs \& N_s \beta cs$ )) in Z.

**Definition 2.6.** [40] A set H is said to be a neutrosophic  $\delta$  (resp.  $\delta$ -pre,  $\delta$ -semi &  $e^*$ ) open set (in-short,  $N_s\delta os$  (resp.  $N_s\delta \mathcal{P}os$ ,  $N_s\delta \mathcal{S}os \& N_s e^*os$ )) if  $H = N_s\delta int(H)$  (resp.  $H \subseteq N_sint(N_s\delta cl(H))$ ,  $H \subseteq N_scl(N_s\delta int(H)) \& H \subseteq N_scl(N_sint(N_s\delta cl(H)))$ ).

The complement of an  $N_s\delta os$  (resp.  $N_s\delta \mathcal{P}os$ ,  $N_s\delta \mathcal{S}os \& N_se^*os$ ) is called a neutrosophic  $\delta$  (resp.  $\delta$ -pre,  $\delta$ -semi &  $e^*$ ) closed set (in-short,  $N_s\delta cs$  (resp.  $N_s\delta \mathcal{P}cs$ ,  $N_s\delta \mathcal{S}cs \& N_se^*cs$ )) in Z.

**Definition 2.7.** [23] Let  $s : H \to [0, 1]$ .

(i) The Neutrosophic Score Function (in short,  $N_sSF$ ) is

$$s(\mu_H, \sigma_H, \nu_H) = \frac{2 + \mu_H - \sigma_H - \nu_H}{3}$$

(ii) The Neutrosophic Negative Score Function (in short,  $N_s NSF$ ) is

$$s(\mu_H,\sigma_H,
u_H) = rac{1-\mu_H+\sigma_H+
u_H}{3}$$

#### 3. Neutrosophic *e*-open sets in $N_s ts$

In this section, we introduce the definition of a neutrosophic *e*-open set, explore its fundamental operations, and illustrate the concept through a representative example. Throughout this section, let  $(Z, \Psi_N)$  be any  $N_s ts$ . Let  $G, H_{\circ}, I_{\circ}$  and  $K_{\circ}$  be a  $N_s s$ 's in  $N_s ts$ .

**Definition 3.1.** A set  $H_{\circ}$  is said to be a neutrosophic

- (i) e-open set (briefly,  $N_s eos$ ) if  $H_{\circ} \subseteq N_s cl(N_s \delta int(H_{\circ})) \cup N_s int(N_s \delta cl(H_{\circ}))$ .
- (ii) e-closed set (briefly,  $N_s ecs$ ) if  $H_{\circ} \supseteq N_s cl(N_s \delta int(H_{\circ})) \cap N_s int(N_s \delta cl(H_{\circ}))$ .

The family of all  $N_s eos$  (resp.  $N_s ecs$ ) of Z is denoted by  $N_s eos(Z)$  (resp.  $N_s ecs(Z)$ ).

**Definition 3.2.** A set  $H_{\circ}$  is said to be a neutrosophic *e* interior (resp. *e* closure) of  $H_{\circ}$  (in-short,  $N_{s}eint(H_{\circ})$  (resp.  $N_{s}ecl(H_{\circ})$ )) are defined by  $N_{s}eint(H_{\circ}) = \bigcup \{P : P \subseteq H_{\circ} \& P \text{ is a } N_{s}eos \text{ in } Z\}$  (resp.  $N_{s}ecl(H_{\circ}) = \bigcap \{Q : H_{\circ} \subseteq Q \& Q \text{ is a } N_{s}ecs \text{ in } Z\}$ ).

**Proposition 3.3.** The statements hold; however, their converses do not necessarily hold. Every

- (i)  $N_s \delta os$  (resp.  $N_s \delta cs$ ) is a  $N_s os$  (resp.  $N_s cs$ ).
- (ii)  $N_s os$  (resp.  $N_s cs$ ) is a  $N_s \delta S os$  (resp.  $N_s \delta S cs$ ).
- (iii)  $N_s os$  (resp.  $N_s cs$ ) is a  $N_s \delta \mathcal{P} os$  (resp.  $N_s \delta \mathcal{P} cs$ ).
- (iv)  $N_s \delta Sos$  (resp.  $N_s \delta Scs$ ) is a  $N_s eos$  (resp.  $N_s ecs$ ).
- (v)  $N_s \delta \mathcal{P}os$  (resp.  $N_s \delta \mathcal{P}cs$ ) is a  $N_s eos$  (resp.  $N_s ecs$ ).
- (vi)  $N_s eos$  (resp.  $N_s ecs$ ) is a  $N_s e^* os$  (resp.  $N_s e^* cs$ ).

*Proof.* The proof of (i), (ii) & (iii) are studied in [40].

- (iv)  $H_{\circ}$  is a  $N_s \delta Sos$ , then  $H_{\circ} \subseteq N_s cl(N_s \delta int(H_{\circ})) \subseteq N_s cl(N_s \delta int(H_{\circ})) \cup N_s int(N_s \delta cl(H_{\circ}))$ .  $\therefore H_{\circ}$  is a  $N_s eos$ .
- (v)  $I_{\circ}$  is a  $N_s \delta \mathcal{P}os$ , then  $I_{\circ} \subseteq N_s int(N_s \delta cl(I_{\circ})) \subseteq N_s cl(N_s \delta int(I_{\circ})) \cup N_s int(N_s \delta cl(I_{\circ}))$ .  $\therefore$  $I_{\circ}$  is a  $N_s eos$ .
- (vi)  $H_{\circ}$  is a  $N_s eos$  then  $H_{\circ} \subseteq N_s cl(N_s \delta int(H_{\circ})) \cup N_s int(N_s \delta cl(H_{\circ}))$ . So  $H_{\circ} \subseteq N_s cl(N_s \delta int(H_{\circ})) \cup N_s int(N_s \delta cl(H_{\circ})) \subseteq N_s cl(N_s int(N_s \delta cl(H_{\circ})))$ .  $\therefore$   $H_{\circ}$  is a  $N_s e^* os$ .

Similar observations can be made for the corresponding closed sets.  $\square$ 

**Example 3.4.** Let  $Z = \{a_1, a_2, a_3\}$  and define  $N_s s$ 's  $Z_1, Z_2 \& Z_3$  in Z are

$$\begin{split} &Z_1 = \langle Z, \left(\frac{\mu_{a_1}}{0.2}, \frac{\mu_{a_2}}{0.3}, \frac{\mu_{a_3}}{0.4}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.8}, \frac{\nu_{a_2}}{0.7}, \frac{\nu_{a_3}}{0.6}\right)\rangle, \\ &Z_2 = \langle Z, \left(\frac{\mu_{a_1}}{0.1}, \frac{\mu_{a_2}}{0.1}, \frac{\mu_{a_3}}{0.4}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.9}, \frac{\nu_{a_2}}{0.9}, \frac{\nu_{a_3}}{0.6}\right)\rangle, \\ &Z_3 = \langle Z, \left(\frac{\mu_{a_1}}{0.2}, \frac{\mu_{a_2}}{0.4}, \frac{\mu_{a_3}}{0.4}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.8}, \frac{\nu_{a_2}}{0.6}, \frac{\nu_{a_3}}{0.6}\right)\rangle. \end{split}$$

Then we have  $\Psi_N = \{0_N, Z_1, Z_2, 1_N\}$ , then  $Z_3$  is a  $N_s eos$  but not  $N_s \delta \mathcal{P}os$ .

**Example 3.5.** Let  $Z = \{a_1, a_2, a_3\}$  and define  $N_s s$ 's  $Z_1, Z_2, Z_3 \& Z_4$  in Z are

$$\begin{split} &Z_1 = \langle Z, \left(\frac{\mu_{a_1}}{0.3}, \frac{\mu_{a_2}}{0.5}, \frac{\mu_{a_3}}{0.5}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.7}, \frac{\nu_{a_2}}{0.5}, \frac{\nu_{a_3}}{0.5}\right)\rangle, \\ &Z_2 = \langle Z, \left(\frac{\mu_{a_1}}{0.4}, \frac{\mu_{a_2}}{0.2}, \frac{\mu_{a_3}}{0.6}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.6}, \frac{\nu_{a_2}}{0.8}, \frac{\nu_{a_3}}{0.4}\right)\rangle, \\ &Z_3 = \langle Z, \left(\frac{\mu_{a_1}}{0.4}, \frac{\mu_{a_2}}{0.5}, \frac{\mu_{a_3}}{0.6}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.6}, \frac{\nu_{a_2}}{0.5}, \frac{\nu_{a_3}}{0.4}\right)\rangle, \\ &Z_4 = \langle Z, \left(\frac{\mu_{a_1}}{0.3}, \frac{\mu_{a_2}}{0.5}, \frac{\mu_{a_3}}{0.4}\right), \left(\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}\right), \left(\frac{\nu_{a_1}}{0.7}, \frac{\nu_{a_2}}{0.5}, \frac{\nu_{a_3}}{0.6}\right)\rangle. \end{split}$$

Then we have  $\Psi_N = \{0_N, Z_1, Z_2, Z_3, Z_1 \cap Z_2, 1_N\}$ , then  $Z_4$  is a  $N_s eos$  but not  $N_s \delta Sos$ .

**Example 3.6.** Let  $Z = \{a_1, a_2\}$  and define  $N_s s$ 's  $Z_1$  &  $Z_2$  in Z are

$$Z_{1} = \left\langle Z, \left(\frac{\mu_{a_{1}}}{0.3}, \frac{\mu_{a_{2}}}{0.2}\right), \left(\frac{\sigma_{a_{1}}}{0.5}, \frac{\sigma_{a_{2}}}{0.5}\right), \left(\frac{\nu_{a_{1}}}{0.5}, \frac{\nu_{a_{2}}}{0.5}\right) \right\rangle, Z_{2} = \left\langle Z, \left(\frac{\mu_{a_{1}}}{0.3}, \frac{\mu_{a_{2}}}{0.5}\right), \left(\frac{\sigma_{a_{1}}}{0.5}, \frac{\sigma_{a_{2}}}{0.5}\right), \left(\frac{\nu_{a_{1}}}{0.7}, \frac{\nu_{a_{2}}}{0.6}\right) \right\rangle.$$

Then we have  $\Psi_N = \{0_N, Z_1, 1_N\}$ , then  $Z_2$  is a  $N_s e^* os$  but not  $N_s eos$ .

The other implications are shown in [40].

Theorem 3.7. The statements are true.

- (i)  $N_s \delta \mathcal{P}cl(G) \supseteq G \cup N_s cl(N_s \delta int(G)).$
- (ii)  $N_s \delta \mathcal{P}int(G) \subseteq G \cap N_sint(N_s \delta cl(G)).$
- (iii)  $N_s \delta \mathcal{S}cl(G) \supseteq G \cup N_sint(N_s \delta cl(G)).$
- (iv)  $N_s \delta Sint(G) \subseteq G \cap N_s cl(N_s \delta int(G)).$

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

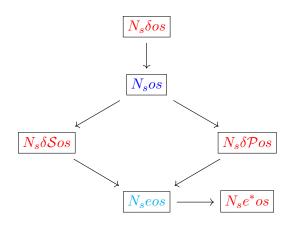


FIGURE 1.  $N_s eos$ 's in  $N_s ts$ .

*Proof.* (i) Since  $N_s \delta \mathcal{P}cl(G)$  is  $N_s \delta \mathcal{P}cs$ , we have

$$N_s cl(N_s \delta int(G)) \subseteq N_s cl(N_s \delta int(N_s \delta \mathcal{P} cl(G))) \subseteq N_s \delta \mathcal{P} cl(G)$$

Thus  $G \cup N_s cl(N_s \delta int(G)) \subseteq N_s \delta \mathcal{P} cl(G)$ .

The remaining cases follow in a similar manner.  $\square$ 

**Theorem 3.8.** Let G is a  $N_s eos$  iff  $G = N_s \delta \mathcal{P}int(G) \cup N_s \delta \mathcal{S}int(G)$ .

*Proof.* Let G is a  $N_s eos$ . Then  $G \subseteq N_s cl(N_s \delta int(G)) \cup N_s int(N_s \delta cl(G))$ . By Theorem 3.7, we have

$$N_s \delta \mathcal{P}int(G) \cup N_s \delta \mathcal{S}int(G) = G \cap (N_sint(N_s \delta cl(G))) \cup (G \cap N_s cl(N_s \delta int(G)))$$
$$= G \cap (N_sint(N_s \delta cl(G))) \cup N_s cl(N_s \delta int(G))$$
$$= G.$$

Conversely, if  $G = N_s \delta \mathcal{P}int(G) \cup N_s \delta \mathcal{S}int(G)$  then, by Theorem 3.7

$$G = N_s \delta \mathcal{P}int(G) \cup N_s \delta \mathcal{S}int(G)$$
  
=  $(G \cap N_sint(N_s \delta cl(G))) \cup (G \cap N_s cl(N_s \delta int(G)))$   
=  $G \cap (N_sint(N_s \delta cl(G)) \cup N_s cl(N_s \delta int(G)))$   
 $\subseteq N_sint(N_s \delta cl(G)) \cup N_s cl(N_s \delta int(G))$ 

and hence G is a  $N_s eos$ .

**Theorem 3.9.** The union (resp. intersection) of any family of  $N_s eos(Z)$  (resp.  $N_s ecs(Z)$ ) is a  $N_s eos(Z)$  (resp.  $N_s ecs(Z)$ ).

Proof. Let  $\{K_{\varphi} : \varphi \in \Psi_N\}$  be a family of  $N_s eos$ 's. For each  $\varphi \in \Psi_N$ ,  $K_{\varphi} \subseteq N_s cl(N_s \delta int(K_{\varphi})) \cup N_s int(N_s \delta cl(K_{\varphi}))$ .

$$\bigcup_{\varphi \in \Psi_N} K_{\varphi} \subseteq \bigcup_{\varphi \in \Psi_N} N_s cl(N_s \delta int(K_{\varphi})) \cup N_s int(N_s \delta cl(K_{\varphi}))$$
$$\subseteq N_s cl(N_s \delta int(\cup K_{\varphi})) \cup N_s int(N_s \delta cl(\cup K_{\varphi}))$$

The other case is similar.  $\Box$ 

**Remark 3.10.** The intersection of two  $N_s eos$ 's need not be  $N_s eos$ .

**Example 3.11.** Let  $Z = \{a_1, a_2\}$  and define  $N_s s$ 's  $Z_1, Z_2 \& Z_3$  in Z are

$$Z_{1} = \left\langle Z, \left(\frac{\mu_{a_{1}}}{0.2}, \frac{\mu_{a_{2}}}{0.1}\right), \left(\frac{\sigma_{a_{1}}}{0.5}, \frac{\sigma_{a_{2}}}{0.5}\right), \left(\frac{\nu_{a_{1}}}{0.7}, \frac{\nu_{a_{2}}}{0.5}\right) \right\rangle,$$
  

$$Z_{2} = \left\langle Z, \left(\frac{\mu_{a_{1}}}{0.3}, \frac{\mu_{a_{2}}}{0.5}\right), \left(\frac{\sigma_{a_{1}}}{0.5}, \frac{\sigma_{a_{2}}}{0.5}\right), \left(\frac{\nu_{a_{1}}}{0.7}, \frac{\nu_{a_{2}}}{0.2}\right) \right\rangle,$$
  

$$Z_{3} = \left\langle Z, \left(\frac{\mu_{a_{1}}}{0.1}, \frac{\mu_{a_{2}}}{0.2}\right), \left(\frac{\sigma_{a_{1}}}{0.5}, \frac{\sigma_{a_{2}}}{0.5}\right), \left(\frac{\nu_{a_{1}}}{0.1}, \frac{\nu_{a_{2}}}{0.1}\right) \right\rangle.$$

Then we have  $\Psi_N = \{0_N, Z_1, 1_N\}$ , then  $Z_2 \& Z_3$  are  $N_s eos$  but  $Z_2 \cap Z_3$  is not  $N_s eos$ .

# **Proposition 3.12.** Let $I_{\circ}$ is a

- (i)  $N_s eos$  and  $N_s \delta int(I_{\circ}) = 0_N$ , then  $I_{\circ}$  is a  $N_s \delta \mathcal{P} os$ .
- (ii)  $N_s eos$  and  $N_s \delta cl(I_{\circ}) = 0_N$ , then  $I_{\circ}$  is a  $N_s \delta Sos$ .
- (iii)  $N_s eos$  and  $N_s \delta cs$ , then  $I_{\circ}$  is a  $N_s \delta Sos$ .
- (iv)  $N_s \delta Sos$  and  $N_s \delta cs$ , then  $I_{\circ}$  is a  $N_s eos$ .

*Proof.* (i) Let  $I_{\circ}$  be a  $N_{s}eos$ , that is

$$I_{\circ} \subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ})) = 0_{N} \cup N_{s}int(N_{s}\delta cl(I_{\circ})) = N_{s}int(N_{s}\delta cl(I_{\circ}))$$

Hence  $I_{\circ}$  is a  $N_s \delta \mathcal{P} os$ .

(ii) Let  $I_{\circ}$  be a  $N_{s}eos$ , that is

$$I_{\circ} \subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ})) = N_{s}cl(N_{s}\delta int(I_{\circ})) \cup 0_{N} = N_{s}cl(N_{s}\delta int(I_{\circ}))$$

Hence  $I_{\circ}$  is a  $N_s \delta Sos$ .

(iii) Let  $I_{\circ}$  be a  $N_s eos$  and  $N_s \delta cs$ , that is

$$I_{\circ} \subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ}))$$
$$= N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ}))$$
$$= N_{s}cl(N_{s}\delta int(I_{\circ})).$$

Hence  $I_{\circ}$  is a  $N_s \delta Sos$ .

(iv) Let  $I_{\circ}$  be a  $N_s \delta Sos$  and  $N_s \delta cs$ , that is

$$I_{\circ} \subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ})).$$

Hence  $I_{\circ}$  is a  $N_s eos$ .

**Theorem 3.13.** Let  $I_{\circ}$  be a  $N_secs$  (resp.  $N_seos$ ) iff  $I_{\circ} = N_secl(I_{\circ})$  (resp.  $I_{\circ} = N_seint(I_{\circ})$ ).

*Proof.* Suppose  $I_{\circ} = N_{s}ecl(I_{\circ}) = \cap \{H_{\circ} : I_{\circ} \subseteq H_{\circ} \& H_{\circ} \text{ is a } N_{s}ecs\}$ . This means  $I_{\circ} \in \cap \{H_{\circ} : I_{\circ} \subseteq H_{\circ} \& H_{\circ} \text{ is a } N_{s}ecs\}$  and hence  $I_{\circ}$  is  $N_{s}ecs$ .

Conversely, suppose  $I_{\circ}$  be a  $N_{s}ecs$  in Z. Then, we have  $I_{\circ} \in \cap \{H_{\circ} : I_{\circ} \subseteq H_{\circ} \& H_{\circ} \text{ is a } N_{s}ecs\}$ . Hence,  $I_{\circ} \subseteq H_{\circ}$  implies  $I_{\circ} = \cap \{H_{\circ} : I_{\circ} \subseteq H_{\circ} \& H_{\circ} \text{ is a } N_{s}ecs\} = N_{s}ecl(I_{\circ})$ .

Similarly for  $I_{\circ} = N_s eint(I_{\circ})$ .

**Theorem 3.14.** Let  $I_{\circ}$  &  $K_{\circ}$  in Z, then the  $N_{secl}$  sets have

- (i)  $N_secl(0_N) = 0_N, N_secl(1_N) = 1_N.$
- (ii)  $N_secl(I_{\circ})$  is a  $N_secs$  in Z.
- (iii)  $N_secl(I_{\circ}) \subseteq N_secl(K_{\circ})$  if  $I_{\circ} \subseteq K_{\circ}$ .
- (iv)  $N_secl(N_secl(I_\circ)) = N_secl(I_\circ).$

*Proof.* The results derive straightforwardly from the definition of  $N_secl$  sets.  $\Box$ 

**Theorem 3.15.** Let  $I_{\circ} \& K_{\circ}$  in Z, then the N<sub>s</sub>eint sets have

- (i)  $N_s eint(0_N) = 0_N, N_s eint(1_N) = 1_N.$
- (ii)  $N_s eint(I_{\circ})$  is a  $N_s ecs$  in Z.
- (iii)  $N_s eint(I_{\circ}) \subseteq N_s eint(K_{\circ})$  if  $I_{\circ} \subseteq K_{\circ}$ .
- (iv)  $N_s eint(N_s eint(I_\circ)) = N_s eint(I_\circ)$ .

*Proof.* The results derive straightforwardly from the definition of  $N_s eint$  sets.  $\Box$ 

# **Proposition 3.16.** Let $I_{\circ}$ , $H_{\circ}$ & $L_{\circ}$ are in Z, then

- (i)  $N_secl(\overline{I_o}) = \overline{N_seint(I_o)}, N_seint(\overline{I_o}) = \overline{N_secl(I_o)}.$
- (ii)  $N_secl(I_{\circ} \cup H_{\circ}) \supseteq N_secl(I_{\circ}) \cup N_secl(H_{\circ}), N_secl(I_{\circ} \cap H_{\circ}) \subseteq N_secl(I_{\circ}) \cap N_secl(H_{\circ}).$
- (iii)  $N_seint(L_{\circ} \cup I_{\circ}) \supseteq N_seint(L_{\circ}) \cup N_seint(I_{\circ}), N_seint(L_{\circ} \cap I_{\circ}) \subseteq N_seint(L_{\circ}) \cap N_seint(I_{\circ}).$

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

*Proof.* (i) The proof is directly from definition.

(ii)  $I_{\circ} \subseteq I_{\circ} \cup H_{\circ}$  or  $H_{\circ} \subseteq I_{\circ} \cup H_{\circ}$ . Hence  $N_{s}ecl(I_{\circ}) \subseteq N_{s}ecl(I_{\circ} \cup H_{\circ})$  or  $N_{s}ecl(H_{\circ}) \subseteq N_{s}ecl(I_{\circ} \cup H_{\circ})$ . Therefore,  $N_{s}ecl(I_{\circ} \cup H_{\circ}) \supseteq N_{s}ecl(I_{\circ}) \cup N_{s}ecl(H_{\circ})$ . The other one is similar. (iii)  $L_{\circ} \subseteq L_{\circ} \cup I_{\circ}$  or  $I_{\circ} \subseteq L_{\circ} \cup I_{\circ}$ . Hence  $N_{s}eint(L_{\circ}) \subseteq N_{s}eint(L_{\circ} \cup I_{\circ})$  or  $N_{s}eint(I_{\circ}) \subseteq N_{s}eint(L_{\circ} \cup I_{\circ})$ . Therefore,  $N_{s}eint(L_{\circ} \cup I_{\circ}) \supseteq N_{s}eint(L_{\circ}) \cup N_{s}eint(I_{\circ})$ . The other one is similar.  $\Box$ 

**Remark 3.17.** The equality stated in part (ii) of Proposition 3.16 does not hold in the provided example.

**Example 3.18.** Let  $Z = \{a_1, a_2, a_3, a_4\}$  and define  $N_s s$ 's  $Z_1, Z_2, Z_3 \& Z_4$  in Z are

$$\begin{split} &Z_1 = \langle Z, (\frac{\mu_{a_1}}{1}, \frac{\mu_{a_2}}{0}, \frac{\mu_{a_3}}{0.2}, \frac{\mu_{a_4}}{0}), (\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}, \frac{\sigma_{a_4}}{0.5}), (\frac{\nu_{a_1}}{0}, \frac{\nu_{a_2}}{1}, \frac{\nu_{a_3}}{0.7}, \frac{\nu_{a_4}}{1})\rangle, \\ &Z_2 = \langle Z, (\frac{\mu_{a_1}}{0}, \frac{\mu_{a_2}}{1}, \frac{\mu_{a_3}}{0}, \frac{\mu_{a_4}}{0}), (\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}, \frac{\sigma_{a_4}}{0.5}), (\frac{\nu_{a_1}}{1}, \frac{\nu_{a_2}}{0}, \frac{\nu_{a_3}}{1}, \frac{\nu_{a_4}}{0.1})\rangle, \\ &Z_3 = \langle Z, (\frac{\mu_{a_1}}{1}, \frac{\mu_{a_2}}{0}, \frac{\mu_{a_3}}{0}, \frac{\mu_{a_4}}{1}), (\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}, \frac{\sigma_{a_4}}{0.5}), (\frac{\nu_{a_1}}{0}, \frac{\nu_{a_2}}{0.2}, \frac{\nu_{a_3}}{0}, \frac{\nu_{a_4}}{0})\rangle, \\ &Z_4 = \langle Z, (\frac{\mu_{a_1}}{0}, \frac{\mu_{a_2}}{0.9}, \frac{\mu_{a_3}}{0.3}, \frac{\mu_{a_4}}{1}), (\frac{\sigma_{a_1}}{0.5}, \frac{\sigma_{a_2}}{0.5}, \frac{\sigma_{a_3}}{0.5}, \frac{\sigma_{a_4}}{0.5}), (\frac{\nu_{a_1}}{1}, \frac{\nu_{a_2}}{0.2}, \frac{\nu_{a_3}}{0}, \frac{\nu_{a_4}}{0})\rangle. \end{split}$$

Then we have  $\Psi_N = \{0_N, Z_1, Z_2, Z_1 \cap Z_2, 1_N\}$  is a  $N_s ts$  in Z, then  $N_s ecl(Z_3 \cup Z_4) \neq N_s ecl(Z_3) \cup N_s ecl(Z_4)$ .

**Proposition 3.19.** If  $I_{\circ}$  is in Z, then

(i) 
$$N_secl(I_{\circ}) \supseteq N_scl(N_s\delta int(I_{\circ})) \cap N_sint(N_s\delta cl(I_{\circ})).$$

(ii)  $N_s eint(I_{\circ}) \subseteq N_s cl(N_s \delta int(I_{\circ})) \cup N_s int(N_s \delta cl(I_{\circ})).$ 

*Proof.* (i)  $N_secl(I_{\circ})$  is a  $N_secs$  and  $I_{\circ} \subseteq N_secl(I_{\circ})$ , then

$$N_{s}ecl(I_{\circ}) \supseteq N_{s}cl(N_{s}\delta int(N_{s}ecl(I_{\circ}))) \cap N_{s}int(N_{s}\delta cl(N_{s}ecl(I_{\circ})))$$
$$\supseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cap N_{s}int(N_{s}\delta cl(I_{\circ})).$$

(ii)  $N_s eint(I_{\circ})$  is a  $N_s eos$  and  $I_{\circ} \supseteq N_s eint(I_{\circ})$ , then

$$N_{s}eint(I_{\circ}) \subseteq N_{s}cl(N_{s}\delta int(N_{s}eint(I_{\circ}))) \cup N_{s}int(N_{s}\delta cl(N_{s}eint(I_{\circ})))$$
$$\subseteq N_{s}cl(N_{s}\delta int(I_{\circ})) \cup N_{s}int(N_{s}\delta cl(I_{\circ})).$$

**Theorem 3.20.** Let  $H_{\circ}$  is in Z, then

- (i)  $N_secl(H_{\circ}) = N_s \delta \mathcal{P}cl(H_{\circ}) \cap N_s \delta \mathcal{S}cl(H_{\circ}).$
- (ii)  $N_s eint(H_{\circ}) = N_s \delta \mathcal{P}int(H_{\circ}) \cap N_s \delta \mathcal{S}int(H_{\circ}).$

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

*Proof.* (i) It follows directly that,  $N_s ecl(H_\circ) \subseteq N_s \delta \mathcal{P}cl(H_\circ) \cap N_s \delta \mathcal{S}cl(H_\circ)$ . Conversely, from Definition 3.2, we have

$$N_{s}ecl(H_{\circ}) \supseteq N_{s}cl(N_{s}\delta int(N_{s}ecl(H_{\circ}))) \cap N_{s}int(N_{s}\delta cl(N_{s}ecl(H_{\circ})))$$
$$\supseteq N_{s}cl(N_{s}\delta int(H_{\circ})) \cap N_{s}int(N_{s}\delta cl(H_{\circ})).$$

Since  $N_{secl}(H_{\circ})$  is  $N_{secs}$ , by Theorem 3.7, we have

$$\begin{split} N_s \delta \mathcal{P}cl(H_{\circ}) \cap N_s \delta \mathcal{S}cl(H_{\circ}) &= (H_{\circ} \cup N_s cl(N_s \delta int(H_{\circ}))) \cap (H_{\circ} \cup N_s int(N_s \delta cl(H_{\circ}))) \\ &= H_{\circ} \cup (N_s cl(N_s \delta int(H_{\circ})) \cap N_s int(N_s \delta cl(H_{\circ}))) \\ &= H_{\circ} \subseteq N_s ecl(H_{\circ}). \end{split}$$

Therefore,  $N_s ecl(H_{\circ}) = N_s \delta \mathcal{P}cl(H_{\circ}) \cap N_s \delta \mathcal{S}cl(H_{\circ}).$ 

(ii) A similar argument applies as in part (i).  $\square$ 

**Theorem 3.21.** Let  $H_{\circ}$  is in Z, then

- (i)  $N_{s}ecl(1 H_{\circ}) = 1 N_{s}eint(H_{\circ}).$
- (ii)  $N_{s}eint(1 H_{\circ}) = 1 N_{s}ecl(H_{\circ}).$

Proof. (i) Let U be  $N_secs$  in Z and  $H_o$  be any  $N_ss$  in Z. Then  $N_seint(H_o) = \bigcup \{1-U : 1-U \subseteq H_o, 1-U$  is a  $N_secs$  in  $Z\} = 1 - \cap \{U : U \supseteq 1 - H_o, U$  is a  $N_secs$  in  $Z\} = 1 - N_secl(H_o)$ . Thus,  $N_secl(1-H_o) = 1 - N_seint(H_o)$ .

(ii) Let  $L_{\circ}$  be  $N_{s}eos$  in Z and  $H_{\circ}$  be any  $N_{s}s$  in Z. Then  $N_{s}ecl(H_{\circ}) = \cap\{1 - L_{\circ} : 1 - L_{\circ} \supseteq H_{\circ}, 1 - L_{\circ}$  is a  $N_{s}ecs$  in  $Z\} = 1 - \cup\{L_{\circ} : L_{\circ} \subseteq 1 - H_{\circ}, L_{\circ}$  is a  $N_{s}eos$  in  $Z\} = 1 - N_{s}eint(H_{\circ})$ . Thus,  $N_{s}eint(1 - H_{\circ}) = 1 - N_{s}ecl(H_{\circ})$ .

# 4. Neutrosophic Function On $(\mu_M, \sigma_M, \nu_M)$ and Numerical Example

The definition of neutrosophic score function and neutrosophic negative score function and the algorithm to get the optimum decision-making are discussed in [31]. The usage of mobile phones has significantly increased, becoming an integral part of daily life. With advancements in technology, modern mobile network services operate on cellular network architectures. Contemporary smartphones are equipped with diverse features such as MMS, text messaging, short-range wireless communication (e.g., infrared, Bluetooth), email, internet access, video games, business applications, and digital photography. In this section, we present a practical example illustrating mobile phone selection based on a person's needs, evaluated using the neutrosophic score function and neutrosophic negative score function. This analysis demonstrates the effectiveness and applicability of these functions within the neutrosophic framework.

### Step 1: Problem field selection:

Consider the following decision-making scenario involving three individuals, referred to as Person 1, Person 2, and Person 3, each representing an alternative (Per) based on their specific mobile phone requirements. The specifications (Spec) considered for evaluation include Performance, Battery Life, and Camera. Additionally, three mobile phone models Poco X1, Poco X2, and Poco X3 are taken as attributes (Mob), defined in terms of the aforementioned specifications. The objective is to identify the most suitable mobile phone for each person by evaluating the alternatives and attributes based on their neutrosophic score values. The data presented in Table 2 and Table 3 are expressed in terms of the membership, indeterminacy, and non-membership functions for the persons and the mobiles, respectively.

| Per<br>Spec  | Person 1               | Person 2                     | Person 3                     |
|--------------|------------------------|------------------------------|------------------------------|
| Performance  | (000.71,000.52,000.29) | (000.64,000.48,000.36)       | $(000.85,\!000.49,\!000.15)$ |
| Battery Life | (000.75,000.50,000.25) | $(000.71,\!000.50,\!000.29)$ | $(000.87,\!000.52,\!000.13)$ |
| Camera       | (000.83,000.45,000.17) | (000.76,000.46,000.24)       | (000.86,000.47,000.14)       |

TABLE 1. Neutrosophic values for Person 1, Person 2 and Person 3

| Spec<br>Mob | Performance            | Battery Life           | Camera                 |
|-------------|------------------------|------------------------|------------------------|
| Poco X1     | (000.72,000.49,000.28) | (000.76,000.51,000.24) | (000.78,000.48,000.22) |
| Poco X2     | (000.65,000.50,000.35) | (000.70,000.48,000.30) | (000.75,000.47,000.25) |
| Poco X3     | (000.73,000.46,000.27) | (000.76,000.52,000.24) | (000.82,000.48,000.18) |

TABLE 2. Neutrosophic values for mobiles with Performance, Battery Life and Camera

### Step 2: Form neutrosophic topologies for $(\tau_j)$ and $(\nu_k)$ :

(i)  $\tau_1^* = L_1 \cup L_2 \cup L_3$ , where  $L_1 = \{(0, 0, 1), (1, 1, 0), (0.71, 0.52, 0.29), (0.75, 0.50, 0.25), (0.83, 0.45, 0.17)\}$ ,  $L_2 = \{(0.75, 0.52, 0.25), (0.83, 0.52, 0.17), (0.83, 0.50, 0.17)\}$  and  $N = \{(0.71, 0.50, 0.29), (0.71, 0.45, 0.29), (0.75, 0.45, 0.25)\}$ .

(ii)  $\tau_2^* = L_1 \cup L_2 \cup L_3$ , where  $L_1 = \{(0, 0, 1), (1, 1, 0), (0.64, 0.48, 0.36), (0.71, 0.50, 0.29), (0.76, 0.46, 0.24)\}$ ,  $L_2 = \{(0.76, 0.48, 0.24), (0.76, 0.50, 0.24)\}$  and  $N = \{(0.64, 0.46, 0.36), (0.71, 0.46, 0.29)\}$ .

(iii)  $\tau_3^* = L_1 \cup L_2 \cup L_3$ , where  $L_1 = \{(0, 0, 1), (1, 1, 0), (0.85, 0.49, 0.15), (0.87, 0.52, 0.13), (0.86, 0.47, 0.14)\}$ ,  $L_2 = \{(0.86, 0.49, 0.14)\}$  and  $N = \{(0.85, 0.47, 0.15)\}$ . (i)

 $\nu_1^* = M_1 \cup M_2 \cup M_3$ , where  $M_1 = \{(0, 0, 1), (1, 1, 0), (0.72, 0.49, 0.28), (0.76, 0.51, 0.24), (0.78, 0.78), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.28), (0.78, 0.2$ 

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

(0.48, 0.22),  $M_2 = \{(0.78, 0.49, 0.22), (0.78, 0.51, 0.22)\}$  and  $M_3 = \{(0.72, 0.48, 0.28), (0.76, 0.48, 0.24)\}$ .

(ii)  $\nu_2^* = M_1 \cup M_2 \cup M_3$ , where  $M_1 = \{(0,0,1), (1,1,0), (0.65, 0.50, 0.35), (0.70, 0.48, 0.30), (0.75, 0.47, 0.25)\}, M_2 = \{(0.70, 0.50, 0.30), (0.75, 0.50, 0.25), (0.75, 0.48, 0.25)\}$  and  $M_3 = \{(0.65, 0.48, 0.35), (0.65, 0.47, 0.35), (0.70, 0.47, 0.30)\}.$ 

(iii)

 $\nu_3^* = M_1 \cup M_2 \cup M_3$ , where  $M_1 = \{(0,0,1), (1,1,0), (0.73, 0.46, 0.27), (0.76, 0.52, 0.24), (0.82, 0.48, 0.18)\}$ ,  $M_2 = \{(0.82, 0.52, 0.18)\}$  and  $M_3 = \{(0.76, 0.48, 0.24)\}$ .

### Step 3: Find Neutrosophic Score Values:

1. Neutrosophic score functions:

- (i)  $N_s SF(L_1) = 0.60733, N_s SF(L_2) = 0.69717$  and  $N_s SF(L_3) = 0.66. N_s SF(\tau_1) = 0.65503.$
- (ii)  $N_s SF(L_1) = 0.58533, N_s SF(L_2) = 0.67666$  and  $N_s SF(L_3) = 0.63. N_s SF(\tau_2) = 0.63066.$
- (iii)  $N_s SF(L_1) = 0.64533$ ,  $N_s SF(L_2) = 0.74333$  and  $N_s SF(L_3) = 0.74333$ .  $N_s SF(\tau_3) = 0.71066$ .
- (i)  $N_s SF(M_1) = 0.60266$ ,  $N_s SF(M_2) = 0.68666$  and  $N_s SF(M_3) = 0.666666$ .  $N_s SF(\nu_1) = 0.65199$ .
- (ii)  $N_s SF(M_1) = 0.58333$ ,  $N_s SF(M_2) = 0.65777$  and  $N_s SF(M_3) = 0.62$ .  $N_s SF(\nu_2) = 0.62036$ .
- (iii)  $N_s SF(M_1) = 0.61066$ ,  $N_s SF(M_2) = 0.70666$  and  $N_s SF(M_3) = 0.68$ .  $N_s SF(\nu_3) = 0.66577$ .
  - 2. Neutrosophic negative score functions:
- (i)  $N_s NSF(L_1) = 0.39267$ ,  $N_s NSF(L_2) = 0.30283$  and  $N_s NSF(L_3) = 0.34$ .  $N_s NSF(\tau_1) = 0.34497$ .
- (ii)  $N_s NSF(L_1) = 0.41467$ ,  $N_s NSF(L_2) = 0.32334$  and  $N_s NSF(L_3) = 0.37$ .  $N_s NSF(\tau_2) = 0.36934$ .
- (iii)  $N_s NSF(L_1) = 0.35467$ ,  $N_s NSF(L_2) = 0.25667$  and  $N_s NSF(L_3) = 0.25667$ .  $N_s NSF(\tau_3) = 0.28934$ .
- (i)  $N_s NSF(M_1) = 0.39734$ ,  $N_s NSF(M_2) = 0.31334$  and  $N_s NSF(M_3) = 0.33334$ .  $N_s NSF(\nu_1) = 0.34801$ .
- (ii)  $N_s NSF(M_1) = 0.41667$ ,  $N_s NSF(M_2) = 0.34223$  and  $N_s NSF(M_3) = 0.38$ .  $N_s NSF(\nu_2) = 0.37964$ .
- (iii)  $N_s NSF(M_1) = 0.38934$ ,  $N_s NSF(M_2) = 0.29334$  and  $N_s NSF(M_3) = 0.32$ .  $N_s NSF(\nu_3) = 0.33423$ .

### **Step 4: Final Decision:**

Thangaraja P, Vadivel A, Bobin A, Thayalan S, John Sundar C and Manivannan P, Neutrosophic *e*-open Sets in a Neutrosophic Topological Spaces

1. By arranging the neutrosophic score values in ascending order, we obtain the following sequences  $\tau_2 \leq \tau_1 \leq \tau_3$  and  $\nu_2 \leq \nu_1 \leq \nu_3$ . Based on these rankings, it follows that Person 2 is best suited for Poco X3, Person 1 for Poco X1, and Person 3 for Poco X2.

2. By arranging the neutrosophic negative score values in ascending order, we get the following sequences  $\tau_3 \leq \tau_1 \leq \tau_2$  and  $\nu_3 \leq \nu_1 \leq \nu_2$ . Based on these rankings, it follows that Person 3 is best suited for Poco X2, Person 1 for Poco X1, and Person 2 for Poco X3.

#### 5. Conclusions

In this paper, we studied the notions of neutrosophic e-open sets and neutrosophic e-closed sets within the framework of neutrosophic topological spaces. We also discussed their corresponding interior and closure operators, and examined several fundamental properties along with illustrative examples. Furthermore, a comparative analysis was conducted between neutrosophic e-open sets and near open sets in  $N_s ts$ . An application of neutrosophic score functions and neutrosophic negative score functions was demonstrated through a mobile phone selection problem, evaluated within a neutrosophic topological space based on attributes and alternatives. For future work, this study can be extended by incorporating the neutrosophic accuracy function and neutrosophic certainty function into real-world applications, providing deeper insights and decision-making support in more complex scenarios.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of the paper.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

- M. Abdel-Basset, G. Manogaran, A. Gamal and F. Smarandache, A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection, Journal of medical systems, 43 (2) (2019), 1-13.
- M. Anandhkumar, H. Prathab, S. M. Chithra, A. S. Prakaash and A. Bobin, Secondary K-Range Symmetric Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, 23 (4) (2024), 23-28.
- I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On some new notions and functions in neutrosophic topological spaces, Neutrosophic Sets and Systems, 16 (2017), 16-19.
- 4. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- S. Broumi and F. Smarandache, Several similarity measures of neutrosophic sets, Neutrosophic Sets and Systems, 1 (2013), 54-62.
- V. Chandrasekar, D. Sobana and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy ecompactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis (SCMA), 12 (1) (2018), 131-153.
- 7. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

- D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88 (1997), 81-89.
- Erdal Ekici, On e-open sets, DP<sup>\*</sup>-sets and DPε<sup>\*</sup>-sets and decomposition of continuity, The Arabian Journal for Science and Engineering, 33 (2A) (2008), 269-282.
- C. John Sundar and A. Vadivel, Somewhat Neutrosopic δ-Continuous Functions in Neutrosophic Topological Spaces, Journal of Neutrosophic and Fuzzy Systems, 6 (2) (2023), 38-48.
- P. Majumdar and S. K. Samanta, On similarity and entropy of neutrosophic sets, Journal of Intelligent and Fuzzy Systems, 26 (3) (2014), 1245-1252.
- N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and A. Aboelfetouh, An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis, IEEE Access, 7 (2019), 29734-29744.
- M. Parimala, D. Arivuoli and R. Udhayakumar, nIg-closed sets and Normality via nIg-closed sets in Nano Ideal Topological Spaces, Punjab University Journal of Mathematics, 52 (4)(2020), 41-51.
- 14. M. Parimala, R. Jeevitha, S. Jafari, F. Smarandache and R. Udhayakumar, Neutrosophic  $\alpha\psi$ -Homeomorphism in Neutrosophic Topological Spaces, Information, **9** (8) (2018), 187.
- M. Parimala, K. Muthusamy, S. Jafari, F. Smarandache and R. Udhayakumar, *Decision-Making via Neu*trosophic Support Soft Topological Spaces, Symmetry, 10 (6) (2018), 217.
- E. Prabu, M. Gopala Krishnan and A. Bobin, Enhanced Academic Stress-Coping Skills Assessment in College Students: A Comparative Study of Neutrosophic Distance Measure and Proposed Cubic Pythagorean Fuzzy Hypersoft TOPSIS Method, International Journal of Neutrosophic Science, 23 (4) (2024), 63-82.
- P. Sai Anu, A. Arulselvam and A. Bobin, Intuitionistic Quadri-Partitioned Neutrosophic Sets with Extended Operators, Neutrosophic Sets and Systems, 80 (2025), 443-464.
- A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics, 3 (4) (2012), 31-35.
- A. A. Salama and F. Smarandache, *Neutrosophic crisp set theory*, Educational Publisher, Columbus, Ohio, USA, 2015.
- V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 141-148.
- F. Smarandache, A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, (1999).
- 22. F. Smarandache, *Neutrosophy and neutrosophic logic*, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- F. Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F), Neutrosophic Sets and Systems, 38 (2020), 1-14.
- Supriti Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.
- P. Thangaraja, A. Vadivel and C. John Sundar, Application Of Neutrosophic Sets Based On Score Function in Medical Diagnosis, Neutrosophic Sets and Systems, 56 (1) (2023), 314-325.
- P. Thangaraja, A. Vadivel and C. John Sundar, Application Of Neutrosophic Sets Based On Neutrosophic Negative Score Function in Medical Diagnosis, Neutrosophic Sets and Systems, 56 (1) (2023), 377-389.
- P. Thangaraja, A. Vadivel and C. John Sundar, e-Open Maps, e-Closed Maps and e-Homeomorphisms in N-Neutrosophic Crisp Topological Spaces, Neutrosophic Sets and Systems, 60 (1) (2023), 287-299.
- N. D. Thanh and M. Ali, Neutrosophic recommender system for medical diagnosis based on algebraic similarity measure and clustering, In Fuzzy Systems (FUZZ-IEEE), IEEE International Conference, (2017), 1-6.

- A. Vadivel and C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science (IJNS), 13 (2) (2021), 66-74.
- A. Vadivel and C. John Sundar, New Operators Using Neutrosophic δ-Open Set, Journal of Neutrosophic and Fuzzy Systems, 1 (2) (2021), 61-70.
- A. Vadivel and C. John Sundar, Application of Neutrosophic Sets Based on Mobile Network Using Neutrosophic Functions, Emerging Trends in Industry 4.0 (ETI 4.0), (2021), 1-8.
- A. Vadivel and C. John Sundar, Somewhat neutrosophic δ-irresolute continuous mappings in neutrosophic topological spaces, TWMS Journal of Applied and Engineering Mathematics, 13 (2) (2023), 773-781.
- A. Vadivel and C. John Sundar, (R1957) Some Types of Continuous Function Via N-Neutrosophic Crisp Topological Spaces, Applications and Applied Mathematics: An International Journal (AAM), 18 (1) (2023), Article 12.
- A. Vadivel, C. John Sundar, K. Kirubadevi and S. Tamilselvan, More on Neutrosophic Nano Open Sets, International Journal of Neutrosophic Science, 18 (4) (2022), 204-222.
- A. Vadivel, C. John Sundar, K. Saraswathi and S. Tamilselvan, Neutrosophic Nano M Open Sets, International Journal of Neutrosophic Science, 19 (1) (2022), 132-147.
- 36. A. Vadivel, N. Moogambigai, S. Tamilselvan and P. Thangaraja, Application of Neutrosophic Sets Based on Neutrosophic Score Function in Material Selection, 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), (2022), 1-5.
- A. Vadivel, M. Nauvluri and P. Thangaraja, On N<sub>nc</sub> DP\*-sets and decomposition of continuity in N<sub>nc</sub>topological spaces, Advances in Mathematics: Scientific Journal, 9 (11) (2020), 9559-9564.
- 38. A. Vadivel, M. Navuluri and P. Thangaraja, Completely  $N_{nc} \ e \ (Weakly \ N_{nc} \ e)$ -irresolute functions via  $N_{nc} \ e$ -open sets, Journal of Physics: Conference Series, **1724** (2021), 012010.
- 39. A. Vadivel, M. Nauvluri and P. Thangaraja, Characterization of completely  $N_{nc}$  (weakly  $N_{nc}$ )-irresolute functions via  $N_{nc}$  e-open sets, Journal of Physics: Conference Series, **1724** (2021), 012009.
- A. Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ-open sets in a neutrosophic topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.
- A. Vadivel, P. Thangaraja, e-open sets in N<sub>nc</sub>-topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012007.
- A. Vadivel, P. Thangaraja, e-continuous and somewhat e-continuity in N<sub>nc</sub>-topological spaces, Journal of Physics: Conference Series, **1724** (2021), 012008.
- H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman, Single valued neutrosophic sets, Multi-space and Multi-structure, 4 (2010), 410-413.
- J. Ye and Q. Zhang, Single valued neutrosophic similarity measures for multiple attribute decision-making, Neutrosophic Sets and Systems, 2 (2014), 48-54.
- J. Ye and S. Ye, Medical diagnosis using distance-based similarity measures of single valued neutrosophic multisets, Neutrosophic Sets and Systems, 7 (2015), 47-54.
- 46. L. A. Zadeh, *Fuzzy sets*, Information and control, **8** (1965), 338-353.

Received: Nov. 3, 2024. Accepted: April 10, 2025