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Abstract: The aim of this paper is to introduce the heptapartitioned neutrosophic weighted 

arithmetic averaging operator and also some of its basic algebraic properties of heptapartitioned 

neutrosophic set. A score and accuracy function of heptapartitioned neutrosophic set has been 

established. With the proposed score function, accuracy function and averaging operator a multi-

criterion decision making problem has been solved and ranked with their alternatives by using 

TOPSIS technique with different weightages which has been compared with the MOORA method. 

Keywords: Neutrosophic set, Quadripartitioned neutrosophic set, Pentapartitioned set, 

Heptapartitioned neutrosophic set and MCDM strategy. 

1. Introduction 

Fuzzy logic, introduced by Lotfi Zadeh [1,2], shifts from traditional binary reasoning to a more 

nuanced approach that accounts for uncertainty and imprecision. Unlike classical logic, which deals 

with binary outcomes (true or false), fuzzy logic allows for degrees of truth, making it useful for 

decision-making in complex or uncertain scenarios. Researchers expanded on this by introducing 

new models to handle uncertainty in more sophisticated ways. 

    Krassimir Atanassov’s [3] intuitionistic fuzzy sets consider both the degree of membership and 

non-membership in a set, improving uncertainty management. Building on this, Smarandache [4] 

introduced neutrosophic sets, which consist of three components—truth, indeterminacy, and 

falsity—capturing a broader range of possibilities when information is contradictory or uncertain. 

This led to models like interval-valued neutrosophic sets, neutrosophic soft sets, and bipolar 

neutrosophic sets, further enhancing uncertainty management across various domains. Salama et al. 

[5], has done a study on exploring the potential of neutrosophic topological spaces in computer 

science. Satyanarayana et al. [6] explored on the polarity of generalized neutrosophic ideals in BCK-

Algebra. 

    The quadripartitioned neutrosophic set (QPNS), introduced by Rajashi Chatterjee [7], refined 

indeterminacy representation, leading to applications like neutrosophic graphs. These graphs, 

mailto:sudhamats@gmail.com
mailto:chitradanya@gmail.com
mailto:rajmahimai19@gmail.com
mailto:thirunavukkarasu.cse@sairamit.edu.in
mailto:jeyanthi.l@panimalar.ac.in.
mailto:nagalakshmi.1979@gmail.com


Neutrosophic Sets and Systems, Vol. 83, 2025     851  

 

 

Sudharani R, Chitra Devi D, Mahimairaj P, Thirunavukkarasu J , Jeyanthi L, Nagalakshmi T, A Novel Approach in 

Heptapartitioned Neutrosophic Sets with its Weighted Arithmetic Averaging Operator 

explored by Hussain et al. [8], have real-life uses in complex decision-making. Mohanasundari et al. 

[9] advanced this by developing weighted aggregation operators for decision-making, facilitating the 

application of QPNS in more intricate scenarios. 

   The pentapartitioned neutrosophic set, introduced by Mallik and Pramanik [10], divided 

indeterminacy into specific categories like contradiction, unknown, and ignorance. This was further 

refined by Radha and Stanis [11], who added layers of relative truth and falsity. Das et al. [12, 13] 

extended this by examining pentapartitioned neutrosophic topological spaces, while Pramanik [14] 

explored interval-valued pentapartitioned neutrosophic sets, enhancing their properties and 

applications. Broumi et al. [15] advanced the study of pentapartitioned neutrosophic graphs, focusing 

on their real-time problem-solving potential in dynamic systems. A notable application of these 

graphs was demonstrated by Quek et al. [16] during the COVID-19 pandemic, where they were used 

to determine the safest paths and towns, showing the practical relevance of neutrosophic sets in crisis 

management. 

   Broumi et al. [17] also examined heptapartitioned neutrosophic sets, further expanding 

neutrosophic theory. The bipolar single-valued heptapartitioned neutrosophic set, introduced by Ali 

et al. [18], is used to solve multi-criteria decision-making (MCDM) problems [19, 20, 21], with 

techniques like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) [22, 23,24] 

and MOORA (Multi-Objective Optimization by Ratio Analysis) [25, 26] helping decision-makers 

evaluate alternatives in complex, multi-criteria scenarios. These methods have widespread 

applications in areas like site selection, supplier evaluation, healthcare decision-making, and 

environmental management. 

   This study's goal is to close the gaps by utilizing a comprehensive framework that incorporates 

efficient sample addresses through the use of heptapartitioned fuzzy logic and neutrosophic 

techniques. Using the heptapartitioned neutrosophic set (HPNS) and its weighted arithmetic 

averaging operator, we presented a new method. We thoroughly examined the characteristics of 

HPNS by putting out and demonstrating two claims as well as a theorem. We use the HPNS 

framework to solve a multi-criteria decision-making problem using the TOPSIS method to illustrate 

the usefulness of this approach and provide a novel viewpoint on managing complexity and 

uncertainty in decision-making processes. The MOORA approach yielded the same outcome as the 

TOPSIS method, which is contrasted with it. Our goal is to add to the expanding corpus of research 

on neutrosophic sets and their useful applications in real-world scenarios. 

2. Materials and Methods  

With the extension of neutrosophic, quadripartitioned, pentapartitioned and heptapartitioned a 

new approach is proposed on heptapartitioned neutrosophic sets. The physical structure of 

heptapartitioned neutrosophic sets have been explained with illustrative examples, some of the 

algebraic properties were discussed with proofs. This work will enhance the future related works in 

optimizing, neural networks, modeling structures, graphs, probabilistic and statistical methods etc. 

     

The main limitation of heptapartitioned neutrosophic fuzzy sets is their increased complexity 

compared to standard neutrosophic sets, which can make them computationally expensive to work 

with, especially when dealing with large datasets or intricate decision-making problems; 

additionally, the interpretation of the additional membership degrees can be challenging and may  

require further refinement depending on the application area.  

 

3. Preliminaries 

Definition 1. Fuzzy Set [1] 

 Let U be a non-empty set. A fuzzy set A on U can be defined as follows: 
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𝐴 = {(𝑥, 𝒯𝐴(𝑥): 𝑥 ∈ 𝑈)}, we assume that 𝒯𝐴(𝑥) ∈ [0,1]. This is so called membership function, whereas 

1 − 𝒯𝐴(𝑥) is the non-membership function. 

Definition 2. Neutrosophic set [4] 

Let U be a non-empty set. A neutrosophic set N on U can be defined as follows: 

𝑁 = {(𝑥, 𝒯𝑁(𝑥), 𝐼𝑁(𝑥), ℱ𝑁(𝑥): 𝑥 ∈ 𝑈)}, whereas 𝒯𝑁(𝑥), 𝐼𝑁(𝑥), ℱ𝑁(𝑥): 𝑈 → [0,1] and 0 ≤ 𝒯𝑁(𝑥) + 𝐼𝑁(𝑥) +

ℱ𝑁(𝑥) ≤ 3 . Here 𝒯𝑁(𝑥)  is truth membership, 𝐼𝑁(𝑥) is indeterminacy and ℱ𝑁(𝑥)  is falsity 

membership function. 

Definition 3. Quadripartitioned neutrosophic set [7] 

Let U be a non-empty set. A quadripartitioned neutrosophic set Q on U can be defined as follows: 

𝑄 = {(𝑥, 𝒯𝑄(𝑥), 𝐶𝑄(𝑥), 𝑈𝑄(𝑥), ℱ𝑄(𝑥): 𝑥 ∈ 𝑈)}, whereas 

 𝒯𝑄(𝑥), 𝐶𝑄(𝑥), 𝑈𝑄(𝑥), ℱ𝑄(𝑥): 𝑈 → [0,1]  and 0 ≤ 𝒯𝑄(𝑥) + 𝐶𝑄(𝑥) + 𝑈𝑄(𝑥) + ℱ𝑄(𝑥) ≤ 4 . Here 𝒯𝑄(𝑥)  is 

truth membership, 𝐶𝑄(𝑥)  is contradiction, 𝑈𝑄(𝑥)  is ignorance and ℱ𝑄(𝑥) is false membership 

function. In quadripartitioned neutrosophic set, an indeterminacy has been split into two parts. 

Definition 4. Pentapartitioned neutrosophic set [10] 

Let U be a non-empty set. A pentapartitioned neutrosophic set P on U can be defined as follows: 

𝑃 = {(𝑥, 𝒯𝑃(𝑥), 𝐶𝑃(𝑥), 𝐺𝑃(𝑥), 𝑈𝑃(𝑥), ℱ𝑃(𝑥): 𝑥 ∈ 𝑈)}, whereas  

𝒯𝑃(𝑥), 𝐶𝑃(𝑥), 𝐺𝑃(𝑥), 𝑈𝑃(𝑥), ℱ𝑃(𝑥): 𝑈 → [0,1] and 

 0 ≤ 𝒯𝑃(𝑥) + 𝐶𝑃(𝑥) + 𝐺𝑃(𝑥) + 𝑈𝑃(𝑥) + ℱ𝑃(𝑥) ≤ 5.  

Here 𝒯𝑃(𝑥) is truth membership, 𝐶𝑃(𝑥) is uncertainty, 𝐺𝑃(𝑥) is contradiction, 𝑈𝑄(𝑥) is unknown 

membership and ℱ𝑄(𝑥) is false membership function. In pentapartitioned, an indeterminacy has 

been split into three parts. 

Definition 5. Heptapartitioned neutrosophic set [17, 27] 

Let U be a non-empty set. A heptapartitioned neutrosophic set ℋ on U is an object of the form:  

ℋ = {〈𝑥, 𝒯ℋ(𝑥),ℳℋ(𝑥), 𝒞ℋ(𝑥),𝒰ℋ(𝑥), 𝐼ℋ(𝑥),𝒦ℋ(𝑥), ℱℋ(𝑥) ∶ 𝑥 ∈ ℋ〉}, 

were 𝒯ℋ(𝑥),ℳℋ(𝑥), 𝒞ℋ(𝑥),𝒰ℋ(𝑥), 𝐼ℋ(𝑥),𝒦ℋ(𝑥), ℱℋ(𝑥) ∈ [0, 1]. 

Moreover, 

 0 ≤ 𝒯ℋ(𝑥) +ℳℋ(𝑥) + 𝒞ℋ(𝑥) + 𝒰ℋ(𝑥) + 𝐼ℋ(𝑥) +𝒦ℋ(𝑥) + ℱℋ(𝑥) ≤ 7 , where 𝒯ℋ(𝑥) is the absolute 

membership degree, ℳℋ(𝑥) is the relative truth membership degree, 𝒞ℋ(𝑥) is the contradiction 

membership degree, 𝒰ℋ(𝑥)is the unknown membership degree, 𝐼ℋ(𝑥)is the ignorance membership 

degree, 𝒦ℋ(𝑥)is the relative falsity membership degree, ℱℋ(𝑥)is the absolute falsity membership 

degree. 

4. Heptapartitioned neutrosophic set  

4.1 Definitions 

Definition 1. Let ℋ1 and ℋ2 be two HPNSs over the universe U. Then, ℋ1 ⊆ ℋ2 if and only if for 

any 𝑥 ∈ 𝑈 the following conditions holds: 𝒯ℋ1(𝑥) ≤ 𝒯ℋ2(𝑥), ℳℋ1
(𝑥) ≤ ℳℋ2

(𝑥), 

𝒞ℋ1(𝑥) ≤ 𝒞ℋ2(𝑥), 𝒰ℋ1(𝑥) ≥ 𝒰ℋ2(𝑥), 𝐼ℋ1(𝑥) ≥ 𝐼ℋ2(𝑥),𝒦ℋ1
(𝑥) ≥ 𝒦ℋ2

(𝑥) and ℱℋ1(𝑥) ≥ ℱℋ2(𝑥). 

Definition 2. Let ℋ be a HPNS over the universe U. The complement of ℋ is denoted by ℋ ′ for 

any 𝑥 ∈ 𝑈  it obeys the following conditions:  

𝒯ℋ(𝑥) = ℱℋ(𝑥),   ℳℋ(𝑥) = 𝒦ℋ(𝑥),   𝒞ℋ(𝑥) = 𝐼ℋ(𝑥),   𝒰ℋ(𝑥) = 1 − 𝒰ℋ(𝑥),  𝐼ℋ(𝑥) = 𝒞ℋ(𝑥),                

𝒦ℋ(𝑥) = ℳℋ(𝑥),   ℱℋ(𝑥) = 𝒯ℋ(𝑥).  
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Definition 3. Let ℋ1 and ℋ2  be two HPNSs over the universe U. The union of ℋ1  and ℋ2  is 

denoted by 𝛺 = ℋ1 ∪ℋ2 then, for any 𝑥 ∈ 𝑈 is defined as 

𝛺 =

{
 
 

 
 max (𝒯ℋ1(𝑥), 𝒯ℋ2(𝑥)) ,max (ℳℋ1

(𝑥),ℳℋ2
(𝑥)) ,

max (𝒞ℋ1(𝑥), 𝒞ℋ2(𝑥)) ,min (𝒰ℋ1(𝑥),𝒰ℋ2(𝑥)) ,

min (𝐼ℋ1(𝑥), 𝐼ℋ2(𝑥)) ,min (𝒦ℋ1
(𝑥),𝒦ℋ2

(𝑥)) ,

min (ℱℋ1(𝑥), ℱℋ2(𝑥)) }
 
 

 
 

 

Definition 4. Let ℋ1 and ℋ2 be two HPNSs over the universe U. The intersection of ℋ1and ℋ2 is 

denoted by 𝛻 = ℋ1 ∩ℋ2 then, for any 𝑥 ∈ 𝑈  is defined as 

𝛻 =

{
 
 

 
 min (𝒯ℋ1(𝑥), 𝒯ℋ2(𝑥)) ,min (ℳℋ1

(𝑥),ℳℋ2
(𝑥)) ,

min (𝒞ℋ1(𝑥), 𝒞ℋ2(𝑥)) ,max (𝒰ℋ1(𝑥), 𝒰ℋ2(𝑥)) ,

max (𝐼ℋ1(𝑥), 𝐼ℋ2(𝑥)) ,max (𝒦ℋ1
(𝑥),𝒦ℋ2

(𝑥)) ,

max (ℱℋ1(𝑥), ℱℋ2(𝑥)) }
 
 

 
 

 

Illustrative Example 1. 

Let ℋ1 = {0.327, 0.562, 0.487, 0.789, 0.852, 0.674, 0.921} and 

        ℋ2 = {0.632, 0.710, 0.867, 0.452, 0.527, 0.333, 0.274} then 

(i) ℋ1 ⊆ ℋ2 

(ii) ℋ1
′ = {0.921, 0.674, 0.852, 0.2111, 0.487, 0.562, 0.327} 

(iii) ℋ1 ∪ℋ2 = {0.632, 0.710, 0.867,0.452, 0.527, 0.333, 0.274} 

(iv) ℋ1 ∩ℋ2 = {0.327, 0.562, 0.487, 0.789, 0.852, 0.674, 0.921} 

Definition 5. A HPNS ℋ is called an absolute HPNS if and only if, for any 𝑥 ∈ 𝑈, it satisfies the 

following conditions:  

𝒯ℋ(𝑥) = 1, ℳℋ(𝑥) = 1, 𝒞ℋ(𝑥) = 1,𝒰ℋ(𝑥) = 0,  𝐼ℋ(𝑥) = 0,  𝒦ℋ(𝑥) = 0 and ℱℋ(𝑥) = 0. 

Definition 6. A HPNS ℋ is called an empty HPNS if and only if, for any 𝑥 ∈ 𝑈, it satisfies the 

following conditions:  

𝒯ℋ(𝑥) = 0, ℳℋ(𝑥) = 0,  𝒞ℋ(𝑥) = 0,  𝒰ℋ(𝑥) = 1,  𝐼ℋ(𝑥) = 1,  𝒦ℋ(𝑥) = 1 and ℱℋ(𝑥) = 1. 

The arithmetic operations on HPNSs are defined as:  

1. ℋ1 +ℋ2 = {
𝒯ℋ1 + 𝒯ℋ2 − 𝒯ℋ1𝒯ℋ2 ,ℳℋ1 +ℳℋ2 −ℳℋ1ℳℋ2 , 𝒞ℋ1 + 𝒞ℋ2 − 𝒞ℋ1𝒞ℋ2 ,

𝒰ℋ1𝒰ℋ2 , 𝐼ℋ1𝐼ℋ2 , 𝒦ℋ1𝒦ℋ2 , ℱℋ1ℱℋ2
} 

2. ℋ1 ×ℋ2 = {
𝒯ℋ1𝒯ℋ2 ,ℳℋ1ℳℋ2 , 𝒞ℋ1𝒞ℋ2 , 𝒰ℋ1 +𝒰ℋ2 −𝒰ℋ1𝒰ℋ2 ,

𝐼ℋ1 + 𝐼ℋ2 − 𝐼ℋ1𝐼ℋ2 ,𝒦ℋ1+𝒦ℋ2 −𝒦ℋ1𝒦ℋ2 , ℱℋ1+ℱℋ2 − ℱℋ1ℱℋ2
} 

 

3. 𝛼ℋ1 = {
(1 − (1 − 𝒯ℋ1)

𝛼
), (1 − (1 −ℳℋ1)

𝛼
), (1 − (1 − 𝒞ℋ1)

𝛼
),

(𝒰ℋ1)
𝛼
, (𝐼ℋ1)

𝛼
, (𝒦ℋ1)

𝛼
, (ℱℋ1)

𝛼 }, where 𝛼 > 0. 

 

4. (ℋ1)
𝛼 = {

(𝒯ℋ1)
𝛼
, (ℳℋ1)

𝛼
, (𝒞ℋ1)

𝛼
, (1 − (1 − 𝒰ℋ1)

𝛼
),

(1 − (1 − 𝐼ℋ1)
𝛼
), (1 − (1 −𝒦ℋ1)

𝛼
), (1 − (1 − ℱℋ1)

𝛼
)
}, where 𝛼 > 0. 

Illustrative Example 2. 
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Let ℋ1 = {0.327, 0.562, 0.487, 0.789, 0.852, 0.674, 0.921} and 

        ℋ2 = {0.632, 0.710, 0.867, 0.452, 0.527, 0.333, 0.274} then 

1. ℋ1 +ℋ2 = {0.752, 0.873, 0.932, 0.357,0.449, 0.224, 0.252} 

2. ℋ1 ×ℋ2 = {0.207, 0.399, 0.422, 0.884, 0.930,0.783, 0.943} 

3. 2ℋ1 = {0.547, 0.808, 0.737, 0.323, 0.726, 0.454, 0.848} 

4. (ℋ1)
2 = {0.107, 0.316, 0.237, 0.955, 0.978, 0.894, 0.994} 

4.2 Score and Accuracy Function 

The score function of HPNN ℋ = (𝒯ℋ ,ℳℋ , 𝒞ℋ  𝒰ℋ , 𝐼ℋ , 𝒦ℋ , ℱℋ) is defined as 

𝒮ℋ =
𝒯ℋ+ℳℋ+𝒞ℋ

3
+

𝒰ℋ+ 𝐼ℋ+ 𝒦ℋ+ ℱℋ

4
 , 𝒮ℋ lies between [0, 2] 

The accuracy function of HPNN ℋ = (𝒯ℋ ,ℳℋ , 𝒞ℋ  𝒰ℋ , 𝐼ℋ , 𝒦ℋ , ℱℋ) is defined as 

𝒜ℋ =
𝒯ℋ+ℳℋ+𝒞ℋ+𝒰ℋ − 𝐼ℋ − 𝒦ℋ  − ℱℋ

3
 , 𝒜ℋ lies between [−1,

3

4
] 

Proposition 1. Score value of HPNN lies between [0, 2]. 

Proof: By the definition of heptapartitioned neutrosophic sets, 

 0 ≤ 𝒯ℋ ≤ 1,        0 ≤ ℳℋ ≤ 1,           0 ≤ 𝒞ℋ ≤ 1,        0 ≤ 𝒰ℋ ≤ 1,       0 ≤ 𝐼ℋ ≤ 1,  

0 ≤ 𝒦ℋ ≤ 1,        0 ≤ ℱℋ ≤ 1. 

0 ≤ 𝒯ℋ +ℳℋ + 𝒞ℋ ≤ 3,  0 ≤ 𝒰ℋ + 𝐼ℋ +𝒦ℋ + ℱℋ ≤ 4. 

0 ≤  
𝒯ℋ+ℳℋ+𝒞ℋ

3
 ≤ 1;        0 ≤  

𝒰ℋ+𝐼ℋ+𝒦ℋ+ℱℋ

4
 ≤ 1 

0 ≤  
𝒯ℋ +ℳℋ + 𝒞ℋ

3
 +
𝒰ℋ + 𝐼ℋ +𝒦ℋ + ℱℋ

4
≤ 1 + 1 

 0 ≤ 𝒮ℋ ≤ 2. 

Hence the proof. 

Proposition 2. Accuracy function of HPNN lies between [−1,
3

4
] 

Proof: By definition of heptapartitioned neutrosophic sets, 

−4 ≤ 𝒯ℋ +ℳℋ + 𝒞ℋ +𝒰ℋ − 𝐼ℋ − 𝒦ℋ  −  ℱℋ ≤ 3 

−1 ≤
𝒯ℋ +ℳℋ + 𝒞ℋ +𝒰ℋ − 𝐼ℋ − 𝒦ℋ  −  ℱℋ

3
≤
3

4
 

−1 ≤ 𝒜ℋ ≤
3

4
 

Hence the proof. 

4.3 Heptapartitioned Neutrosophic Weighted Arithmetic Averaging Operator (HPNWAAO) 

Definition 4.3.1: Let ℋ𝑗 = {𝛿; 𝒯ℋ𝑗
(𝛿),ℳℋ𝑗

(𝛿), 𝒞ℋ𝑗
(𝛿), 𝒰ℋ𝑗

(𝛿), 𝐼ℋ𝑗
(𝛿),𝒦ℋ𝑗

(𝛿), ℱℋ𝑗
(𝛿)} where  

𝑗 = 1,2,3, … , 𝑛 be the collection of HPNNs is the set of real numbers given by 𝐻𝑃𝑁𝑊𝐴𝐴: (𝑅𝑒)𝑛 → 𝑅𝑒. 

Let 𝐻𝑃𝑁𝑊𝐴𝐴 operator is represented by 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) is defined as 

𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) = 𝑤1ℋ1 + 𝑤2ℋ2 +⋯+𝑤𝑛ℋ𝑛 = ∑ 𝑤𝑗ℋ𝑗
𝑛
𝑗=1 , 𝑤𝑗(𝑗 = 1,2, … , 𝑛)  denotes the 

weightage of HPNNs ℋ𝑗(𝑗 = 1,2, … , 𝑛), and also ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 , where 𝑤𝑗 ∈ [0,1]. 
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We now propose the following theorem by making use of the basic operations of HPNNs. 

Theorem 1. Let 

ℋ𝑗 = {𝛿;𝒯ℋ𝑗
(𝛿),ℳℋ𝑗

(𝛿), 𝒞ℋ𝑗
(𝛿), 𝒰ℋ𝑗

(𝛿), 𝐼ℋ𝑗
(𝛿),𝒦ℋ𝑗

(𝛿), ℱℋ𝑗
(𝛿)} (𝑗 = 1,2, … , 𝑛))  be a collection of 

heptapartitioned neutrosophic value (HPNVs) in the set of real numbers. The aggregated value of 

HPNWAA is also an HPNV, and 

𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) = 𝑤1ℋ1 +𝑤2ℋ2 +⋯+𝑤𝑛ℋ𝑛 =∑𝑤𝑗ℋ𝑗

𝑛

𝑗=1

 

        = {
1 − ∏ (1 − 𝒯ℋ𝑗

)
𝑤𝑗
, 1 − ∏ (1 −ℳℋ𝑗

)
𝑤𝑗
,𝑛

𝑗=1 1 −∏ (1 − 𝒞ℋ𝑗
)
𝑤𝑗
,𝑛

𝑗=1
𝑛
𝑗=1

∏ 𝒰ℋ𝑗

𝑤𝑗𝑛
𝑗=1 , ∏ 𝐼ℋ𝑗

𝑤𝑗𝑛
𝑗=1 , ∏ 𝒦ℋ𝑗

𝑤𝑗𝑛
𝑗=1 , ∏  ℱℋ𝑗

𝑤𝑗𝑛
𝑗=1

}              (4.1) 

whereas the weight of HPNV ℋ𝑗(𝑗 = 1,2, … , 𝑛) is 𝑤𝑗 ∈ [0,1] with the condition ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

Proof: By mathematical induction, we prove this theorem. 

For 𝑛 = 1, it is trivial. 

For 𝑛 = 2,  ∑ 𝑤𝑗ℋ𝑗 = 𝑤1ℋ1 + 𝑤2ℋ2
2
𝑗=1 . 

=

{
 
 

 
 
[
1 − (1 − 𝒯ℋ1)

𝑤1
, 1 − (1 −ℳℋ1)

𝑤1
, 1 − (1 − 𝒞ℋ1)

𝑤1
,

𝒰ℋ1
𝑤1 , 𝐼ℋ1

𝑤1 ,𝒦ℋ1
𝑤1 , ℱℋ1

𝑤1

+

]

[
1 − (1 − 𝒯ℋ2)

𝑤2
, 1 − (1 −ℳℋ2)

𝑤2
, 1 − (1 − 𝒞ℋ2)

𝑤2
,

𝒰ℋ2
𝑤2 , 𝐼ℋ2

𝑤2 , 𝒦ℋ2
𝑤2 ,  ℱℋ2

𝑤2
]
}
 
 

 
 

 

=

{
 
 

 
 1 − (1 − 𝒯ℋ1)

𝑤1
+ 1 − (1 − 𝒯ℋ2)

𝑤2
− (1 − (1 − 𝒯ℋ1)

𝑤1
)(1 − (1 − 𝒯ℋ2)

𝑤2
),

1 − (1 −ℳℋ1)
𝑤1
+ 1 − (1 −ℳℋ2)

𝑤2
− (1 − (1 −ℳℋ1)

𝑤1
)(1 − (1 −ℳℋ2)

𝑤2
),

1 − (1 − 𝒞ℋ1)
𝑤1
+ 1 − (1 − 𝒞ℋ2)

𝑤2
− (1 − (1 − 𝒞ℋ1)

𝑤1
)(1 − (1 − 𝒞ℋ2)

𝑤2
),

𝒰ℋ1
𝑤1𝒰ℋ2

𝑤2 , 𝐼ℋ1
𝑤1𝐼ℋ2

𝑤2 , 𝒦ℋ1
𝑤1𝒦ℋ2

𝑤2 , ℱℋ1
𝑤1  ℱℋ2

𝑤2 }
 
 

 
 

 

=

{
 
 

 
 1 −∏(1 − 𝒯ℋ𝑗

)
𝑤𝑗
, 1 −∏(1 −ℳℋ𝑗

)
𝑤𝑗
,

2

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
,

2

𝑗=1

2

𝑗=1

∏𝒰ℋ𝑗

𝑤𝑗

2

𝑗=1

,∏𝐼ℋ𝑗

𝑤𝑗

2

𝑗=1

,∏𝒦ℋ𝑗

𝑤𝑗

2

𝑗=1

,∏  ℱℋ𝑗

𝑤𝑗

2

𝑗=1 }
 
 

 
 

 

Hence it satisfies for 𝑛 = 2. 

For 𝑛 = 𝑘, we assume that the theorem holds good. 

Therefore, 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) = 𝑤1ℋ1 +𝑤2ℋ2 +⋯+𝑤𝑛ℋ𝑛 = ∑ 𝑤𝑗ℋ𝑗
𝑛
𝑗=1  

=

{
 
 

 
 
1 −∏(1 − 𝒯ℋ𝑗

)
𝑤𝑗
, 1 −∏(1 −ℳℋ𝑗

)
𝑤𝑗
,

𝑘

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
,

𝑘

𝑗=1

𝑘

𝑗=1

∏𝒰ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏𝐼ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏𝒦ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏ℱℋ𝑗

𝑤𝑗

𝑘

𝑗=1 }
 
 

 
 

 

For 𝑛 = 𝑘 + 1,  

𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) =∑𝑤𝑗ℋ𝑗 + 𝑤𝑘+1ℋ𝑘+1

𝑘

𝑗=1
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=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1 −∏(1 − 𝒯ℋ𝑗
)
𝑤𝑗
+ 1 − (1 − 𝒯ℋ𝑘+1

)
𝑤𝑘+1

− (1 −∏(1 − 𝒯ℋ𝑗
)
𝑤𝑗
)(1 − (1 − 𝒯ℋ𝑘+1

)
𝑤𝑘+1

)

𝑘

𝑗=1

𝑘

𝑗=1

,

1 −∏(1 −ℳℋ𝑗
)
𝑤𝑗
+ 1 − (1 −ℳℋ𝑘+1

)
𝑤𝑘+1

− (1 −∏(1 −ℳℋ𝑗
)
𝑤𝑗
)(1 − (1 −ℳℋ𝑘+1

)
𝑤𝑘+1

),

𝑘

𝑗=1

𝑘

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
+ 1 − (1 − 𝒞ℋ𝑘+1

)
𝑤𝑘+1

− (1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
)(1 − (1 − 𝒞ℋ𝑘+1

)
𝑤𝑘+1

),

𝑘

𝑗=1

𝑘

𝑗=1

∏𝒰ℋ𝑗

𝑤𝑗 . 𝒰ℋ𝑘+1

𝑤𝑘+1 ,

𝑘

𝑗=1

∏𝐼ℋ𝑗

𝑤𝑗 . 𝐼ℋ𝑘+1

𝑤𝑘+1 ,

𝑘

𝑗=1

∏𝒦ℋ𝑗

𝑤𝑗 .𝒦ℋ𝑘+1

𝑤𝑘+1 ,

𝑘

𝑗=1

∏ ℱℋ𝑗

𝑤𝑗 .  ℱℋ𝑘+1

𝑤𝑘+1

𝑘

𝑗=1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

=

{
 
 

 
 
1 −∏(1 − 𝒯ℋ𝑗

)
𝑤𝑗
, 1 −∏(1 −ℳℋ𝑗

)
𝑤𝑗
,

𝑘+1

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
,

𝑘+1

𝑗=1

𝑘+1

𝑗=1

∏𝒰ℋ𝑗

𝑤𝑗

𝑘+1

𝑗=1

,∏𝐼ℋ𝑗

𝑤𝑗

𝑘+1

𝑗=1

,∏𝒦ℋ𝑗

𝑤𝑗

𝑘+1

𝑗=1

,∏ℱℋ𝑗

𝑤𝑗

𝑘+1

𝑗=1 }
 
 

 
 

 

Hence, we observe that the theorem holds good for 𝑛 = 𝑘 + 1. 

By mathematical induction, the theorem is verified for all values of 𝑛. 

The three membership functions of ℋ𝑗 lies between [0,1] which satisfies the conditions: 

0 ≤ 1 − ∏ (1 − 𝒯ℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 1,      0 ≤ 1 −∏ (1 −ℳℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 1,     0 ≤ 1 −∏ (1 − 𝒞ℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 1, 

0 ≤ ∏ 𝒰ℋ𝑗

𝑤𝑗𝑛
𝑗=1 ≤ 1,      0 ≤ ∏ 𝐼ℋ𝑗

𝑤𝑗𝑛
𝑗=1 ≤ 1,    0 ≤ ∏ 𝒦ℋ𝑗

𝑤𝑗𝑛
𝑗=1 ≤ 1 ,      0 ≤ ∏ ℱℋ𝑗

𝑛
𝑗=1 ≤ 1,  further it 

holds the relation, 

0 ≤

{
 
 

 
 1 −∏(1 − 𝒯ℋ𝑗

)
𝑤𝑗
+ 1 −∏(1 −ℳℋ𝑗

)
𝑤𝑗
+

𝑛

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

+∏𝒰ℋ𝑗

𝑤𝑗

𝑛

𝑗=1

+∏𝐼ℋ𝑗

𝑤𝑗

𝑛

𝑗=1

+∏𝒦ℋ𝑗

𝑤𝑗

𝑛

𝑗=1

+∏ℱℋ𝑗

𝑤𝑗

𝑛

𝑗=1 }
 
 

 
 

≤ 7 

Hence the theorem is proved. 

Property 1. Idempotency 

If all ℋ𝑗(𝑗 = 1,2, … , 𝑛) are equal, then  

ℋ𝑗 = ℋ = {〈𝑥; 𝒯ℋ(𝑥),ℳℋ(𝑥), 𝒞ℋ(𝑥),𝒰ℋ(𝑥), 𝐼ℋ(𝑥),𝒦ℋ(𝑥), ℱℋ(𝑥) ∶ 𝑥 ∈ ℋ〉} 

then 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) = ℋ. 

Proof:  

For proving this, we use eqn. (4.1). 

𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) = 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ,ℋ,… ,ℋ) =∑𝑤𝑗ℋ

𝑛

𝑗=1
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=

{
 
 

 
 
1 −∏(1 − 𝒯ℋ𝑗

)
𝑤𝑗
, 1 −∏(1 −ℳℋ𝑗

)
𝑤𝑗
,

𝑘

𝑗=1

1 −∏(1 − 𝒞ℋ𝑗
)
𝑤𝑗
,

𝑘

𝑗=1

𝑘

𝑗=1

∏𝒰ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏𝐼ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏𝒦ℋ𝑗

𝑤𝑗

𝑘

𝑗=1

,∏ℱℋ𝑗

𝑤𝑗

𝑘

𝑗=1 }
 
 

 
 

 

 

= {
1 − (1 − 𝒯ℋ)

∑ 𝑤𝑗
𝑛
𝑗=1 , 1 − (1 −ℳℋ)

∑ 𝑤𝑗
𝑛
𝑗=1 , 1 − (1 − 𝒞ℋ)

∑ 𝑤𝑗
𝑛
𝑗=1 ,

𝒰ℋ
∑ 𝑤𝑗
𝑛
𝑗=1 , 𝐼ℋ

∑ 𝑤𝑗
𝑛
𝑗=1 ,𝒦ℋ

∑ 𝑤𝑗
𝑛
𝑗=1 , ℱℋ

∑ 𝑤𝑗
𝑛
𝑗=1

} 

= {〈𝑥, 𝒯ℋ(𝑥),ℳℋ(𝑥), 𝒞ℋ(𝑥), 𝒰ℋ(𝑥), 𝐼ℋ(𝑥),𝒦ℋ(𝑥), ℱℋ(𝑥)〉} = ℋ 

Hence the proof. 

Property 2. Boundedness 

Let ℋ𝑗 = ℋ = {〈𝑥, 𝒯ℋ(𝑥),ℳℋ(𝑥), 𝒞ℋ(𝑥),𝒰ℋ(𝑥), 𝐼ℋ(𝑥),𝒦ℋ(𝑥), ℱℋ(𝑥) ∶ 𝑥 ∈ ℋ〉}(𝑗 = 1,2, … , 𝑛)  be a 

collection of HPNVs in the set of real numbers. 

Consider ℋ+ = {
max
𝑗
(𝒯ℋ𝑗

) ,max
𝑗
(ℳℋ𝑗

) ,max
𝑗
(𝒞ℋ𝑗

)

min
𝑗
(𝒰ℋ𝑗

) ,min
𝑗
(𝐼ℋ𝑗

) ,min
𝑗
(𝒦ℋ𝑗

) ,min
𝑗
(ℱℋ𝑗

)
} 

               ℋ− = {
min
𝑗
(𝒯ℋ𝑗

) ,min
𝑗
(ℳℋ𝑗

) ,min
𝑗
(𝒞ℋ𝑗

)

max
𝑗
(𝒰ℋ𝑗

) ,max
𝑗
(𝐼ℋ𝑗

) ,max
𝑗
(𝒦ℋ𝑗

) ,max
𝑗
(ℱℋ𝑗

)
} 

where 𝑗 = 1,2, … , 𝑛. Then ℋ− ≤ 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) ≤ ℋ
+. 

Proof: We infer that  

min
𝑗
(𝒯ℋ𝑗

) ≤ 𝒯ℋ𝑗
≤ max

𝑗
(𝒯ℋ𝑗

),  min
𝑗
(ℳℋ𝑗

) ≤ ℳℋ𝑗
≤ max

𝑗
(ℳℋ𝑗

) , min
𝑗
(𝒞ℋ𝑗

) ≤ 𝒞ℋ𝑗
≤ max

𝑗
(𝒞ℋ𝑗

) , 

min
𝑗
(𝒰ℋ𝑗

) ≤ 𝒰ℋ𝑗
≤ max

𝑗
(𝒰ℋ𝑗

), min
𝑗
(𝐼ℋ𝑗

) ≤ 𝐼ℋ𝑗
≤ max

𝑗
(𝐼ℋ𝑗

), min
𝑗
(𝒦ℋ𝑗

) ≤ 𝒦ℋ𝑗
≤ max

𝑗
(𝒦ℋ𝑗

), 

min
𝑗
( ℱℋ𝑗

) ≤  ℱℋ𝑗
≤ max

𝑗
( ℱℋ𝑗

) for 𝑗 = 1,2, … , 𝑛.                                           (4.2)                                                                             

Then, 1 − ∏ (1 −𝑚𝑖𝑛
𝑗
(𝒯ℋ𝑗

))
𝑤𝑗

≤ 1 −∏ (1 − 𝒯ℋ𝑗
)
𝑤𝑗
≤𝑛

𝑗=1 1 −∏ (1 −max
𝑗
(𝒯ℋ𝑗

))
𝑤𝑗

𝑛
𝑗=1

𝑛
𝑗=1  

1 − (1 −𝑚𝑖𝑛
𝑗
(𝒯ℋ𝑗

))
∑ 𝑤𝑗
𝑛
𝑗=1

≤ 1 −∏(1 − 𝒯ℋ𝑗
)
𝑤𝑗
≤

𝑛

𝑗=1

1 − (1 −𝑚𝑎𝑥
𝑗
(𝒯ℋ𝑗

))
∑ 𝑤𝑗
𝑛
𝑗=1

 

𝑚𝑖𝑛
𝑗
(𝒯ℋ𝑗

) ≤ 1 −∏(1 − 𝒯ℋ𝑗
)
𝑤𝑗
≤

𝑛

𝑗=1

𝑚𝑎𝑥
𝑗
(𝒯ℋ𝑗

) 

By eq. (4.2), for 𝑗 = 1,2, … , 𝑛. 

Similarly, 

𝑚𝑖𝑛
𝑗
(ℳℋ𝑗

) ≤ 1 − ∏ (1 −ℳℋ𝑗
)
𝑤𝑗
≤𝑛

𝑗=1 𝑚𝑎𝑥
𝑗
(ℳℋ𝑗

), 

𝑚𝑖𝑛
𝑗
(𝒞ℋ𝑗

) ≤ 1 −∏ (1 − 𝒞ℋ𝑗
)
𝑤𝑗
≤𝑛

𝑗=1 𝑚𝑎𝑥
𝑗
(𝒞ℋ𝑗

), 
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∏ (𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

))
𝑤𝑗

≤𝑛
𝑗=1 ∏ (𝒰ℋ𝑗

)
𝑤𝑗
≤ ∏ (𝑚𝑎𝑥

𝑗
(𝒰ℋ𝑗

))
𝑤𝑗

𝑛
𝑗=1

𝑛
𝑗=1 , 

(𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

))
∑ 𝑤𝑗
𝑛
𝑗=1

≤∏(𝒰ℋ𝑗
)
𝑤𝑗
≤ (𝑚𝑎𝑥

𝑗
(𝒰ℋ𝑗

))
∑ 𝑤𝑗
𝑛
𝑗=1

,

𝑛

𝑗=1

 

𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

) ≤∏ (𝒰ℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 𝑚𝑎𝑥
𝑗
(𝒰ℋ𝑗

). 

Similarly,  

𝑚𝑖𝑛
𝑗
(𝐼ℋ𝑗

) ≤∏ (𝐼ℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 𝑚𝑎𝑥
𝑗
(𝐼ℋ𝑗

),    𝑚𝑖𝑛
𝑗
(𝒦ℋ𝑗

) ≤∏ (𝒦ℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 𝑚𝑎𝑥
𝑗
(𝒦ℋ𝑗

), 

  𝑚𝑖𝑛
𝑗
(ℱℋ𝑗

) ≤∏ (ℱℋ𝑗
)
𝑤𝑗𝑛

𝑗=1 ≤ 𝑚𝑎𝑥
𝑗
(ℱℋ𝑗

). 

Let 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) ≤ ℋ = (𝒯ℋ ,ℳℋ , 𝒞ℋ  , 𝒰ℋ , 𝐼ℋ ,𝒦ℋ , ℱℋ) 

The score function of ℋ is,  

𝒮ℋ =
𝒯ℋ +ℳℋ + 𝒞ℋ

3
+
𝒰ℋ + 𝐼ℋ +𝒦ℋ + ℱℋ

4
 

≤

[
 
 
 
 
 𝑚𝑎𝑥

𝑗
(𝒯ℋ𝑗

) + 𝑚𝑎𝑥
𝑗
(ℳℋ𝑗

) + 𝑚𝑎𝑥
𝑗
(𝒞ℋ𝑗

)

3
+

𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝐼ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝒦ℋ𝑗

) +𝑚𝑖𝑛
𝑗
(ℱℋ𝑗

)

4 ]
 
 
 
 
 

= Ş(ℋ+) 

In the same way, 

𝒮ℋ =
𝒯ℋ +ℳℋ + 𝒞ℋ

3
+
𝒰ℋ + 𝐼ℋ +𝒦ℋ + ℱℋ

4
 

≥

[
 
 
 
 
 𝑚𝑖𝑛

𝑗
(𝒯ℋ𝑗

) +𝑚𝑖𝑛
𝑗
(ℳℋ𝑗

) +𝑚𝑖𝑛
𝑗
(𝒞ℋ𝑗

)

3
+

𝑚𝑎𝑥
𝑗
(𝒰ℋ𝑗

) +𝑚𝑎𝑥
𝑗
(𝐼ℋ𝑗

)  + 𝑚𝑎𝑥
𝑗
(𝒦ℋ𝑗

) +𝑚𝑎𝑥
𝑗
(ℱℋ𝑗

)

4 ]
 
 
 
 
 

= Ş(ℋ−) 

Here we discuss the different cases: 

Case (i) If 𝒮(ℋ) < 𝒮(ℋ+) and 𝒮(ℋ) > 𝒮(ℋ−) then, ℋ− < 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) < ℋ
+. 

Case (ii) If 𝒮(ℋ) = 𝒮(ℋ+), we consider  

𝒮ℋ =
𝒯ℋ +ℳℋ + 𝒞ℋ

3
+
𝒰ℋ + 𝐼ℋ +𝒦ℋ + ℱℋ

4
 

=

[
 
 
 
 
 𝑚𝑎𝑥

𝑗
(𝒯ℋ𝑗

) + 𝑚𝑎𝑥
𝑗
(ℳℋ𝑗

) +𝑚𝑎𝑥
𝑗
(𝒞ℋ𝑗

)

3
+

𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝐼ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝒦ℋ𝑗

) +𝑚𝑖𝑛
𝑗
(ℱℋ𝑗

)

4 ]
 
 
 
 
 

 

Then it follows, 

𝒯ℋ +ℳℋ + 𝒞ℋ
3

=
𝑚𝑎𝑥
𝑗
(𝒯ℋ𝑗

) +𝑚𝑎𝑥
𝑗
(ℳℋ𝑗

) +𝑚𝑎𝑥
𝑗
(𝒞ℋ𝑗

)

3
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𝒰ℋ + 𝐼ℋ + 𝒦ℋ + ℱℋ
4

=
𝑚𝑖𝑛
𝑗
(𝒰ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝐼ℋ𝑗

) + 𝑚𝑖𝑛
𝑗
(𝒦ℋ𝑗

) +𝑚𝑖𝑛
𝑗
(ℱℋ𝑗

)

4
 

The accuracy function, 

𝒜ℋ =
𝒯ℋ +ℳℋ + 𝒞ℋ +𝒰ℋ − 𝐼ℋ −𝒦ℋ −  ℱℋ

3
 

=
𝑚𝑎𝑥
𝑗
(𝒯ℋ𝑗)+𝑚𝑎𝑥𝑗

(ℳℋ𝑗
)+𝑚𝑎𝑥

𝑗
(𝒞ℋ𝑗)+𝑚𝑖𝑛𝑗

(𝒰ℋ𝑗)−𝑚𝑖𝑛𝑗
(𝐼ℋ𝑗)−𝑚𝑖𝑛𝑗

(𝒦ℋ𝑗)−𝑚𝑖𝑛𝑗
( ℱℋ𝑗)

3
= 𝐴(ℋ+)                   (4.3) 

which implies 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) ≤ ℋ+. 

In the same way, 

𝒜ℋ =
𝒯ℋ +ℳℋ + 𝒞ℋ +𝒰ℋ − 𝐼ℋ −𝒦ℋ −  ℱℋ

3
 

=
𝑚𝑖𝑛
𝑗
(𝒯ℋ𝑗)+𝑚𝑖𝑛𝑗

(ℳℋ𝑗
)+𝑚𝑖𝑛

𝑗
(𝒞ℋ𝑗)+𝑚𝑎𝑥𝑗

(𝒰ℋ𝑗)−𝑚𝑎𝑥𝑗
(𝐼ℋ𝑗)−𝑚𝑎𝑥𝑗

(𝒦ℋ𝑗)−𝑚𝑎𝑥𝑗
( ℱℋ𝑗)

3
= 𝐴(ℋ−)                      (4.4)         

which implies 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) ≥ ℋ−. 

From eq. (4.3) and (4.4), we infer that ℋ− ≤ 𝐻𝑃𝑁𝑊𝐴𝐴(ℋ1,ℋ2, … ,ℋ𝑛) ≤ ℋ
+. 

Hence the proof is verified.  

5. Multi Criterion Decision Making using 𝐇𝐏𝐍𝐖𝐀𝐀 Operator. 

To resolve MCDM technique with heptapartitioned neutrosophic numbers which is represented in 

the form of HPNVs with m alternatives 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝑚} and attributes are given by 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} and their weights be 𝒲 = {𝑤1, 𝑤2, …𝑤𝑛}
𝑇 with 𝑤𝑗 ≥ 0 and ∑ 𝑤𝑗 = 1 

𝑛
𝑗=1 for 

𝑗 = 1,2, … , 𝑛. The decision matrix is given by, 

𝔇ℋ = (�̇�𝑖𝑗)𝑚×𝑛 =
[𝒯ℋ ,ℳℋ , 𝒞ℋ  , 𝒰ℋ , 𝐼ℋ , 𝒦ℋ , ℱℋ]𝑚×𝑛 

where (𝒯ℋ ,ℳℋ , 𝒞ℋ  , 𝒰ℋ , 𝐼ℋ ,𝒦ℋ , ℱℋ) ⊂ [0,1] 

with the condition 0 ≤ 𝒯ℋ +ℳℋ + 𝒞ℋ +𝒰ℋ , 𝐼ℋ , 𝒦ℋ , ℱℋ ≤ 7. 

Step 1: To find aggregate value of the attributes in terms of heptapartitioned neutrosophic values. 

Step 2: By using 𝐻𝑃𝑁𝑊𝐴𝐴 operator, find the aggregate value corresponding to each alternative by 

using eqn. (4.1). 

Step 3: For the aggregated values, obtain the score value for each alternative using  

𝒮ℋ =
𝒯ℋ+ℳℋ+𝒞ℋ

3
+

𝒰ℋ+ 𝐼ℋ+ 𝒦ℋ+ ℱℋ

4
. 

Step 4: Valuate the ranking order, by using MCDM technique for the different attributes and 

alternates under consideration. 

Step 5: Pertain the best choice in accordance to the ranking order. 

Illustrative Example 3. 

Consider five different packaging services 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5 to deliver the goods on time with less 

transportation cost. Three attributes were taken into consideration such as, 𝐴 - Delivery Charges, 𝐵- 

Time of Delivery, 𝐶 – Safety of goods with different weightages as (0.3, 0.5, 0.2). The best packaging 

company should be selected among the five different alternates based on the TOPSIS (Technique for 

Order Preference by Similarity to Ideal Solution) ranking order. 

 

5.1 Algorithm for TOPSIS method: 
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1. Construct the heptapartitioned decision matrix based on the response of attributes and 

alternatives. 

2. To find the score value for HPNVs: 

𝒮ℋ =
𝒯ℋ+ℳℋ+𝒞ℋ

3
+

𝒰ℋ+ 𝐼ℋ+ 𝒦ℋ+ ℱℋ

4
                                                    (4.5) 

    3.  Normalize the matrix �̅�𝑖𝑗 =
𝔑𝑖𝑗

√∑ 𝔑𝑖𝑗
2𝑛

𝑗=1

                                                 (4.6) 

    4.  Calculate the weighted normalized matrix 𝔘𝑖𝑗 = 𝔑𝑖𝑗 ∗𝓌𝑗           (4.7) 

    5.  Calculate the ideal best (𝔘𝑗
+) and ideal worst (𝔘𝑗

−) values for each of the attributes. 

    6.  For Beneficial Criteria (B): Ideal best will be the maximum of the values. 

                      Ideal worst will be the minimum of the values. 

    7.  For Non-Beneficial Criteria (N.B): Ideal best will be the minimum of the values. 

                          Ideal worst will be the maximum of the values. 

    8.  Calculate the Euclidean distance from the ideal best 𝔛𝑖
+ = √∑ (𝔘𝑖𝑗 − 𝔘𝑗

+)
2𝑛

𝑗=1      (4.8) 

    9.  Calculate the Euclidean distance from the ideal worst 𝔛𝑖
− = √∑ (𝔘𝑖𝑗 − 𝔘𝑗

−)
2𝑛

𝑗=1       (4.9) 

    10.  Calculate the performance score 𝔓𝑖 =
𝔛𝑖
−

𝔛𝑖
−+𝔛𝑖

+             (4.10) 

    11.  Based on the performance score, rank the alternatives. 

 

Table 1: Heptapartitioned neutrosophic values for different alternates and attributes. 

 𝑨 𝑩 𝑪 

𝑴𝟏 (0.72,0.32,0.45,0.81,0.28, 

0.66,0.16) 

(0.80,0.47,0.92,0.77,0.61, 

0.54,0.38) 

(0.64,0.82,0.62,0.58,0.71, 

0.47,0.46) 

𝑴𝟐 (0.35,0.56,0.47,0.34,0.87, 

0.54,0.78) 

(0.75,0.62,0.45,0.56,0.68, 

0.89,0.32) 

(0.45,0.87,0.56,0.42,0.66, 

0.72,0.85) 

𝑴𝟑 (0.51,0.83,0.58,0.47,0.34, 

0.64,0.26) 

(0.60,0.77,0.53,0.36,0.82, 

0.28,0.87) 

(0.74,0.82,0.34,0.52,0.74, 

0.67,0.32) 

𝑴𝟒 (0.92,0.56,0.74,0.61,0.37, 

0.49,0.82) 

(0.85,0.71,0.64,0.80,0.22, 

0.16,0.45) 

(0.56,0.87,0.95,0.52,0.32, 

0.14,0.78) 

𝑴𝟓 (0.80,0.53,0.64,0.74,0.23, 

0.18,0.43) 

(0.56,0.89,0.64,0.32,0.44, 

0.66,0.43) 

(0.90,0.25,0.56,0.47,0.88, 

0.32,0.16) 

 

Using the above data, the score values are calculated by using eqn. (4.5). 

Table 2: Score Values for HPNVs 

 𝑨 𝑩 𝑪 

𝑴𝟏 0.974167 1.305 1.248333 

𝑴𝟐 1.0925 1.219167 1.289167 
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𝑴𝟑 1.0675 1.215833 1.195833 

𝑴𝟒 1.3125 1.140833 1.233333 

𝑴𝟓 1.051667 1.159167 1.0275 

 

Based on the score values, normalized values for HPNVs are obtained by using eqn. (4.6) 

Table 3: Normalized values for HPNVs 

 𝑨 𝑩 𝑪 

𝑴𝟏 0.394081 0.482579 0.464351 

𝑴𝟐 0.44195 0.450839 0.47954 

𝑴𝟑 0.431837 0.449606 0.444822 

𝑴𝟒 0.530947 0.421871 0.458771 

𝑴𝟓 0.425432 0.428651 0.382206 

 

Weighted normalized matrix along with the ideal best and ideal worst are calculated using the eqns. 

(4.7), (4.8), (4.9). Finally based upon the ideal best - ideal worst values, performance score has been 

calculated using the eqn. (4.10). Ranking is done based upon the performance scores. 

Table 4: Weighted Normalized Matrix and Ideal Best - Ideal Worst for HPNVs 

 A B C Si+ Si- Pi Rank 

𝑴𝟏 0.118224 0.241289 0.09287 0.003038 0.053639 0.946401 1 

𝑴𝟐 0.132585 0.225419 0.095908 0.021403 0.036077 0.627645 2 

𝑴𝟑 0.129551 0.224803 0.088964 0.021174 0.035117 0.62385 3 

𝑴𝟒 0.159284 0.210936 0.091754 0.05123 0.015313 0.230122 5 

𝑴𝟓 0.12763 0.214325 0.076441 0.034561 0.031836 0.479475 4 

V+ 0.118224 0.241289 0.095908 - - - - 

V- 0.159284 0.210936 0.076441 - - - - 

        

 

6. Comparative study of MCDM by HPNWAA Operator TOPSIS method with MOORA Method. 

     This section gives the comparative study of the MCDM solved by TOPSIS method in the 

previous section, is compared with MOORA method. MOORA is designed to handle situations 

where multiple factors or criteria are important in decision-making, like cost, quality, performance, 

and environmental impact, among others. 

6.1 Algorithm for MOORA method: 

Step 1: Start with a decision matrix where rows represent alternatives and columns represent criteria. 

Step 2: Normalize the decision matrix to handle different units of measurement. This can be done 

using methods like vector normalization. 

�̅�𝑖𝑗 =
𝔑𝑖𝑗

√∑ 𝔑𝑖𝑗
2𝑛

𝑗=1

 (𝑖 = 1,2, …𝑚) 

Step 3: Calculate the ratio of the normalized values for each criterion for each alternative. 

Step 4: Multiply the ratio values by the weight of the respective criterion if weights are assigned to 

the criteria. 



Neutrosophic Sets and Systems, Vol. 83, 2025     862  

 

 

Sudharani R, Chitra Devi D, Mahimairaj P, Thirunavukkarasu J , Jeyanthi L, Nagalakshmi T, A Novel Approach in 

Heptapartitioned Neutrosophic Sets with its Weighted Arithmetic Averaging Operator 

Step 5: Estimation of Assessment Values by using the formula mentioned below: 

𝑦𝑖 = ∑ 𝑤𝑗
𝑔
𝑗=1 �̅�𝑖𝑗 −∑ 𝑤𝑗

𝑛
𝑗=𝑔+1 �̅�𝑖𝑗, (𝑗 = 1,2, …𝑛) 

Step 5: Rank the alternatives based on their overall performance. 

 

Table 5: Normalization, Aggregation and Rank for HPNVs by MOORA method 

 A B C Normalized B.C N.B 𝑦𝑖 Rank 

M1 0.9742 1.305 1.2483 0.2938 0.1877 0.0721 0.1717 1 

M2 1.0925 1.2192 1.2892 0.3295 0.1754 0.0745 0.1510 2 

M3 1.0675 1.2158 1.1958 0.3219 0.1749 0.0691 0.1474 3 

M4 1.3125 1.1408 1.2333 0.3958 0.1641 0.0712 0.1166 5 

M5 1.0517 1.1592 1.0275 0.3171 0.1668 0.0594 0.1310 4 

 

 

 

 

Table 6: Rank Comparison by TOPSIS with MOORA method 

 𝔓𝑖 𝑦𝑖 Rank by 

TOPSIS 

Rank by 

MOORA 

M1 0.946401 0.171713 1 1 

M2 0.627645 0.151019 2 2 

M3 0.62385 0.14741 3 3 

M4 0.230122 0.116622 5 5 

M5 0.479475 0.130967 4 4 

 

7. Conclusion 

     In this paper, we introduce the heptapartitioned neutrosophic weighted averaging operator, 

designed to address multi-criteria decision-making (MCDM) problems in uncertain environments. 

Building on neutrosophic logic, which represents uncertainty through three components—truth, 

indeterminacy, and falsity—the heptapartitioned neutrosophic system refines these components into 

more detailed partitions, offering a deeper representation of uncertainty. 

   The operator aggregates uncertain information, providing a single value that reflects both the 

criteria being evaluated and the confidence in the data. This approach is crucial in real-world 

scenarios where data is imprecise or incomplete. We also prove algebraic properties of this 

operator, solidifying its reliability in mathematical contexts. To further enhance decision-making, 

we incorporate score and accuracy functions. Using the proposed operator, we applied the TOPSIS 

method to solve an MCDM problem under uncertainty, comparing it with the MOORA method. 

While both methods produce rankings, the heptapartitioned neutrosophic operator within TOPSIS 

provides a more detailed ranking by better handling uncertainty. 
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   This approach is beneficial in real-world decision-making, where traditional deterministic 

models fall short due to incomplete or imprecise data. By accommodating various degrees of 

uncertainty, the heptapartitioned neutrosophic logic offers more flexible and effective decision-

making. 

Future work will focus on proving additional properties of the heptapartitioned neutrosophic sets 

and expanding its application to other domains, such as healthcare, finance, and logistics, where 

uncertainty plays a significant role in decision-making.
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