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Abstract: The mathematical methods systematically used in social sciences often rely on statistical tools 

like correlation, which may not optimally model social phenomena, frequently described using words. Set 

theory, as proposed by C.C. Ragin, provides a more suitable tool, leveraging set asymmetry to measure set-

theoretic consistency and coverage, which were later generalized to fuzzy sets. Subsequent extensions into 

the neutrosophic field are significant because the underlying binary logic in traditional models often fails 

to capture the complexities and nuances of social realities, such as those found in Afro-Latin American and 

Caribbean cosmovisions that encompass ambiguity and indeterminacy. This paper proposes new, logically 

grounded measures for consistency and coverage, derived naturally from logical operators known as 

neutrosophic R-implications (generalizations of fuzzy R-implications). By explicitly incorporating 

Indeterminacy alongside Truth and Falsity, these new measures gain a deeper theoretical connotation, 

emphasize the logical relationships central to Ragin's methods, and offer tools better aligned with complex, 

non-exclusive realities. 
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1. Introduction 

A critical analysis of the methods used for mathematical modeling in the social sciences appears in the 

works of the social scientist Charles C. Ragin [1]. The author questions the use of statistical correlation as a 

recurring method in research within this field. On the one hand, correlation is not synonymous with 

causality; on the other hand, social sciences are mostly explained by the use of words. Set theory is a more 

appropriate tool for modeling with words when it is compared to correlation; however, the former is not 

sufficiently used. 

This author uses simple and well-known measures to calculate the relationships between sets, these are 

the set-theoretic consistency and set-theoretic coverage [2]. He considers interesting the contrast between 

the symmetry of correlation and the asymmetry of operations with sets. This asymmetry allows us to 

consider the multicausality that can occur in the same outcome. 

Set-theoretic consistency is a measure of the subset of causal conditions concerning the outcome. It 

determines to what degree the same causal conditions cause the same outcome. The other measure is the 

set-theoretic coverage that determines the degree to which an outcome is obtained from a specific causal 

condition or combination of causal conditions. This is interpreted as meaning that the greater the number 
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of causal paths to obtain the same result of an outcome, the lower the numerical value of the theoretical set 

coverage. 

While consistency is a theoretical measure of the relationship between sets, coverage is an empirical 

relationship. Even when the causal relationship between sets is sufficiently consistent, a low coverage value 

makes knowledge about the outcome insignificant, since it occurs under restricted causal conditions 

compared to other outcomes. 

Ragin tested the effectiveness of these measures. Ultimately, all of them are used to obtain IF-THEN 

rules to represent logical cause-effect relationships that are useful for classification or prediction depending 

on the context in which they are applied. IF-THEN rules are also developed in the information systems of 

rough sets [3]. These measures are part of the method called Quality Comparative Analysis (QCA) and its 

extension to the fuzzy field fsQCA, which consists of algorithms with steps defined by Ragin himself [4-7]. 

In another sense, in the first method measures are proposed based on examples expressed in variables 

with dichotomous values for crisp sets. After being criticized, Ragin generalized this idea to the fuzzy case, 

where the variables take values in the interval [0,1]. The importance of the fuzzy set theory to represent 

linguistic values that are characterized by vagueness is well known. Even, L. Zadeh established some 

concepts within fuzzy logic such as the linguistic variable that can take linguistic values rather than 

numerical values, because daily human beings efficiently perform complex calculations with words and 

generally without the need to use numbers [8]. 

More recently these measures were generalized to neutrosophic sets, specifically single-valued 

neutrosophic sets, where each element is assigned a triple of truth values, such that one of them represents 

truthfulness, another indeterminacy, and the third falsehood [9]. The only restriction is that each one must 

be a numerical value in the interval [0,1]. 

This methodological gap concerning formal intervention analysis within existing neutrosophic 

approaches is significant because the underlying Aristotelian binary logic (true/false, either/or) inherent in 

many traditional quantitative and even standard models often fails to adequately capture the nuances of 

complex social realities. Decolonial critiques highlight the need for methodologies engaging with diverse 

epistemologies that operate beyond such binaries [10,11]. Afro-Latin American and Caribbean 

cosmovisions (with notable examples in places like Cuba), for example, forged through the African 

diaspora and complex syncretism, frequently embody perspectives where reality is understood differently. 

They often navigate simultaneous, seemingly contradictory identities (e.g., syncretic deities combining 

Orisha and Saint figures), acknowledge causal influences from an active and often ambiguous spiritual 

realm, and utilize practices like divination that inherently engage with uncertainty[12]. Such worldviews, 

readily accommodating ambiguity, paradox, and multi-valence, resonate strongly not merely with fuzzy 

logic (representing partial truth) but arguably more profoundly with Neutrosophy [13]. As a generalization 

of fuzzy logic, Neutrosophy's framework explicitly incorporates Indeterminacy (I) alongside Truth (T) and 

Falsity (F) [13], offering conceptual tools better aligned with these complex, non-exclusive realities. 

Methodologically, approaches like Neutrosophic Qualitative Comparative Analysis (NQCA) [9] attempt to 

operationalize this by using neutrosophic sets (T, I, F) to represent complex social conditions and 

configurations. 
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Figure 1. Día de Reyes en La Habana, by Víctor Patricio Landaluze (oil on canvas, 51 × 61 cm). This 

19th-century scene captures Afro-Cuban ritual, dance, and syncretism during Epiphany, highlighting colonial social 

hierarchies and cultural hybridization. The painting visually illustrates how Afro-Caribbean worldviews embody 

ambiguity, contradiction, and indeterminacy—core elements aligned with neutrosophic logic and decolonial 

epistemologies. 

 

The measures proposed by Ragin and later in the framework of neutrosophy are set-theist measures. In 

this paper, we introduce other measures that allow us to obtain similar numerical results, but that have a 

logical foundation that comes from classical logic and its extension to fuzzy and neutrosophic logic. Here 

we take into account the close relationship that exists between the concepts of logic and set. For example, 

if A and B are two fuzzy or neutrosophic sets, we can transfer the relationships between them to logic, 

when analyzing the relationship between the propositions 𝑝𝐴(𝑥): ="x is A" and 𝑝𝐵(𝑥): ="x is B" which is 

an equivalent way to the set-theist relationships of x ∈A and x ∈B. On the other hand, the methods proposed 

by Ragin have important logical components in their representation, especially causal ones, since they 

speak of necessary and sufficient relationships. 

For this, we will base ourselves on single-valued neutrosophic sets. From here we can derive valid 

results for fuzzy sets when the triple (T(x),I(x),F(x))∈[0,1]^3 becomes (T(x),0,1-T(x)), or even if it becomes 

(T(x),1-T(x)-F(x),F(x))∈[0,1]^3, T(x)+F(x)≤1 we obtain results in the field of intuitionistic fuzzy sets. 

The idea we follow is to obtain measures based on the R-implications defined by continuous t-norms 

[14]. Exactly, we use the neutrosophic R-implications or n-R-implications which are extensions of the R-

implications to the Neutrosophy framework [15-17]. This idea is in line with what Ragin wanted to obtain 

intuitively as consistency and coverage measures. This is because the n-R-implications are logical operators 

where the concepts of necessity and sufficiency that Ragin talks about are legitimately handled. After all, 

the field of logic is where this makes more sense. Even more, the R-implications were the ones chosen by 

P. Hájek to develop his fuzzy logic theory in the narrow sense, where fuzzy logic is understood as an heir 

to classical mathematical logic and its concepts [14]. The n-R-implications, like the R-implications in fuzzy 

logic, satisfy the residuation condition which is a way of extending the Deduction theorem of bivalent 

classical logic. 

In summary, we can affirm that the consistency and coverage measures that we propose in this article 

to measure the relationships between sets proposed by Ragin for the social sciences, can be replaced by 

others in the field of neutrosophic logic such that the valuations are similar. However, in our case, we will 
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have a logical foundation that will allow us to link Ragin's theory with the theories of the neutrosophic 

logic or single-valued neutrosophic sets. 

To this end, the article is divided according to the following structure; next it is a section of Preliminaries 

where the basic notions of the n-R-implications theory are recalled as well as neutrosophy and set-theoretic 

consistency and set-theoretic coverage according to Ragin. The section called New Measures of Consistency 

and Coverage, allows us to introduce the new proposed measures, their properties are demonstrated and 

an application example is presented. Next, a Discussion section follows. The last section gives the 

conclusions of the article. 

1. Preliminaries 

1.1. Neutrosophic R-Implications 

Given a proposition 𝑝 in the propositional calculus, a Neutrosophic valuation is the triple ([18]): 

𝑣𝑁(𝑝) = (𝑡, 𝑖, 𝑓)                                  (1) 

Where, (𝑡, 𝑖, 𝑓) ∈ [0, 1]3 such that 𝑡 is the degree of truthfulness, 𝑖 is the degree of indeterminacy, and 𝑓 is the 

degree of falseness. 

Given 𝑣1 = (𝑡1, 𝑖1, 𝑓1) and 𝑣2 = (𝑡2, 𝑖2, 𝑓2) we have that 𝑣1 ≼𝑁 𝑣2 if and only if: 

𝑡1 ≤ 𝑡2,  𝑖1 ≥ 𝑖2, and 𝑓1 ≥ 𝑓2                     (2) 

So, the maximum value of the neutrosophic valuation is (1,0,0) which is denoted by 1̅, and the minimum is 

(0,1,1) which is denoted by 0̅. 

Definition 1 ([11]). Let 𝑇𝑁: [0, 1]3 × [0, 1]3 → [0, 1]3  be a mapping that satisfies the following conditions 

∀𝑥, 𝑦, 𝑧 ∈ [0, 1]3: 

1. 𝑇𝑁(𝑥, 𝑦) = 𝑇𝑁(𝑦, 𝑥) (Commutativity), 

2. 𝑇𝑁(𝑇𝑁(𝑥, 𝑦), 𝑧) = 𝑇𝑁(𝑥, 𝑇𝑁(𝑦, 𝑧)) (Associativity), 

3. 𝑇𝑁(𝑥, 𝑧) ≼𝑁 𝑇𝑁(𝑦, 𝑧) for 𝑥 ≼𝑁 𝑦 (Monotonicity), 

4. 𝑇𝑁(𝑥, 1̅) = 𝑥 (Boundary conditions). 

Then we say that 𝑇𝑁(∙,∙) is a neutrosophic norm or n-norm. 

Definition 2 ([11]).. Let 𝑆𝑁: [0, 1]3 × [0, 1]3 → [0, 1]3  be a mapping that satisfies the following conditions 

∀𝑥, 𝑦, 𝑧 ∈ [0, 1]3: 

1. 𝑆𝑁(𝑥, 𝑦) = 𝑆𝑁(𝑦, 𝑥) (Commutativity), 

2. 𝑆𝑁(𝑆𝑁(𝑥, 𝑦), 𝑧) = 𝑆𝑁(𝑥, 𝑆𝑁(𝑦, 𝑧)) (Associativity), 

3. 𝑆𝑁(𝑥, 𝑧) ≼𝑁 𝑆𝑁(𝑦, 𝑧) for 𝑥 ≼𝑁 𝑦 (Monotonicity), 

4. 𝑆𝑁(𝑥, 0̅) = 𝑥 (Boundary conditions). 

Thus, we say that 𝑆𝑁(∙,∙) is a neutrosophic conorm or n- conorm. 

Definition 3 ([11, 15]). A neutrosophic residual implication or n-R-implication is based on an n-norm 𝑇𝑁(𝑥, 𝑦) 

defined with the following equation: 

𝑅𝐼𝑁(𝑥, 𝑦) = 𝑠𝑢𝑝{𝑢 ∈ [0, 1]3: 𝑇𝑁(𝑥, 𝑢) ≼𝑁 𝑦}            (3) 

∀𝑥, 𝑦 ∈ [0, 1]3. 

Even after reviewing the literature dedicated to defining neutrosophic implicators, there are a few definitions of the 

axiomatic that a neutrosophic implicator must comply with, as indicated in the definition below: 

Definition 4 ([15, 19]). A single-valued neutrosophic implicator (SVN-implicator for short) is an operator 

IN: [0, 1]3 × [0, 1]3 → [0, 1]3, which satisfies the conditions shown below. 

∀𝑥, 𝑥′, 𝑦, 𝑦′ ∈ [0, 1]3 it is fulfilled: 

1. If 𝑥′ ≼𝑁 𝑥, then 𝐼𝑁(𝑥, 𝑦) ≼𝑁 𝐼𝑁(𝑥′, 𝑦), 
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2. If 𝑦 ≼𝑁 𝑦′, then 𝐼𝑁(𝑥, 𝑦) ≼𝑁 𝐼𝑁(𝑥, 𝑦′), 

3. 𝐼𝑁(0̅, 0̅) =  𝐼𝑁(0̅, 1̅) =  𝐼𝑁(1̅, 1̅) = 1̅, 

4. 𝐼𝑁(1̅, 0̅) = 0̅. 

SVN-implicators can satisfy the following properties: 

1. 𝐼𝑁(1̅, 𝑥) = 𝑥 (Neutrality principle), 

2. 𝐼𝑁(𝑥, 𝑥) = 1̅ ∀𝑥 ∈ [0, 1]3 (Identity principle), 

3. 𝐼𝑁(𝑥, 𝑦) = 𝐼𝑁(𝑛𝑁(𝑦), 𝑛𝑁(𝑥)), where 𝑛𝑁(𝑥) = 𝐼𝑁(𝑥, 0̅) is an n-negator (Contrapositivity), 

4. 𝐼𝑁(𝑥, 𝐼𝑁(𝑦, 𝑧)) = 𝐼𝑁(𝑦, 𝐼𝑁(𝑥, 𝑧)) (Interchangeability principle), 

5. 𝑥 ≼𝑁 𝑦 if and only if 𝐼𝑁(𝑥, 𝑦) = 1̅ (Confinement principle), 

6. 𝐼𝑁 is a continuous mapping (Continuity). 

2.2. Set-theoretic consistency and set-theoretic coverage 

Given a variable X representing a causal condition and a variable Y denoting the outcome, let us 

further denote by X𝑖 ∈ [0, 1] the truth value of membership of the i-th case to the fuzzy set X. Similarly, 

Y𝑖 ∈ [0, 1] is the fuzzy truth value of membership of the i-th case to the outcome Y𝑖. Then the consistency 

of the subset relation is expressed by the following equation ([2]): 

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(X𝑖 ≤ Y𝑖) =
∑ 𝑚𝑖𝑛(X𝑖,Y𝑖)

∑ X𝑖
               (4) 

This measure satisfies that if all the fuzzy truth values of each causal condition are less than or equal to 

the truth values of their corresponding outcomes, then the consistency is maximum equal to 1. If for any 

case its causal truth value slightly exceeds the value of the outcome, then the consistency is slightly less 

than 1. Otherwise, the consistency is less than 1. This is a theoretical measure, Ragin sets a threshold value 

of 0.75 to determine that there is an acceptable degree of consistency, below this threshold the consistency 

should not be considered. 

On the other hand, the coverage measure is defined by Equation 5 ([2]). 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(X𝑖 ≤ Y𝑖) =
∑ 𝑚𝑖𝑛(X𝑖,Y𝑖)

∑ Y𝑖
                  (5) 

The formula above is used to calculate the degree to which the same outcome is obtained from different 

causes or causal combinations. Ragin recommends using this measure after realizing that there is a 

sufficient set-theoretic consistency. This is an empirical measure according to Ragin, where a low degree 

of coverage indicates that the probability of predicting the outcome is low since the same result is obtained 

from different causes or combinations of causes. 

This method was generalized to the neutrosophic case in [9], using Neutrosophic Likert Scales. The first 

important definition in the proposed method is that of single-valued neutrosophic set. 

Definition 5 ([9]). Let 𝑈 be a universe of discourse. A single-valued neutrosophic set (SVNS) is defined as 

𝑁 = {(𝑥, 𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)): 𝑥 ∈ 𝑈} , where 𝑇, 𝐼, 𝐹: 𝑈 → [0, 1]  denote the membership functions of 

truthfulness, indeterminacy, and falseness, respectively, such that they satisfy the condition 0 ≤ 𝑇(𝑥) +

𝐼(𝑥) + 𝐹(𝑥) ≤ 3. 

In the method the SVNS is converted into a fuzzy set as follows: 

Let 𝐴𝑁 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑈} be a single-valued neutrosophic set, this becomes an equivalent 

fuzzy set by 𝐴𝐹 = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑈}, such that: 
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𝜇𝐴(𝑥) = 1 − 0.5(1 − 𝑇𝐴(𝑥) + 𝑚𝑎𝑥 {𝐼𝐴(𝑥), 𝐹𝐴(𝑥)})             (6) 

According to Vázquez et al., 𝜇𝐴(𝑥) is obtained from the measure of similarity between 𝐴𝑁 and (1,0,0) 

([9]). 

After converting the SVNS into a fuzzy set, the SVNN obtained in each case are converted into fuzzy 

truth values by using Equation 6. 

Finally, Ragin's method for fuzzy sets is applied based on Equations 4 and 5. 

2. New Measures of Consistency and Coverage 

A fundamental property that n-R-implicators fulfill is the confinement principle, inherited from fuzzy 

R-implicators. It is known that 𝑥 ≼𝑁 𝑦  is a necessary and sufficient condition of 𝐼𝑁(𝑥, 𝑦) = 1̅  when 

𝐼𝑁(𝑥, 𝑦) is an n-R-implication. Also, the n-R-implication operators are defined from inequality as occurs in 

the measures proposed by Ragin, and therefore they are asymmetric relations as well. 

If 𝑥𝑖 is the valuation of the i-th causal condition for the proposition of being 𝑋 and 𝑦𝑖 is the valuation 

corresponding to the proposition of being 𝑌 , then the measures that we propose of neutrosophic 

consistency and coverage are the following: 

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝐴𝑣𝑒(𝑥𝑖 ≼𝑁 𝑦𝑖) = 𝑚𝑒𝑎𝑛({𝑥𝑖 ⟹𝑁 𝑦𝑖})                       (7) 

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝑀𝑖𝑛(𝑥𝑖 ≼𝑁 𝑦𝑖) =∩𝑁 ({𝑥𝑖 ⟹𝑁 𝑦𝑖})                         (8) 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝐴𝑣𝑒(𝑥𝑖 ≼𝑁 𝑦𝑖) = 𝑚𝑒𝑎𝑛({𝑦𝑖 ⟹𝑁 𝑥𝑖})                         (9) 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑀𝑖𝑛(𝑥𝑖 ≼𝑁 𝑦𝑖) = ∩𝑁 ({𝑦𝑖 ⟹𝑁 𝑥𝑖})                           (10) 

In formulas 7 and 9 the arithmetic mean of the neutrosophic R-implications between a causal condition 

and its outcome is used. In formulas 8 and 10 the following operator is used: 

(𝑇1, 𝐼1, 𝐹1) ∩𝑁 (𝑇2, 𝐼2, 𝐹2) =  (𝑚𝑖𝑛{𝑇1, 𝑇2}, 𝑚𝑎𝑥{𝐼1, 𝐼2}, 𝑚𝑎𝑥{𝐹1, 𝐹2})                    (11) 

Formulas that use the average combine logical properties with the use of the arithmetic mean as a 

measure of statistical central tendency. Meanwhile, measures that use the intersection between 

neutrosophic valuations are based on a joint measure defined in lattices. 

∩𝑁  is defined by 𝑥 ∩𝑁 𝑦 = 𝑥 ∗𝑁 (𝑥 ⟹𝑁 𝑦), where ∗𝑁 is the n-norm and ⟹𝑁 is the neutrosophic R-

implication defined from the n-norm. It is shown that with these components 𝑥 ∩𝑁 𝑦 satisfies Equation 11 

since it is the “meet” operator of the neutrosophic residuated lattice. 

Properties 

1. Every pair (𝑥𝑖, 𝑦𝑖)  satisfies 𝑥𝑖 ≼𝑁 𝑦𝑖  if and only if 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝐴𝑣𝑒(𝑥𝑖 ≼𝑁 𝑦𝑖) =

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝑀𝑖𝑛(𝑥𝑖 ≼𝑁 𝑦𝑖) = 1̅. 

2. Every pair (𝑥𝑖, 𝑦𝑖)  satisfies 𝑦𝑖 ≼𝑁 𝑥𝑖  if and only if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝐴𝑣𝑒(𝑦𝑖 ≼𝑁 𝑥𝑖) =

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑀𝑖𝑛(𝑦𝑖 ≼𝑁 𝑥𝑖) = 1̅. 

3. If 𝑥𝑖, 𝑦𝑖 ∈ {0̅, 1̅} we have that 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝑀𝑖𝑛(𝑥𝑖 ≼𝑁 𝑦𝑖) = 0̅, if there exists a pair (𝑥𝑖, 𝑦𝑖) such 

that 𝑥𝑖 ⋠ 𝑦𝑖 . Similarly 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑀𝑖𝑛(𝑦𝑖 ≼𝑁 𝑥𝑖) = 0̅ , if there exists a pair (𝑥𝑖, 𝑦𝑖)  such that 

𝑦𝑖 ⋠ 𝑥𝑖. 

4. If 𝑥𝑖, 𝑦𝑖 ∈ {0̅, 1̅} we have that 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝐴𝑣𝑒(𝑥𝑖 ≼𝑁 𝑦𝑖) = (
𝑚

𝑛
, 1 −

𝑚

𝑛
, 1 −

𝑚

𝑛
), where 𝑚 is the 

number of pairs that satisfy 𝑥𝑖 ≼𝑁 𝑦𝑖 and 𝑛 is the total number of pairs (𝑥𝑖, 𝑦𝑖). 
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5. Similarly 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝐴𝑣𝑒(𝑦𝑖 ≼𝑁 𝑥𝑖) = (
𝑚

𝑛
, 1 −

𝑚

𝑛
, 1 −

𝑚

𝑛
) , where 𝑚  is the number of pairs 

fulfilling 𝑦𝑖 ≼𝑁 𝑥𝑖 and 𝑛 is the total number of pairs (𝑥𝑖, 𝑦𝑖). 

Proof 

1. Applying the confinement principle in Equations 7 and 8, we obtain the proof. 

2. Equivalently, this proof is obtained from the confinement principle and Equations 9 and 10. 

3. When 𝑥𝑖, 𝑦𝑖 ∈ {0̅, 1̅} emulates the crisp case, we have that if there exists any pair where 𝑥𝑖 =

1̅ and 𝑦𝑖 = 0̅, then (𝑥𝑖 ⟹𝑁 𝑦𝑖) = 0̅ and it is enough that there exists such a case for the 

minimum to be 0̅. 

The proof to 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑀𝑖𝑛(𝑦𝑖 ≼𝑁 𝑥𝑖) is equivalent. 

4. 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑁𝐴𝑣𝑒(𝑥𝑖 ≼𝑁 𝑦𝑖)  is the arithmetic mean of 1̅  (when 𝑥𝑖 ≼𝑁 𝑦𝑖 ) and 0̅  (when 

𝑥𝑖 ⋠𝑁 𝑦𝑖) which is the proposed formula. 

5. Adapting the same previous steps to 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝐴𝑣𝑒(𝑦𝑖 ≼𝑁 𝑥𝑖) we reach the proposed result.□ 

 

Note also that from the non-increasing property of 𝐼𝑁(𝑥, 𝑦) concerning 𝑥, then the larger is 𝑥 for 𝑦, 

the smaller will be the value of the n-R-implication. This coincides with what is satisfied by the set-theoretic 

measures defined by Ragin. 

The neutrosophic R-implications defined in the literature for valuations (tx, ix, fx) and (ty, iy, fy) are 

obtained as the triples defined below ([11-13]): 

𝑡⟹𝑁𝛱
= {

1, 𝑖𝑓 𝑡𝑥 ≤ 𝑡𝑦

𝑡𝑦

𝑡𝑥
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖⟹𝑁𝛱
= {

0, 𝑖𝑓 𝑖𝑦 ≤ 𝑖𝑥

𝑖𝑦−𝑖𝑥

1−𝑖𝑥
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, and 𝑓⟹𝑁𝛱
= {

0, 𝑖𝑓 𝑓𝑦 ≤ 𝑓𝑥

𝑓𝑦−𝑓𝑥

1−𝑓𝑥
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (12) 

Called Product. 

𝑡⟹𝑁𝐺
= {

1, 𝑖𝑓 𝑡𝑥 ≤ 𝑡𝑦

𝑡𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑖⟹𝑁𝐺

= {
0, 𝑖𝑓 𝑖𝑦 ≤ 𝑖𝑥

𝑖𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, and 𝑓⟹𝑁𝐺

= {
0, 𝑖𝑓 𝑓𝑦 ≤ 𝑓𝑥

𝑓𝑦 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (13) 

Called Gödel's. 

𝑡⟹𝑁𝐿
= {

1, 𝑖𝑓 𝑡𝑥 ≤ 𝑡𝑦

1 − 𝑡𝑥 + 𝑡𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑖⟹𝑁𝐿

= {
0, 𝑖𝑓 𝑖𝑦 ≤ 𝑖𝑥

𝑖𝑦 − 𝑖𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, and 𝑓⟹𝑁𝐿

= {
0, 𝑖𝑓 𝑓𝑦 ≤ 𝑓𝑥

𝑓𝑦 − 𝑓𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (14) 

Called Lukasiewicz's. 

Below we illustrate with an example the use of the proposed measures in solving a real-life problem: 

Example 1 ([9]): 

The defined outcome is the perception of Academic Success (SUCCESS). A Likert scale is developed, 

represented as single-valued neutrosophic sets. The study also considers other variables: Academic 

Resources (RES), Motivation (MOT), and Quality of Teaching (QUAL). A survey was conducted with a 

group of 12 Software Engineering students at the University of Guayaquil (see Table 1). 

Table 1. Survey Data. Taken from [9]. 

Case RES MOT QUAL SUCCESS 

1 (0.9,0.9, 0.2) (0.6, 1, 0.5) (0.3, 0.7, 0.3) (0.8, 0.6, 0.7) 

2 (0.5, 0.5, 0.5) (1,1,1) (0.5,0.2,0.5) (0.6, 0.6, 0.7) 

3 (0.8, 0.7, 0.4) (0.7, 0.9, 0.5) (0.8, 0.5, 0.5) (0.8, 0.5, 0.5) 

4 (1,1,0) (0.8,0.8,0) (1,0.9,0.3) (0.7, 1, 0.9) 
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Case RES MOT QUAL SUCCESS 

5 (1,0.5,0) (1,0.5,1) (1,0.5,1) (0.9, 0.6, 0.1) 

6 (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) 

7 (0.2, 0.5, 0.8) (1,0,0) (0.5, 0.5, 0.5) (0.8, 0.5, 0.2) 

8 (1, 0.9, 0.1) (0.9, 0.9, 0.1) (0.9, 0.9, 0.1) (0.9, 0.9, 0.1) 

9 (1,1,0) (0.8, 0.8, 0) (1,0,0) (0.9, 0, 0) 

10 (0.7, 1, 0.2) (0.9, 0.4, 0) (0.6, 0.9, 0.1) (1,0,0) 

11 (0.4, 0.7, 0.2) (0.3, 0.9, 0.4) (0.8, 0.4, 0.6) (0.4, 0.8, 0.3) 

12 (0.6, 1, 0.6) (0.6, 0.5, 0.2) (0.2, 0.5, 0.7) (1,0,1) 

 

Consistency and coverage calculations for each n-norm and each of the cases are summarized in Tables 

2-4. Note that we retain the notation * to indicate what Ragin calls set intersection, but which in the logical 

context is the conjunction of the causal conditions using ∩𝑁. 

Table 2. The consistency and coverage measures of Equations 7-10 corresponding to the n-R-implication Product are calculated for 

four combinations of causal conditions. 

 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES (0.7, 0.333333, 1.0) (0.940741, 

0.0611111, 

0.276389) 

(0.25, 1.0, 0.75) (0.865278, 

0.345833, 

0.0791667) 

MOT (0.6, 1.0, 1.0) (0.93125, 0.141667, 

0.208333) 

(0.6, 1.0, 1.0) (0.896991, 

0.416667, 0.178571) 

QUAL (0.5, 1.0, 1.0) (0.916667, 

0.197222, 0.235714) 

(0.2, 0.9, 1.0) (0.802778, 0.1375, 

0.158631) 

RES*MOT*QUAL (0.875, 0.2, 1.0) (0.98125, 

0.0166667, 

0.188095) 

(0.2, 1.0, 1.0) (0.731019, 0.525, 

0.281548) 

 

Table 3. The consistency and coverage measures of Equations 7-10 corresponding to Gödel's n-R-implication are calculated for four 

combinations of causal conditions. 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES (0.7, 0.8, 1.0) (0.933333, 

0.166667, 0.35) 

(0.2, 1.0, 0.8) (0.833333, 

0.383333, 

0.0833333) 

MOT (0.6, 1.0, 1.0) (0.916667, 0.175, 

0.233333) 

(0.3, 1.0, 1.0) (0.825, 0.458333, 

0.2) 

QUAL (0.4, 1.0, 1.0) (0.908333, 0.25, 

0.275) 

(0.2, 0.9, 1.0) (0.758333, 0.175, 

0.183333) 

RES*MOT*QUAL (0.7, 0.6, 1.0) (0.966667, 0.05, 

0.216667) 

(0.2, 1.0, 1.0) (0.633333, 

0.566667, 0.3) 



Neutrosophic Sets and Systems, {Special Issue: Artificial Intelligence, Neutrosophy, and Latin American 

Worldviews: Toward a Sustainable Future (Workshop – March 18–21, 2025, Universidad Tecnológica 

de El Salvador, San Salvador, El Salvador)}, Vol. 84, 2025 

 

Erick G. Caballero, Maikel Y. Leyva V, Noel B-Hernández, Florentin S, New measures of consistency and coverage for social 

research based on neutrosophic logic 

203 

Table 4. The consistency and coverage measures of Equations 7-10 corresponding to Lukasiewicz's n-R- implication are calculated 

for four combinations of causal conditions. 

 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES (0.7, 0.1, 0.9) (0.941667, 0.025, 

0.191667) 

(0.4, 1.0, 0.6) (0.883333, 

0.291667, 

0.0666667) 

MOT (0.6, 0.5, 0.9) (0.933333, 

0.0666667, 0.175) 

(0.6, 0.8, 0.9) (0.916667, 0.25, 

0.108333) 

QUAL (0.6, 0.4, 0.6) (0.925, 0.0833333, 

0.125) 

(0.2, 0.9, 0.9) (0.825, 0.125, 

0.133333) 

RES*MOT*QUAL (0.9, 0.1, 0.6) (0.983333, 

0.00833333, 

0.0916667) 

(0.2, 1.0, 0.9) (0.775, 0.358333, 

0.191667) 

To convert the elements of Tables 2-4 into fuzzy values we can use Equation 6, resulting in the values 

shown in Tables 5-7. This allows us to compare the results obtained with those appearing in [9]. 

 

Table 5. The consistency and coverage measures of Table 2 are converted into fuzzy for four combinations of causal conditions. 

 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES 0.35 0.8322 0.125 0.75972 

MOT 0.30 0.8614583 0.300 0.74016 

QUAL 0.25 0.8405 0.099 0.82207 

RES*MOT*QUAL 0.4375 0.8966 0.099 0.60301 

 

Table 6. The consistency and coverage measures of Table 3 are converted into fuzzy for four combinations of causal conditions. 

 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES 0.35 0.79166 0.099 0.725 

MOT 0.30 0.84166 0.150 0.683 

QUAL 0.199 0.8166 0.099 0.787499 

RES*MOT*QUAL 0.35 0.875 0.099 0.533 

 

Table 7. The consistency and coverage measures of Table 4 are converted into fuzzy for four combinations of causal conditions. 

 

Conditions tested ConsistencyNMin ConsistencyNAve CoverageNMin CoverageNAve 

RES 0.399 0.875 0.199 0.795833 

MOT 0.35 0.879166 0.35 0.833 

QUAL 0.5 0.899 0.1499 0.845833 

RES*MOT*QUAL 0.6499 0.945833 0.099 0.70833 
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As can be seen, the measurements based on Equations 8 and 10 give lower results than the 

measurements based on Equations 7 and 9. This is due to the use of an n-norm in the former instead of an 

average in the latter. 

In all cases, the consistency of the combination of all causal variables (RES*MOT*QUAL) is greater for 

all operators when compared to the causal variables of a single operator (either RES, MOT, or QUAL). 

While the coverage is lower. 

In Tables 2-4, it can be seen that the proposed method results in neutrosophic values, thus preserving 

accuracy, unlike the method in [9]. These values are feasible to become fuzzy values as seen in Tables 5-7. 

It is also possible to include values that cannot be defined in fuzzy logic or another like intuitionistic fuzzy 

logic, for example (1,1,1), which expresses maximum indeterminacy with maximum contradiction. 

We recommend using the measures based on Equations 8 and 10 in problems where rules with very 

high truth value results are needed. On the other hand, the measures based on Equations 7 and 9 mean that 

the results are acceptable on average, so they are more advisable in this context. 

In summary, measures based on the minimum are recommended for generating rules with high 

qualitative results since their values are high when the worst value of all is high, while rules generated by 

measures based on the arithmetic mean are better when quantitatively significant results are desired since 

high values are obtained even when the values of some individual results are not high. 

Now let us compare the results with those obtained in [9], as seen in Table 8. 

Table 8. Results of the example according to the method used in [9]. 

 

Conditions tested Consistency Raw Coverage Combined 

RES 0.927928 0.730496 0.841773 

MOT 0.903226 0.794326 0.873243 

QUAL 0.903226 0.794326 0.873243 

RES*MOT*QUAL 0.957447 0.638298 0.794931 

 

Table 8 shows that the variables are ordered according to consistency in 𝑅𝐸𝑆 ∗ 𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 ≻ 𝑅𝐸𝑆 ≻

𝑀𝑂𝑇 = 𝑄𝑈𝐴𝐿. 

Guided by the ConsistencyNave of Tables 5-7 we have the order relation 𝑅𝐸𝑆 ∗ 𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 ≻ 𝑀𝑂𝑇 ≻

𝑄𝑈𝐴𝐿 ≻ 𝑅𝐸𝑆 for the product and Gödel n-R-implications. In the case of Lukasiewicz n-R-implication, this 

is 𝑅𝐸𝑆 ∗ 𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 ≻ 𝑄𝑈𝐴𝐿 ≻ 𝑀𝑂𝑇 ≻ 𝑅𝐸𝑆. 

Regarding the comparison for CoverageNAve in Table 8 it can be seen that: 𝑅𝐸𝑆 ≻ 𝑀𝑂𝑇 = 𝑄𝑈𝐴𝐿 ≻ 𝑅𝐸𝑆 ∗

𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 in the method of Leyva et al., while in the proposed method we have: 𝑄𝑈𝐴𝐿 ≻ 𝑅𝐸𝑆 ≻ 𝑀𝑂𝑇 ≻

𝑅𝐸𝑆 ∗ 𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 for the product and Gödel n-R-implications. For Lukasiewicz n-R-implication, we have 

𝑄𝑈𝐴𝐿 ≻ 𝑀𝑂𝑇 ≻ 𝑅𝐸𝑆 ≻ 𝑅𝐸𝑆 ∗ 𝑀𝑂𝑇 ∗ 𝑄𝑈𝐴𝐿 . In any case, the truth values obtained show a consistency 

greater than 0.79 and coverage of more than 0.5 as a truth value. 

Let us now calculate the results for the * between two variables. For simplicity, we directly state the 

fuzzy values for the measures based on the arithmetic mean, see Tables 9-11. 
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Table 9. ConsistencyNAve and CoverageNAve fuzzified based on product n-R-implication. 

 

Conditions tested ConsistencyNAve CoverageNAve 

RES*MOT 0.89479166 0.63946759 

RES*QUAL 0.86130952 0.71284722 

MOT*QUAL 0.89657738 0.65196759 

RES*MOT*QUAL 0.8966 0.60301 

 

Table 10. ConsistencyNAve and CoverageNAve fuzzified based on Gödel n-R-implication. 

 

Conditions tested ConsistencyNAve CoverageNAve 

RES*MOT 0.875 0.566666 

RES*QUAL 0.84166 0.675 

MOT*QUAL 0.875 0.579166 

RES*MOT*QUAL 0.875 0.533 

 

Table 11. ConsistencyNAve and CoverageNAve fuzzified based on Lukasiewicz n-R-implication. 

 

Conditions tested ConsistencyNAve CoverageNAve 

RES*MOT 0.929166 0.741666 

RES*QUAL 0.916666 0.754166 

MOT*QUAL 0.945833 0.754166 

RES*MOT*QUAL 0.945833 0.70833 

 

Recall that in [9] the result was as shown in Table 12. 

 

Table 12. Consistency and Coverage obtained in [9], for pairwise variable combinations. 

 

Conditions consistency coverage combined 

RES*MOT 0.957895 0.645390 0.799335 

RES*QUAL 0.950000 0.673759 0.812578 

MOT*QUAL 0.960000 0.680851 0.821001 

RES*MOT*QUAL 0.957447 0.638298 0.794931 

 

As can be seen from Table 12, the consistency of RES*MOT*QUAL is slightly lower than the consistency 

of MOT*QUAL and RES*MOT. This is not expected because RES*MOT*QUAL is an intersection of more 

sets, so its value should be lower and the consistency is assumed to be higher. 

If compared with the calculations in Tables 9-11, this is satisfied.□ 

In the software also called fsQCA, Ragin introduces other measures, for example, the one he calls 

coincidence, which he defines by the equation: 
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𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒(X𝑖 ≤ Y𝑖) =
∑ 𝑚𝑖𝑛(X𝑖,Y𝑖)

∑ 𝑚𝑎𝑥(X𝑖,Y𝑖)
                 (15) 

In this paper, we introduce two new coincidence measures based on the ideas developed here, see 

Equations 16 and 17: 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑚𝑒𝑎𝑛({(𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛) ⇔𝑁 (𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛)})(16) 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑚𝑖𝑛({(𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛) ⇔𝑁 (𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛)}) (17) 

Where 𝑥 ⇔𝑁 𝑦 ≔ (𝑥 ⟹𝑁 𝑦) ∩𝑁 (𝑦 ⟹𝑁 𝑥), it is about the neutrosophic bi-implication. 

Some properties of these measures are as follows: 

Properties 

1. 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) =

 𝑚𝑒𝑎𝑛({(𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛) ⟹𝑁 (𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛)}) and 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑚𝑖𝑛({(𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛) ⟹𝑁 (𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛)}). 

2. If 𝑝(𝑗) is a permutation of the indices {1, 2, ⋯ , 𝑛} then: 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋𝑝(1), 𝑋𝑝(2), ⋯ , 𝑋𝑝(𝑛)) and 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋𝑝(1), 𝑋𝑝(2), ⋯ , 𝑋𝑝(𝑛)). (Symmetry) 

3. 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) ≼𝑁 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛−1) and 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) ≼𝑁 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛−1). (Non-increasing 

monotonicity) 

4. If all 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0̅, 1̅} then: 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = {
1̅, 𝑖𝑓 𝑒𝑣𝑒𝑟𝑦 𝑥𝑖 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟  

0̅,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 

𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝐴𝑣𝑒(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = (
𝑚

𝑛
, 1 −

𝑚

𝑛
, 1 −

𝑚

𝑛
), where 𝑚 is the number of elements with 

equal evaluations for each case for all variables. 

Proof 

1. Taking into account that 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛 ≼ 𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛  then 

𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛 ⟹𝑁 𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛: = 1̅. Considering that the neutrosophic bi-

implication is formed by the neutrosophic conjunction of the n-R-implication in both 

directions, in addition to the neutrosophic conjunction complies with the neutrality principle, 

then the property is proven. 

2. Obvious. 

3. From property 1 and the fact that 𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛−1 ≼ 𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛  and 

𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛 ≼ 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛−1 , and the fact that the n-R-implications are 

non- increasing for the first argument and non- decreasing for the second argument, then 

comparing 𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛 ⟹𝑁 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛  with 

𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛−1 ⟹𝑁 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛−1 we have that the former one is less than 

the last one. Then, applying the min and mean operators for all cases maintains this property. 

4. Applying the confinement principle and taking into account Property 1 the only way it is 

fulfilled 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 1̅  is when 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛 =

𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛, it is equivalent to saying that all the elements are equal for all cases. 

When these equalities are fulfilled, coincidence is 1̅ even when the elements are not 1̅ or 0̅. 
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When these are only 1̅  or 0̅  and one is different from the others then 𝑥1 ∩𝑁 𝑥2 ∩𝑁 ⋯ ∩𝑁 𝑥𝑛 ≺

𝑥1 ∪𝑁 𝑥2 ∪𝑁 ⋯ ∪𝑁 𝑥𝑛, which implies that 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑁𝑀𝑖𝑛(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 0̅. 

On the other hand, if 𝑛 is the total number of cases analyzed, while 𝑚 is the number of cases in which 

all values 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are equal to each other, then by calculating the average of Equation 17, it is satisfied 

that we have the average of the set containing 𝑚 times 1̅s and 𝑛 − 𝑚 times 0̅s. This is the formula that 

must be demonstrated in point 4 of the proposition.□ 

Example 2. In this example, we calculate the coincidence measure according to Equations 16 and 17 for 

the values in the table in Example 1, concerning the variables RES, MOT, and QUAL. 

 

Table 13. Calculation of coincidence for the three variables RES, MOT, and QUAL. Conjoint neutrosophic results using Equations 

16 and 17 for the three implications, and fuzzyfied results. 

 

Coincidence Equation Neutrosophic Fuzzyfied result 

Set-theist From Ragin - 0.594937 

Based on 𝚷 CoincidenceNMin [0.2, 1.0, 1.0]  0.099999 

CoincidenceNAve [0.6486, 0.6778, 0.413889] 0.485417 

Based on Gödel CoincidenceNMin [0.2, 1.0, 1.0]  0.099999 

CoincidenceNAve [0.6083, 0.69167, 0.46667]  0.458333 

Based on Lukasiewicz CoincidenceNMin [0.2, 1.0, 1.0]  0.099999 

CoincidenceNAve [0.69167, 0.4000, 0.34167] 0.645833 

 

As can be seen from the Table above, the results obtained with min are much stricter than those obtained 

with average. 

3. Discussion 

In the measures proposed so far in this article and taking into account the example studied, the 

effectiveness of calculating consistency, coverage, and coincidence using neutrosophic R-implications is 

demonstrated. From a practical point of view, the measures based on min show results that are too 

restrictive because this operator is too strict concerning the results. While the measures that use the average 

are more in line with what can be expected. 

There are also differences between these measures concerning the type of implication used. Of the three 

of them, Lukasiewicz is more sensitive to changes in values. That is why we recommend it if we want to 

better differentiate different cases. On the other hand, the product and Gödel measures show greater 

robustness and less accuracy. 

The proposed measures are a logical approximation to Ragin's method, so the results should be 

interpreted as truth values. In this article, we work with single-valued neutrosophic numbers and that is 

why more general input values are allowed than with the Ragin fuzzy method. Note in the example that 

the value (1,1,1) was included, which cannot be represented in any extension of fuzzy logic except for 

neutrosophic logic. 

On the other hand, unlike the method proposed in ([9]), in this method, it is possible to perform 

calculations directly with single-valued neutrosophic numbers and the results can be fuzzified for 
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representing them with a single numerical value. Furthermore, in the proposed method, unlike the set 

method, the coincidence is never undefined. This can be seen if the coincidence is calculated where the 

values of the sets are all 0, then it is undefined in Ragin's fuzzy method and not in the one proposed here. 

4. Conclusions 

Ragin's creation of the QCA and fuzzy QCA methods, with the ease of using software to perform the 

calculations, established consistency, coverage, and coincidence measures based on set theory. When data 

is in the form of single-valued neutrosophic numbers, a common approach has been to fuzzify them and 

apply the fuzzy QCA method as proposed in [9]. However, this can obscure the inherent indeterminacy. 

This paper addresses a methodological gap by proposing logical, non-set-based measures founded on 

neutrosophic R-implications. This approach is significant because the underlying Aristotelian binary logic 

inherent in many traditional models often fails to capture the nuances of complex social realities, such as 

those found in diverse epistemologies like Afro-Latin American and Caribbean cosmovisions which readily 

accommodate ambiguity, paradox, and multi-valence. Our logical method links several theories, including 

the Deduction theorem implicit in neutrosophic R-implications. We have proven theoretically and 

demonstrated with examples that our proposed measures offer good results, comparable to Ragin's set-

based method. Crucially, the advantage we offer is that operating directly on single-valued neutrosophic 

numbers (incorporating Truth, Indeterminacy, and Falsity) allows calculation with valuations not 

representable in fuzzy logic and, more importantly, provides conceptual tools better aligned with complex, 

non-exclusive realities. Unlike the method in [9], our proposed method is applied directly to single-valued 

neutrosophic numbers, yielding valuations that preserve indeterminacy, thus offering a more adequate 

approach for phenomena where binary or fuzzy representations fall short. 
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