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Abstract: This article introduces Neutrosophic Causal AI, a novel framework that integrates neutrosophic 

logic with structural causal models to enhance decision-making under uncertainty. While traditional 

Causal AI is effective at identifying cause-and-effect relationships, it assumes a level of precision rarely 

found in complex, real-world systems. By incorporating degrees of truth (T), indeterminacy (I), and falsity 

(F), Neutrosophic Causal AI extends causal inference to accommodate ambiguity, contradiction, and 

incomplete data. The proposed framework formalizes the neutrosophic do-operator and adapts Judea 

Pearl’s structural causal models to a neutrosophic context, allowing for more nuanced intervention analysis 

and counterfactual reasoning. Through illustrative examples and a simulation-based approach, the article 

demonstrates how this method improves transparency and epistemic robustness in decision systems. 

Special attention is given to applications in Web3 environments, where decentralized governance, smart 

contracts, and autonomous decision-making require high levels of reliability and trust. Neutrosophic 

Causal AI thus emerges as a critical tool for building intelligent systems that reflect the complexity of social 

and digital ecosystems, providing a bridge between computational logic, causal analysis, and real-world 

ambiguity. 

Keywords: Neutrosophic Causal AI; do-operator; uncertainty modeling; causal inference; Web3 

applications. 

 

1. Introduction 

Addressing complex decisions amidst vague and uncertain data necessitates innovative approaches. 

This paper explores the integration of Neutrosophy[1], Causal AI[2], and Web3[3] technologies. Combining 

Neutrosophy and Causal AI we have Neutrosophic Causal AI, a powerful framework to support decision-

making. 

Traditional AI, and advanced machine learning methods, such as large language models (LLMs), rely 

primarily on statistical correlations, learning from extensive datasets to make predictions but exhibiting a 

limited ability to identify causal relationships from data [4]. Causal AI, conversely, developed methods to 

identify cause-and-effect relationships from either observational or experimental data[5]. 

Web3 [6,7,8], with its decentralized nature and smart contract automation, demands robust, verifiable 

decision-making. By integrating Neutrosophic Causal AI, we can move beyond mere prediction to 

understand the underlying causal mechanisms, enabling more accurate and reliable outcomes when in 

contexts where data contain indeterminacy and ambiguity. 

Recent research has increasingly sought to bridge causal reasoning with the domain of Neutrosophy. 

While existing approaches like Neutrosophic Cognitive Maps (NCMs) [9, 10] and Neutrosophic Qualitative 

Comparative Analysis (NQCA) [11, 12, 13] offer promising frameworks for modeling complex systems rife 

with indeterminacy and contradiction, they currently lack certain formalisms standard in established 
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causal inference. Notably, these methods have not yet incorporated an equivalent to Pearl’s do-calculus[14, 

15]  for rigorous intervention analysis, nor have they explicitly adopted the mathematical underpinnings 

of Structural Causal Models (SCMs)[17, 18, 19]. This gap highlights both a limitation of current 

neutrosophic causal methods in handling formal intervention queries and an opportunity for future work 

to potentially integrate Pearl's well-founded tools to enhance their analytical capabilities. 

This article addresses that gap by approaching the integration of Neutrosophic Logic and Causal AI not 

just as a conceptual fusion, but as a formal modeling problem. We introduce a new formulation—

Neutrosophic Causal AI—which explicitly adapts structural causal models and do-operators to the 

neutrosophic context, providing tools to simulate interventions and estimate causal effects in environments 

characterized by vagueness, inconsistency, and uncertainty. 

The remainder of this paper is structured as follows. Section 2 provides the theoretical foundations of 

Causal AI, including structural causal models, DAGs, and the principles of Pearl’s do-calculus. Section 3 

introduces the concept of Neutrosophic Causal AI, detailing how neutrosophic logic extends traditional 

causal reasoning frameworks. We also define the neutrosophic do-operator and present illustrative 

examples of causal effect estimation using neutrosophic probabilities. Section 4 explores practical 

applications of Neutrosophic Causal AI in Web3 and blockchain environments. Finally, Section 5 

summarizes the key contributions and discusses implications for future research in AI, logic, and 

decentralized systems. 

 

2. Preliminaries 

2.1 Causal AI 

 

Causal Artificial Intelligence (Causal AI) represents a paradigm shift in machine learning, moving 

beyond mere pattern recognition to the understanding of cause-and-effect relationships. As defined by 

Ness [5], Causal AI involves the automation of causal reasoning through machine learning, enabling 

systems to not only predict but also explain outcomes[20]. This automation is crucial for navigating the 

complexity of real-world systems, where understanding the 'why' behind observed phenomena is as 

important as the 'what.' 

Expanding on this, Hurwitz and Thompson [2]  characterize Causal AI as both an art and a science, 

emphasizing the intricate analysis of variable relationships to discern relevant causes and effects within a 

system. This perspective highlights the comprehensive approach required to effectively manage and 

understand complex systems. 

We define Causal AI as a systematic approach that seeks to understand cause-and-effect relationships 

from data (experimental or observational) to support decision-making. The systematic approach steps are 

a) problem contextualization, b) causal modeling with graphs (DAGs), c) quantitative validation of causal 

relationships. 

A key aspect of Causal AI, as underscored by Ness [5], is its reliance on causal inference, which allows 

data scientists to simulate experiments and estimate causal effects from observational data. This is 

particularly significant given that most data, including 'big data,' is observational, not experimental [5]. 

Causal AI thus empowers researchers to extract meaningful causal insights from naturally occurring data, 

bridging the gap between passive observation and active experimentation[21]. 

 

2.2.1 Causal Structural Model 

 

At the core of Causal AI lies the Causal Structural Model (CSM)[16], often represented by Directed 

Acyclic Graphs (DAGs)[22]. These graphical models depict causal relationships between variables, where 

nodes represent variables and directed edges indicate the direction of causality. 

The DAG structure captures the conditional dependencies between variables, enabling the 

representation of causal hypotheses about the system under study[23]. Recognizing structures like 'chain,' 
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'fork,' and 'collider' within these DAGs is crucial, as they dictate how causal information flows and how 

interventions should be analyzed. 

A 'chain' (A → B → C) represents a direct causal flow, a 'fork' (B ← A → C) indicates a common cause 

generating multiple effects, and a 'collider' (A → C ← B) signals a point where multiple causes converge 

on an effect, requiring care to avoid selection biases (Figure 1). 

 

Figure 1. Fundamental Causal Structures. 

The diagrams represent the three basic causal topologies: (1) Chain (direct causal flow A→B→C), (2) Fork 

(common cause B←A→C), and (3) Collider (common effect A→C←B). Correct analysis of these structures is 

essential for causal inference and the identification of potential biases. 

Through CSM, and with an understanding of these structures, it is possible to visualize and analyze 

cause-and-effect relationships, facilitating the identification of potential confounders and mediators, which 

are crucial for accurate causal inference. 

The 'do-operation,' introduced by Judea Pearl, is an essential tool in this context, allowing for the 

simulation of interventions by 'cutting' the incoming edges of the intervened variable, enabling the 

estimation of specific causal effects and the simulation of counterfactual scenarios. 

The foundation of causal AI has roots in Pearl’s research regarding causal inference. Pearl synthesized 

the causal inference through the ladder of causation[24]. 

Definition 1. Definition of the do-Operator in Pearl's Causal Framework[25-28]: 

Within the formalism of Structural Causal Models (SCMs) developed by Judea Pearl, a model 

𝑀 consists of a set of variables (endogenous 𝑉 and exogenous 𝑈), and a set of functions 𝐹 that determine 

the value of each endogenous variable 𝑉𝑖 based on its direct causal parents (𝑝𝑎𝑖) in the associated causal 

graph and the corresponding exogenous variables (𝑢𝑖). Each structural equation takes the form: 

𝑉𝑖 =  𝑓𝑖 (𝑝𝑎𝑖, 𝑢𝑖)               (1) 

The 𝑑𝑜(𝑋 = 𝑥) operator represents an external intervention that fixes the value of a variable (or set of 

variables) 𝑋 ⊆ 𝑉  to a constant 𝑥 . This operation is fundamental for distinguishing between passive 

observation and deliberate action (or setting), thereby allowing the definition and calculation of causal 

effects. 

Formally, applying the 𝑑𝑜(𝑋 = 𝑥) operator to a model 𝑀 generates a new, modified model, denoted 

𝑀𝑥. This submodel 𝑀𝑥   is obtained from 𝑀 through the following procedure: 

The structural equations within 𝐹 that determine the variables in 𝑋 are removed. 
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1 These equations are replaced by assigning the constant value 𝑥 to the variables 𝑋. 

2 All other structural equations from model M remain unchanged. 

3 The probability distribution 𝑃(𝑢) over the exogenous variables 𝑈 remains the same as 

in M. 

The probability distribution of a variable (or set of variables) 𝑌 ⊆ 𝑉 under the intervention 𝑑𝑜(𝑋 = 𝑥) is 

denoted as 𝑃(𝑌 = 𝑦 ∣ 𝑑𝑜(𝑋 = 𝑥)) . This distribution represents the behavior of 𝑌  in the hypothetical 

scenario where 𝑋 is forced to take the value 𝑥. It is formally defined as the probability distribution of 𝑌 in 

the modified model 𝑀𝑥: 

 

𝑃(𝑌 = 𝑦 | 𝑑𝑜(𝑋 = 𝑥))  =  𝑃𝑚𝑥
(𝑌 = 𝑦)          (2) 

 

Where 𝑃𝑚𝑥
(𝑌 = 𝑦) is the probability that Y takes the value y induced by the submodel 𝑀𝑥and the 

distribution 𝑃(𝑢). This mathematical construct allows for the rigorous quantification of the causal effects 

of interventions, distinguishing them from mere statistical associations observed in the data. 

Example 1: Calculation of the Causal Effect of a Treatment via Covariate Adjustment 

Scenario: Consider an observational study to evaluate the effect of a new Treatment (X) on Recovery (Y) 

from a disease. It is known that the patient's Age (Z) can influence both the decision to take the treatment 

and the probability of recovery, thus acting as a confounding factor. We assume the following causal 

structure, represented by a Directed Acyclic Graph (DAG): 

 

Figure 2: Directed Acyclic Graph (DAG) Representing Causal Relationships Between Age, 

Treatment, and RecoveryThe variables are binary: 

X: 1 if received Treatment, 0 otherwise. 

Y: 1 if Recovery occurred, 0 otherwise. 

Z: 1 if Older, 0 if Younger. 

The variable Age (Z) satisfies the backdoor criterion relative to the effect of X on Y, as it intercepts the 

only non-causal path between X and Y (X←Z→Y) and is not a descendant of X. Therefore, we can identify 

the causal effect 𝑃(𝑌 = 𝑦 ∣ 𝑑𝑜(𝑋 = 𝑥)) by adjusting for Z. 

Objective: Calculate the Average Causal Effect (ACE) of the treatment on recovery, defined as: 𝐴𝐶𝐸 =

𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 0))         (3) 
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Hypothetical Observational Data: Assume we have the following probabilities estimated from a large 

sample: 

• Distribution of the confounder (Age):  

o P(Z=0)=0.6 (Probability of being Younger) 

o P(Z=1)=0.4 (Probability of being Older) 

• Conditional Probability of Recovery given Treatment and Age:  

o P(Y=1∣X=1,Z=0)=0.7 

o P(Y=1∣X=1,Z=1)=0.5 

o P(Y=1∣X=0,Z=0)=0.4 

o P(Y=1∣X=0,Z=1)=0.2 

Calculation of the Causal Effect: 

We use the adjustment formula (backdoor adjustment): 

 𝑃(𝑌 = 𝑦 ∣ 𝑑𝑜(𝑋 = 𝑥)) = 𝑧∑𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧)      (4) 

Step 1: Calculate P(Y=1∣do(X=1)) Probability of recovery if intervening by assigning the treatment to 

everyone (X=1). 𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 1)) = 𝑃(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 0)𝑃(𝑍 = 0) + 𝑃(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 1)𝑃(𝑍 =

1) 

Substituting the values:𝑃( 𝑌 = 1 ∣∣ 𝑑𝑜(𝑋 = 1) ) = (0.7)(0.6) + (0.5)(0.4) 

𝑃( 𝑌 = 1 ∣∣ 𝑑𝑜(𝑋 = 1) ) = 0.42 + 0.20 

𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 1)) = 0.62 

Step 2: Calculate P(Y=1∣do(X=0)) Probability of recovery if intervening by not assigning the treatment 

to anyone (X=0). 𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 0)) = 𝑃(𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 0)𝑃(𝑍 = 0) + 𝑃(𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 1)𝑃(𝑍 =

1) 

Substituting the values: 𝑃( 𝑌 = 1 ∣∣ 𝑑𝑜(𝑋 = 0) ) = (0.4)(0.6) + (0.2)(0.4) 

𝑃( 𝑌 = 1 ∣∣ 𝑑𝑜(𝑋 = 0) ) = 0.24 + 0.08 

𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 0)) = 0.32 

Step 3: Calculate the Average Causal Effect (ACE) 𝐴𝐶𝐸 = 𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1 ∣ 𝑑𝑜(𝑋 = 0)) 

𝐴𝐶𝐸 = 0.62 − 0.32 

𝐴𝐶𝐸 = 0.30 

Interpretation: The calculation shows that the probability of recovery if the entire population were to 

receive the treatment would be 62% (P(Y=1∣do(X=1))=0.62), whereas if no one were to receive it, the 

probability would be 32% (P(Y=1∣do(X=0))=0.32). 

The Average Causal Effect (ACE) is 0.30. This means that, on average, receiving the treatment increases 

the probability of recovery by 30 percentage points in this population, after controlling for the confounding 

effect of Age. This value represents the causal effect of the treatment isolated from the influence of the 

confounder. 

 

2.2.2 The ladder of causation 

 

Pearl's Ladder of Causation delineates causal inference into three distinct levels. The first level, 

Association or Passive Observation, represents the foundational tier where traditional machine learning 
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methods are situated. This level pertains to the identification of statistical relationships between observed 

entities, utilized for training predictive models. In its most rudimentary form, association describes how 

two observed entities correlate[29]. 

The second level, Intervention or Acting, transcends mere passive observation. It involves 

comprehending the impact of changes, and investigating the 'why' behind observed transformations[30]. 

The third and highest level, Counterfactuals or Imagining What If, embodies the capability to formulate 

hypotheses regarding what would transpire under altered conditions [31]. Counterfactuals are pivotal for 

establishing causal relationships, as they enable the simulation of hypothetical scenarios. The placement of 

this level at the apex of the Ladder of Causation reflects its complexity and significance in advanced causal 

inference. 

3. Materials and Methods 

This study adopts a conceptual and formal modeling approach, integrating Causal Artificial 

Intelligence (Causal AI) with Neutrosophic Logic and Neutrosophic Set Theory to develop a framework 

for complex decision-making under uncertainty. 

3.1 Modeling Framework 

The proposed methodology follows three main stages: 

Problem Contextualization and Causal Modeling 

We define the causal problem space using Directed Acyclic Graphs (DAGs), following the Structural 

Causal Model (SCM) formalism introduced by Judea Pearl. These graphs capture hypothesized cause-and-

effect relationships among variables, enabling the application of causal inference techniques such as 

backdoor adjustment and do-operations. 

Neutrosophic Extension of Causal Inference 

To account for indeterminacy, ambiguity, and contradiction in real-world systems, classical 

probabilities are extended to neutrosophic triplets (T, I, F)—representing the degrees of truth, 

indeterminacy, and falsity respectively. The standard SCM framework is adapted to a Neutrosophic 

Structural Causal Model (N-SCM), where causal functions, variables, and interventions are expressed using 

neutrosophic values and logic. 

Simulation and Illustrative Examples 

Hypothetical datasets are constructed to illustrate both classical and neutrosophic scenarios. 

Calculations are carried out using both traditional and neutrosophic versions of the backdoor criterion to 

estimate the Average Causal Effect (ACE). Simulated interventions are expressed using both standard do-

operations and the neutrosophic doN-operator, allowing for the evaluation of outcomes under uncertainty. 

This methodological structure provides a novel way to simulate interventions, estimate causal effects, 

and handle epistemic indeterminacy, making it particularly suitable for applications in Web3 

environments, where decentralized decision-making must deal with incomplete, contradictory, or 

imprecise information. 

3.2 Neutrosophic Causal AI 

While traditional Causal AI, with its foundation in structural causal models and the 'do-operation,' 

provides a robust framework for understanding and simulating causal relationships, it often assumes a 

level of certainty and precision that is not always present in real-world data. 

This limitation becomes particularly salient when dealing with complex systems where information is 

inherently vague, ambiguous, or contradictory. In such scenarios, the binary logic and precise numerical 

representations of traditional Causal AI may fail to capture the nuances of uncertainty and indeterminacy. 

To overcome these limitations, we introduce Neutrosophic Causal AI. 
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Neutrosophic Causal AI is an extension of Causal AI that seeks to understand cause-and-effect 

relationships from data (experimental or observational), incorporating neutrosophic logic and set theory 

to handle uncertainties and indeterminacies. It follows a systematic approach that includes a) problem 

contextualization, considering inherent uncertainty; b) causal modeling with neutrosophic graphs (DAGs), 

which represent degrees of truth, falsity, and indeterminacy; c) quantitative validation of causal 

relationships, considering uncertainty and indeterminacy in the data. 

3.3 Ladder of causation in the context of Neutrosophic Causal AI 

Like Pearl’s ladder of causation, we have the following steps a) association, b) intervention, c) 

counterfactuals. 

Neutrosophic Association: various traditional machine learning methods have been adapted to the 

Neutrosophic context [32, 33,34] 

Neutrosophic Intervention: the intervention reflected by Judea Pearl's 'do-operation' allows for 

simulating interventions in causal models (DAGs) by forcing variables to specific values and cutting their 

incoming edges. This method assumes precise interventions, which often do not match real-world 

complexity.  

Unlike the traditional 'do-operation,' which assigns a single, precise value to a variable, the neutrosophic 

intervention allows for defining a range of values or a neutrosophic distribution for the intervened variable. 

Hypothetically, consider an e-commerce company that seeks to understand the impact of marketing 

campaigns (A) on product sales (B). The campaigns vary in intensity and segmentation, and external factors 

(C), such as seasonality and competition, also influence sales. A causal graphic model: 

A→B←C 

Causal AI employs the 'do-operation' to estimate the impact of campaign intensity (A) on sales (B), while 

controlling other factors (C). 

In practical situations, it may be challenging to accurately control the intensity and segmentation of 

campaign (A). Furthermore, the company might face uncertainty regarding the campaign's impact on 

various customer segments. 

The neutrosophic intervention do(A=(T=0.8, I=0.1, F=0.1)) represents the company's decision to conduct 

a campaign with high intensity and segmentation, but with 10% uncertainty about the campaign's 

execution and a 10% chance that it will not reach the desired target audience. 

Neutrosophic counterfactual: Traditional causal AI forms counterfactuals using precise, deterministic 

values, assuming clear causal relationships. This approach has limitations in complex environments with 

vague or contradictory information. Neutrosophic counterfactuals, incorporating neutrosophic logic and 

set theory, allow for representing uncertain scenarios. 

Neutrosophic counterfactuals define values of truth, falsity, and indeterminacy rather than assigning 

precise values to variables. For example, instead of stating 'if the patient had taken drug X, he would have 

recovered,' it could be expressed as 'if the patient had taken drug X, there is a high chance of recovery, with 

some uncertainty and a small chance of non-recovery.' 

Definition 2. Neutrosophic do-Operator via Neutrosophic Structural Causal Models (N-SCMs) 

An alternative formalization conceptualizes the neutrosophic do-operator, denoted 𝑑𝑜𝑁(𝑋 = 𝑥), as an 

operation performed on a Neutrosophic Structural Causal Model (N-SCM). An N-SCM extends Pearl's 

SCM framework by allowing components of the model to be represented using neutrosophic entities, 

explicitly incorporating indeterminacy alongside truth and falsity. 
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Specifically, an N-SCM,𝑀𝑁 might feature:  

a) Structural equations where the functional relationships 𝑓𝑖 themselves involve neutrosophic 

logic or map to neutrosophic values: Vi=(𝑓𝑖𝑝𝑎𝑖 , 𝑢𝑖̃)  

b) Exogenous variables 𝑈̃  whose uncertainty is described by neutrosophic probability 

distributions 𝑃𝑁(𝑢) = (𝑇, 𝐼, 𝐹). 

In this context, the neutrosophic intervention 𝑑𝑜𝑛(𝑋 = 𝑥)  parallels the standard do-operation by 

modifying the structure of the 𝑀𝑁into a submodel 𝑀𝑁,𝑥: 

1 The neutrosophic structural equation(s) determining X within 𝑀𝑁 are removed. 

2 The variable X is assigned the value x (which could potentially also be a neutrosophic value 

𝑥̃ in some formulations). 

3 All other neutrosophic structural equations and the neutrosophic distributions 𝑃𝑁(u) 

governing the exogenous variables remain unchanged. 

 

The outcome of this operation is the neutrosophic probability distribution (or neutrosophic value set) 

of an outcome variable 𝑌 in the modified model 𝑀𝑁,𝑥. This is denoted 𝑃𝑁(𝑌 = 𝑦 ∣ 𝑑𝑜𝑁(𝑋 = 𝑥)) and is 

calculated by propagating the inputs (including the intervention 𝑋 = 𝑥 and the neutrosophic exogenous 

uncertainties 𝑃𝑁(𝑢)) through the neutrosophic functions 𝑓 of the submodel 𝑀𝑁,𝑥 using the appropriate 

rules of neutrosophic logic and probability calculus: 

 

𝑃𝑁(𝑌 = 𝑦 ∣ 𝑑𝑜𝑁(𝑋 = 𝑥)) ≜ 𝑃𝑀𝑁,𝑥
(𝑌 = 𝑦)           (5) 

 

This definition emphasizes the 𝑑𝑜𝑁-operator as a mechanism to compute causal effects by simulating 

interventions directly within a causal model whose fundamental components explicitly encode 

indeterminacy (I) alongside truth (T) and falsity (F), thus providing predictions 𝑃𝑁(𝑌 = 𝑦 ∣ 𝑑𝑜𝑁(𝑋 = 𝑥)) =

(𝑇, 𝐼, 𝐹) that reflect this inherent systemic ambiguity. 

To effectively apply neutrosophic logic within statistical analysis, it is essential to redefine classical 

arithmetic operations in a way that captures the threefold nature of neutrosophic probability: truth (T), 

indeterminacy (I), and falsity (F). Traditional statistics rely on precise probabilities and binary truth values, 

which are insufficient for modeling real-world scenarios involving incomplete, ambiguous, or 

contradictory information. Neutrosophic statistics, in contrast, allow for richer representations by assigning 

independent values to each component. In this context, defining appropriate addition, multiplication, and 

subtraction operators for neutrosophic probabilities provides the mathematical foundation necessary to 

extend probabilistic modeling, causal inference, and uncertainty quantification into neutrosophic 

environments. The following definitions establish the key arithmetic operations used throughout 

neutrosophic statistical frameworks[35,36]. 

 

Definition 3 : Neutrosophic Multiplication Operator (⊗)  

For two neutrosophic probabilities 𝐴 = (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) and 𝐵 = (𝑇𝐵 , 𝐼𝐵 , 𝐹𝐵), where 𝑇, 𝐼, and 𝐹  represent 

the truth, indeterminacy, and falsity components respectively, the neutrosophic multiplication operator ⊗ 

is defined as: 

𝐴 ⊗ 𝐵 = (𝑇𝐴 × 𝑇𝐵 , 𝐼𝐴 × 𝐼𝐵 , 𝐹𝐴 × 𝐹𝐵)            (6) 

Where: 

• 𝑇𝐴 × 𝑇𝐵 represents the product of truth components 

• 𝐼𝐴 × 𝐼𝐵 represents the product of indeterminacy components 

• 𝐹𝐴 × 𝐹𝐵 represents the product of falsity components 
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This operation extends the classical probability multiplication to the neutrosophic domain, preserving 

the interpretation that when two independent events are considered jointly, their probability components 

are multiplied independently. 

Definition 4 : Neutrosophic Addition Operator (⊕) 

For two neutrosophic probabilities 𝐴 = (𝑇𝐴, 𝐼𝐴, 𝐹𝐴)  and 𝐵 = (𝑇𝐵 , 𝐼𝐵 , 𝐹𝐵) , the neutrosophic addition 

operator ⊕ is defined as: 

𝐴 ⊕ 𝐵 = (𝑇𝐴 + 𝑇𝐵 − 𝑇𝐴 × 𝑇𝐵 , 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴 × 𝐼𝐵 , 𝐹𝐴 + 𝐹𝐵 − 𝐹𝐴 × 𝐹𝐵)  (7) 

Where: 

• 𝑇𝐴 + 𝑇𝐵 − 𝑇𝐴 × 𝑇𝐵  represents the probability union formula applied to truth 

components 

• 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴 × 𝐼𝐵  represents the probability union formula applied to indeterminacy 

components 

• 𝐹𝐴 + 𝐹𝐵 − 𝐹𝐴 × 𝐹𝐵  represents the probability union formula applied to falsity 

components 

This operation generalizes the classical probability union formula 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)– 𝑃(𝐴 ∩ 𝐵) 

to the neutrosophic context, accounting for all three dimensions of neutrosophic information. 

Definition 5 : Neutrosophic Subtraction Operator (⊖) 

Let 𝐴 =  (𝑇𝐴, 𝐼𝐴, 𝐹𝐴)  and 𝐵 =  (𝑇𝐵, 𝐼𝐵 , 𝐹𝐵) be two neutrosophic probabilities,. The neutrosophic 

subtraction operator ⊖ is defined as: 

𝐴 ⊖  𝐵 =  (𝑇𝐴 −  𝑇𝐵 , 𝐼𝐴 −  𝐼𝐵 , 𝐹𝐴 −  𝐹𝐵)                                  (8) 

Where: 

 

𝑇𝐴 −  𝑇𝐵 represents the differential truth between A and B, 

𝐼𝐴 − 𝐼𝐵 represents the change in indeterminacy, 

𝐹𝐴 −  𝐹𝐵 represents the difference in falsity. 

 

This operator allows for both positive and negative values in each component and remains within the 

neutrosophic domain ] 0− ,  1+ [ , which tolerates truth values above 1, below 0, and non-exclusive 

uncertainty measures.This formulation is particularly useful in contexts such as: 

• The Neutrosophic Average Causal Effect (ACEₙ), where the net effect of an intervention 

may be positive or negative across the neutrosophic components, 

• Counterfactual reasoning, where the comparison between observed and hypothetical 

scenarios involves shifts in levels of truth, uncertainty, or falsity, 

• Offset-based modeling, common in neutrosophic decision systems and causal inference 

frameworks, where component-wise deltas must be preserved for 

interpretability[37,38]. 

Unlike traditional formulations that impose non-negativity through functions like max(0, x), this 

operator preserves the sign and magnitude of the difference, thus enabling a richer representation of 

epistemic changes or causal contrasts between neutrosophic states. 

 

Example 2 (Neutrosophic Adaptation): Calculation of Neutrosophic Causal Effect 

 

Scenario: We revisit the observational study scenario evaluating a Treatment (X) on Recovery (Y), with 

Age (Z) as a confounder. The causal structure (DAG) remains the same (Figure 2). 
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Variables are binary (𝑋, 𝑌, 𝑍 ∈ {0,1}) . We again aim to adjust for Z using the backdoor criterion. 

However, we now assume our knowledge about the system probabilities involves indeterminacy, 

represented by neutrosophic probabilities 𝑃𝑁𝑁 = (𝑇, 𝐼, 𝐹), where T is the degree of truth, I is the degree of 

indeterminacy, and F is the degree of falsity. 

Objective: Estimate the neutrosophic causal effect of the treatment on recovery, specifically by 

calculating 𝑃𝑁(𝑌 = 1 ∣ 𝑑𝑜𝑁(𝑋 = 1)) and 𝑃𝑁(𝑌 = 1 ∣ 𝑑𝑜𝑁(𝑋 = 0)), where 𝑑𝑜𝑁 represents the intervention 

concept within this neutrosophic context. We can then examine the difference, particularly in the truth 

component (T). 

Hypothetical Neutrosophic Observational Data: Assume the following neutrosophic probability 

estimates: 

• Distribution of the confounder (Age):  

o 𝑃𝑁(𝑍 = 0) = (0.6,0.1,0.3) (Younger) 

o 𝑃𝑁(𝑍 = 1) = (0.4,0.1,0.5) (Older) 

• Conditional Neutrosophic Probability of Recovery (Y=1):  

o 𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 0) = (0.70,0.20,0.10) 

o 𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 1) = (0.50,0.30,0.20) 

o 𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 0) = (0.40,0.15,0.45) 

o 𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 1) = (0.20,0.25,0.55) 

Calculation of the Neutrosophic Causal Effect: 

We adapt the adjustment formula to compute the resulting neutrosophic probability (𝑇, 𝐼, 𝐹) 

components as weighted averages, using 𝑃(𝑍 = 𝑧) as weights. 

Step 1: Calculate 𝑷𝑵(𝒀 = 𝟏 ∣ 𝒅𝒐𝑵(𝑿 = 𝟏)) = (𝑻𝟏, 𝑰𝟏, 𝑭𝟏)  Neutrosophic probability of recovery if 

intervening by assigning treatment X=1 to everyone. 

𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 0) ⊗  𝑃(𝑍 = 0) ⊕ 𝑃𝑁(𝑌 = 1 ∣ 𝑋 = 1, 𝑍 = 1) ⊗  𝑃(𝑍 = 1)= 

(0.70,0.20,0.10) ⊗ (0.6,0.1,0.3) ⊕ (0.50,0.30,0.20) ⊗ (0.4,0.1,0.5)= (0.536, 0.0494, 0.127) 

Result for  𝑷𝑵( 𝒀 = 𝟏 ∣∣ 𝒅𝒐𝑵(𝑿 = 𝟏) ) = (0.536, 0.0494, 0.127) 

Step 2: Calculate 𝑷𝑵(𝒀 = 𝟏 ∣ 𝒅𝒐𝑵(𝑿 = 𝟎)) = (𝑻𝟎, 𝑰𝟎, 𝑭𝟎)  Neutrosophic probability of recovery if 

intervening by assigning control 𝑋 = 0 to everyone. 

𝑃𝑁( 𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 0 ) ⊗ 𝑃(𝑍 = 0) ⊕ 𝑃𝑁( 𝑌 = 1 ∣ 𝑋 = 0, 𝑍 = 1 ) ⊗ 𝑃(𝑍 = 1) = 

(0.40,0.15,0.45) ⊗ (0.6,0.1,0.3) ⊕ (0.20,0.25,0.55) ⊗ (0.4,0.1,0.5)= (0.3008, 0.0396, 0.3729) 

Result for 𝑷𝑵(𝒀 = 𝟏 ∣ 𝒅𝒐𝑵(𝑿 = 𝟎))= (0.3008, 0.0396, 0.3729) 

 

Step 3: Examine the Neutrosophic Average Causal Effect (ACE)  

𝐴𝐶𝐸𝑁 = 𝑷𝑵( 𝒀 = 𝟏 ∣∣ 𝒅𝒐𝑵(𝑿 = 𝟏) ) ⊖ 𝑷𝑵( 𝒀 = 𝟏 ∣∣ 𝒅𝒐𝑵(𝑿 = 𝟎) )

= (0.536, 0.0494, 0.127) −  (0.3008, 0.0396, 0.3729)) 

= ((0.2352, 0.0098, −0.2459))  

Interpretation: The ACEₙ result of (0.2352, 0.0098, -0.2459) offers a multidimensional perspective on the 

causal effect: 

• Truth Component (T = 0.2352): The treatment or intervention produces a positive causal 

effect, increasing the truth of the outcome by approximately 23.52%. This indicates a 
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substantial improvement in the probability of achieving the desired outcome when the 

intervention is applied. 

• Indeterminacy Component (I = 0.0098): There is a small increase in indeterminacy 

(0.98%) associated with the treatment. Although this is a marginal increase, it suggests 

that the intervention introduces slight additional ambiguity in the outcome, possibly 

due to variability in individual response to the treatment. 

• Falsity Component (F = -0.2459): The significant reduction in falsity (-24.59%) is 

particularly important. This means that the treatment considerably decreases the 

evidence against the desired outcome, further reinforcing its overall effectiveness. 

This neutrosophic analysis reveals aspects of the causal effect that would be invisible in a classical 

probability model: 

• It not only increases the probability of the desired outcome (T component) 

• It also substantially reduces the evidence against that outcome (negative F 

component) 

• It introduces minimal additional uncertainty (slightly positive I component) 

The overall balance shows a beneficial causal effect, with a significant increase in truth and an even 

greater decrease in falsity, despite marginally higher indeterminacy. This type of multidimensional 

analysis provides a more complete and nuanced view of the causal effect than a simple scalar value. 

 

3.4 Applications of Neutrosophic Causal AI in Web3 with Blockchain-AI Integration. 

 

The convergence of blockchain technology and artificial intelligence presents transformative potential, 

particularly for creating smarter, more autonomous, and trustworthy decentralized applications (dApps) 

within the Web3 ecosystem. While integrating traditional AI offers benefits like analyzing on-chain data 

for patterns, its reliance on correlation often falls short in complex, dynamic Web3 environments where 

understanding true cause-and-effect is crucial for security, governance, and economic stability. 

Furthermore, real-world data feeding into Web3 systems via oracles, or generated through decentralized 

interactions, is frequently characterized by inherent uncertainty, ambiguity, and potential contradiction—

limitations that traditional Causal AI, assuming precision, struggles to address adequately. Neutrosophic 

Causal AI emerges as a critical enabler in this context, providing the necessary tools to model causality 

rigorously while explicitly managing indeterminacy. 

One key application lies in enhancing Smart Contracts and Oracle Integration[39]. Smart contracts 

automate agreements based on predefined conditions, often triggered by external data provided by oracles. 

However, oracle data can be noisy, delayed, derive from sources with varying reliability, or represent 

inherently ambiguous states. Neutrosophic Causal AI allows oracles to report data not as single crisp 

values, but as neutrosophic triplets (𝑻, 𝑰, 𝑭), quantifying the data's perceived truthfulness, indeterminacy 

(e.g., due to source disagreement or measurement uncertainty), and falsity. Smart contracts equipped with 

N-SCMs can then ingest this neutrosophic data and reason causally under uncertainty. For instance, a 

decentralized insurance contract could use an N-SCM to assess crop failure risk based on neutrosophic 

weather data from multiple oracles. Using the 𝒅𝒐𝑵-operator, it could simulate the causal effect of specific 

weather patterns (represented neutrosophically) on yield likelihood 

𝑷𝑵 (𝒀𝒊𝒆𝒍𝒅|𝒅𝒐𝑵(𝑾𝒆𝒂𝒕𝒉𝒆𝒓 = (𝑻, 𝑰, 𝑭))), making payout decisions based not just on the estimated truth (𝑻) 

of crop failure but also considering the level of indeterminacy (𝑰). This allows for more robust and fair 

automated decisions that explicitly acknowledge data imperfections. 

Another vital area is Decentralized Governance, particularly within Decentralized Autonomous 

Organizations (DAOs). DAOs rely on collective decision-making for protocol upgrades, treasury 

management, and strategic direction, often based on proposals with complex and uncertain consequences. 
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Voters face incomplete information, potentially biased analyses, and conflicting expert opinions. 

Neutrosophic Causal AI can provide decision support by modeling the potential causal impacts of a 

proposal (𝑿) on key DAO health metrics (𝒀), e.g., token value, user engagement, protocol security. Expert 

opinions or simulation results regarding impacts could be encoded as neutrosophic probabilities 

𝑷𝑵(𝒀|𝒅𝒐𝑵(𝑿 = 𝒑𝒓𝒐𝒑𝒐𝒔𝒂𝒍)) = (𝑻, 𝑰, 𝑭) . By comparing the neutrosophic outcomes of implementing the 

proposal versus maintaining the status quo, N-Causal AI can present voters with a clearer picture that 

includes not only the likely effect (𝑻) but also the degree of residual uncertainty or disagreement (𝑰). This 

explicit representation of indeterminacy fosters more informed and transparent collective decision-making, 

aligning with the democratic ethos of DAOs. 

Furthermore, Neutrosophic Causal AI offers significant advantages in Decentralized Finance (DeFi) for 

Risk Assessment and Management. DeFi protocols, such as lending platforms or automated market 

makers, operate in highly volatile environments and are susceptible to complex risks like cascading 

liquidations, impermanent loss, or economic exploits. Traditional risk models often struggle with the 

unprecedented nature of these systems and the ambiguity of market signals. N-Causal AI can build more 

resilient risk models by constructing N-SCMs that map causal relationships between factors like market 

volatility, collateralization ratios, oracle price feed deviations, and protocol parameters, representing 

uncertain factors (e.g., market sentiment, likelihood of exploit) neutrosophically. The 𝒅𝒐𝑵-operator allows 

for sophisticated stress testing, simulating the impact of extreme events 𝒅𝒐𝑵(𝑴𝒂𝒓𝒌𝒆𝒕𝑺𝒉𝒐𝒄𝒌 = (𝑻, 𝑰, 𝑭)) 

on protocol stability. The resulting risk assessments, presented as (𝑻, 𝑰, 𝑭) for outcomes like "Liquidation 

Cascade Likelihood," provide a more nuanced understanding than single probability scores, enabling 

better-informed parameter tuning and user protection mechanisms. 

Finally, the integration of N-Causal AI aligns strongly with the core Web3 principles of Transparency 

and Auditability. While blockchain ensures data immutability, the logic of AI models operating on that 

data can remain opaque. By requiring the explicit definition of causal relationships within an N-SCM 

(which could potentially be stored or referenced on-chain), Neutrosophic Causal AI makes the reasoning 

process more transparent. Stakeholders can inspect the assumed causal structure and how indeterminacy 

is handled, fostering greater trust compared to black-box AI models. This explicit causal representation, 

acknowledging 𝑻, 𝑰 , and 𝑭 , provides a foundation for building truly robust, verifiable, and ethically 

considerate AI-driven systems within the decentralized web. 

 

4 Conclusions  

 

Neutrosophic Causal AI represents a significant leap forward in the development of intelligent systems 

capable of operating effectively in real-world environments characterized by uncertainty, vagueness, and 

contradiction. Its value lies not only in enhancing predictive accuracy but in elevating the epistemic quality 

of AI-based decisions by incorporating explicit degrees of truth, falsity, and indeterminacy into the causal 

reasoning process. 

By integrating the neutrosophic framework with structural causal modeling, this approach extends the 

boundaries of conventional Causal AI, allowing for the formalization of ambiguous or contradictory causal 

relationships that would otherwise be dismissed or misrepresented. The proposed Neutrosophic do-

operator and the construction of Neutrosophic Structural Causal Models (N-SCMs) provide a robust 

mathematical apparatus to simulate interventions, quantify causal effects, and represent systemic 

ambiguity, all within a consistent logical foundation. 

In the context of Web3 ecosystems, where trust, decentralization, and transparency are paramount, 

Neutrosophic Causal AI adds a layer of interpretability and resilience to AI-driven decisions. Smart 

contracts, DAOs, and decentralized finance (DeFi) mechanisms can benefit from decision protocols that are 

not only technically efficient but epistemologically reflexive, accommodating multiple possible truths and 

modeling the nuances of human and institutional behavior under incomplete information. 
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Moreover, this framework opens new avenues for transdisciplinary research, intersecting artificial 

intelligence, formal logic, decision theory, and philosophy of technology. It encourages the development 

of ethically aware and socially responsible AI, especially in sensitive domains such as public governance, 

collective decision-making, and risk management. 

As decentralized infrastructures and autonomous agents proliferate, Neutrosophic Causal AI emerges 

as a foundational component for building intelligent, fair, and transparent systems. By embracing 

complexity and modeling what is traditionally excluded—the indeterminate and the contradictory—this 

approach lays the groundwork for a new generation of algorithms capable of navigating the ambiguities 

of the real world with integrity and nuance. 

  

References 

 

[1]  Smarandache, F. 2002. Neutrosophy, A New Branch of Philosophy. Multiple Valued Logic/An 

International Journal, 8(3), 297. 

[2]  Hurwitz, J.S.; Thompson, J.K. 2023. Causal artificial intelligence: The next step in effective business 

AI. John Wiley & Sons: Hoboken, NJ, USA.  

[3]  Liu, W.; Cao, B.; Peng, M. 2023. Web3 technologies: Challenges and opportunities. IEEE Network, 

38(3), 187-193. 

[4]  Rawal, A.; et al. 2025. Causality for trustworthy artificial intelligence: status, challenges and 

perspectives. ACM Computing Surveys, 57(6), 1-30. (Nota: Verificar política de NSS sobre 'et al.'). 

[5]  Ness, R.O. 2025. Causal AI. Manning Publications: Shelter Island, NY, USA.  

[6]  Sheridan, D.; Harris, J.; Wear, F.; Cowell Jr, J.; Wong, E.; Yazdinejad, A. 2022. Web3 challenges and 

opportunities for the market. arXiv preprint arXiv:2209.02446. 

[7]  Murray, A.; Kim, D.; Combs, J. 2023. The promise of a decentralized internet: What is Web3 and how 

can firms prepare? Business Horizons, 66(2), 191-202. 

[8]  Wan, S.; Lin, H.; Gan, W.; Chen, J.; Yu, P.S. 2024. Web3: The next internet revolution. IEEE Internet 

of Things Journal, 11(21), 34811-34825. 

[9]  Kandasamy, W.B.; Smarandache, F. 2003. Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps. 

arXiv preprint math/0311063. 

[10]  Villamar, C.M.; Suarez, J.; Coloma, L.D.L.; Vera, C.; Leyva, M. 2019. Analysis of Technological 

Innovation Contribution to Gross Domestic Product Based on Neutrosophic Cognitive Maps and 

Neutrosophic Numbers. Neutrosophic Sets and Systems, 34.  

[11]  Vázquez, M.L.; Ricardo, J.E.; Smarandache, F. 2024. Enhancing set-theoretic research methods with 

neutrosophic sets. Infinite Study: [Location, Country].  

[12]  Meza Taipe, T.; Romero Quispe, J.; Guzmán Villa, E.; Santiago Saturnino, P.A.; Collazos Paucar, E.; 

Flores Konja, A.A. 2024. Integration of Fuzzy Set Theory and Neutrosophic Sets for Qualitative and 

Quantitative Analysis in Inclusive Service to Native Communities of Ucayali. Neutrosophic Sets and 

Systems, 74(1), 13.  

[13]  Morales, F.R.M.; Trujillo, B.L.; Igarza, E.O.; Viviano, R.C.C. 2025. Neutrosophic Analysis of the 

Cultural Impact of the Pinkullo in Llata: Integrating ChatGPT and fsQCA. Neutrosophic Sets and 

Systems, 80(1), 28.  

[14]  Pearl, J. 2012. The do-calculus revisited. arXiv preprint arXiv:1210.4852. 

[15]  Pearl, J.; Bareinboim, E. 2022. External validity: From do-calculus to transportability across 

populations. In Probabilistic and causal inference: The works of Judea Pearl; [Editors, Eds.]; 

[Publisher: Publisher Location, Country], pp. 451-482.  

[16]  Ormaniec, W.; et al. 2024. Standardizing structural causal models. arXiv preprint arXiv:2406.11601.  

[17]  Cinelli, C.; Kumor, D.; Chen, B.; Pearl, J.; Bareinboim, E. 2019. Sensitivity analysis of linear structural 

causal models. In Proceedings of the International Conference on Machine Learning, Long Beach, 



Neutrosophic Sets and Systems, {Special Issue: Artificial Intelligence, Neutrosophy, and Latin American 

Worldviews: Toward a Sustainable Future (Workshop – March 18–21, 2025, Universidad Tecnológica 

de El Salvador, San Salvador, El Salvador)}, Vol. 84, 2025 

 

 

Ranulfo P. Barbosa, Florentin Smarandache, Maikel Y. Leyva Vázquez, Joaquin B. Monge. Neutrosophy, Causal AI, and Web3: 

combo for complex decision-making     

237 

CA, USA, 9-15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: Cambridge, MA, USA, Vol. 

97, pp. 1252-1261.  

[18]  Kliangkhlao, M.; Tipsavak, A.; Limna, T.; Dejchanchaiwong, R.; Tekasakul, P.; Yeranee, K.; Sahoh, B. 

2025. Toward causal artificial intelligence approach for PM2. 5 interpretation: A discovery of 

structural causal models. Ecological Informatics, 85, 103115.  

[19]  Bilgel, F. 2024. The Role of Pearl’s Causal Framework in Empirical Research. Ekonomi-tek, 13(2), 230-

252. 

[20]  Prosperi, M.; Guo, Y.; Sperrin, M.; Koopman, J.S.; Min, J.S.; He, X.; Rich, S.; Wang, M.; Buchan, I.E.; 

Bian, J. 2020. Causal inference and counterfactual prediction in machine learning for actionable 

healthcare. Nature Machine Intelligence, 2(7), 369-375. 

[21]  Pearl, J.; Mackenzie, D. 2018. The book of why: the new science of cause and effect. Basic Books: New 

York, NY, USA. (Nota: Localización de editorial asumida). 

[22]  Sun, J. 2023. Novel Methods for Identification and Inference in Public Health. Ph.D. Thesis, Yale 

University, New Haven, CT, USA. 

[23]  Oates, C.J.; Smith, J.Q.; Mukherjee, S. 2016. Estimating causal structure using conditional DAG 

models. Journal of Machine Learning Research, 17(54), 1-23. 

[24]  Cavique, L. 2023. Causality: the next step in artificial intelligence. In Philosophy of artificial 

intelligence and its place in society; [Editors, Eds.]; IGI Global: Hershey, PA, USA, pp. 1-17.  

[25]  Illari, P.M.; Russo, F.; Williamson, J., Eds. 2011. Causality in the Sciences. Oxford University Press: 

Oxford, UK. 

[26]  Kincaid, H. 2021. Making progress on causal inference in economics. In A modern guide to 

philosophy of economics; [Editors, Eds.]; Edward Elgar Publishing: Cheltenham, UK, pp. 28-65.  

[27]  Pearl, J. 2022. Causation and decision: On Dawid’s “Decision theoretic foundation of statistical 

causality”. Journal of Causal Inference, 10(1), 221-226. 

[28]  Pearl, J. 2010. An introduction to causal inference. The International Journal of Biostatistics, 6(2).  

[29]  Da Silva, S. 2024. Causal Inference, Fast and Slow. Open Access Library Journal, 11(7), 1-36. 

[30]  Pearl, J. 2022. Causal Inference: history, perspectives, adventures, and unification (an interview with 

Judea Pearl). Observational Studies, 8(2), 1  23-36. 

[31]  Pearl, J. 2022. Probabilities of causation: three counterfactual interpretations and their identification. 

In Probabilistic and causal inference: the works of Judea Pearl; [Editors, Eds.]; [Publisher: Publisher 

Location, Country], pp. 317-372.  

[32]  Kadali, D.K.; Mohan, R.J.; Naik, M.C. 2024. Software Reliability Model Estimation for an 

Indeterministic Crime Cluster through Reinforcement Learning. Neutrosophic Systems With 

Applications, 17, 47-58. https://doi.org/10.61356/j.nswa.2024.17246 

[33]  Macas-Acosta, G.; Márquez-Sánchez, F.; Vergara-Romero, A.; Ricardo, J.E. 2024. Analyzing the 

Income-Education Nexus in Ecuador: A Neutrosophic Statistical Approach. Neutrosophic Sets and 

Systems, 66, 196-203. 

[34]  Cevallos-Torres, L.; Martínez, R.; Caicedo-Quiroz, R.; Hernández-Magallanes, R.; Iturburu-Salvador, 

D.; Parrales-Bravo, F.; Leyva-Vázquez, M. 2024. Assessment of Academic Integrity in University 

Students Using a Hybrid Fuzzy-Neutrosophic Model under Uncertainty. Neutrosophic Sets and 

Systems, 74(1), 23.  

[35]  Das, D.; Dhar, R.; Tripathy, B.C. 2023. Properties of multiplication operation of neutrosophic fuzzy 

matrices. Neutrosophic Sets and Systems, 61, 134. 

[36]  Smarandache, F. 2022. Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic 

Statistics is the most general form of 2  statistics (Fourth version). Neutrosophic Computing & 

Machine Learning, 23.  

[37]  Smarandache, F. (2022). Operators on single-valued neutrosophic oversets, neutrosophic undersets, 

and neutrosophic offsets. Collected Papers, 9, 112. 



Neutrosophic Sets and Systems, {Special Issue: Artificial Intelligence, Neutrosophy, and Latin American 

Worldviews: Toward a Sustainable Future (Workshop – March 18–21, 2025, Universidad Tecnológica 

de El Salvador, San Salvador, El Salvador)}, Vol. 84, 2025 

 

 

Ranulfo P. Barbosa, Florentin Smarandache, Maikel Y. Leyva Vázquez, Joaquin B. Monge. Neutrosophy, Causal AI, and Web3: 

combo for complex decision-making     

238 

[38]  Caballero, E. G., Smarandache, F., & Leyva Vázquez, M. (2019). On neutrosophic offuninorms. 

Symmetry, 11(9), 1136. 

[39]  Chainlink Education. n.d. Blockchain Oracles: Connecting smart contracts with off-chain data. 

Available online: https://chain.link/education/blockchain-oracles (accessed on 18 April 2025).   

 

Received: December 27, 2024. Accepted: April 8, 2025. 

 

 


