

University of New Mexico

Neutrosophic αgs Continuity And Neutrosophic αgs Irresolute Maps

V.Banu priya1, S.Chandrasekar2

¹Assistant Professor, Department of Mathematics, RMK College of Engineering and Technology, Puduvoyal, Tiruvallur(DT), Tamil Nadu, India.E-mail: spriya.maths@gmail.com.

Abstract. Neutrosophic Continuity functions very first introduced by A.A.Salama et.al.Aim of this present paper is, we introduce and investigate new kind of Neutrosophic continuity is called Neutrosophic α gs Continuity maps in Neutrosophic topological spaces and also discussed about some properties and characterization of Neutrosophic α gs Irresolute Maps.

Keywords: Neutrosophic α-closed sets, Neutrosophic semi-closed sets, Neutrosophic αgs-closed sets Neutrosophic αgs Continuity maps, Neutrosophic αgs irresolute maps

1. Introduction

Neutrosophic set theory concepts first initiated by F.Smarandache[11] which is Based on K. Atanassov's intuitionistic[6]fuzzy sets & L.A.Zadeh's [20]fuzzy sets. Also it defined by three parameters truth(T), indeterminacy (I), and falsity(F)-membership function. Smarandache's neutrosophic concept have wide range of real time applications for the fields of [1,2,3,4&5] Information Systems, Computer Science, Artificial Intelligence, Applied Mathematics, decision making. Mechanics, Electrical & Electronic, Medicine and Management Science etc..

A.A.Salama[16] introduced Neutrosophic topological spaces by using Smarandache's Neutrosophic sets. I.Arokiarani.[7] et.al., introduced Neutrosophic α -closed sets.P. Ishwarya, [13]et.al., introduced and studied Neutrosophic semi-open sets in Neutrosophic topological spaces. Neutrosophic continuity functions introduced by A.A.Salama[15]. Neutrosophic α gs-closed set[8] introduced by V.Banu priya&S.Chandrasekar. Aim of this present paper is, we introduce and investigate new kind of Neutrosophic continuity is called Neutrosophic α gs Continuity maps in Neutrosophic topological spaces and also we discussed about properties and characterization Neutrosophic α gs Irresolute Maps

2. PRELIMINARIES

In this section, we introduce the basic definition for Neutrosophic sets and its operations.

Definition 2.1 [11]

Let E be a non-empty fixed set. A Neutrosophic set λ writing the format is

$$\lambda = \{ \langle e, \eta_{\lambda}(e), \sigma_{\lambda}(e), \gamma_{\lambda}(e) \rangle : e \in E \}$$

Where $\eta_{\lambda}(e)$, $\sigma_{\lambda}(e)$ and $\gamma_{\lambda}(e)$ which represents Neutrosophic topological spaces the degree of membership function, indeterminacy and non-membership function respectively of each element $e \in E$ to the set λ .

Remark 2.2 [11]

A Neutrosophic set $\lambda = \{ \langle e, \eta_{\lambda}(e), \sigma_{\lambda}(e), \gamma_{\lambda}(e) \rangle : e \in E \}$ can be identified to an ordered triple $\langle \eta_{\lambda}, \sigma_{\lambda}, \gamma_{\lambda} \rangle$ in]-0,1+[on E.

Remark 2.3[11]

Neutrosophic set $\lambda = \{\langle e, \eta_{\lambda}(e), \sigma_{\lambda}(e), \gamma_{\lambda}(e) \rangle : e \in E\}$ our convenient we can write $\lambda = \langle e, \eta_{\lambda}, \sigma_{\lambda}, \gamma_{\lambda} \rangle$.

Example 2.4 [11]

we must introduce the Neutrosophic set 0_N and 1_N in E as follows:

0_N may be defined as:

 $(0_1) 0_N = \{ \langle e, 0, 0, 1 \rangle : e \in E \}$

 $(0_2) 0_N = \{ \langle e, 0, 1, 1 \rangle : e \in E \}$

 $(0_3) \ 0_N = \{ \langle e, 0, 1, 0 \rangle : e \in E \}$

 $(0_4) \ 0_N = \{ \langle e, 0, 0, 0 \rangle : e \in E \}$

1_N may be defined as:

 (1_1) $1_N = \{ \langle e, 1, 0, 0 \rangle : e \in E \}$

 $(1_2) \ 1_N = \{<\!e, \, 1, \, 0, \, 1>: e{\in}E\}$

² Assistant Professor, PG and Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal (DT), Tamil Nadu, India. E-mail: chandrumat@gmail.com.

```
(1_3) 1_N = \{ \langle e, 1, 1, 0 \rangle : e \in E \}
```

 $(1_4) 1_N = \{ \langle e, 1, 1, 1 \rangle : e \in E \}$

Definition 2.5 [11]

Let $\lambda = \langle \eta_{\lambda}, \sigma_{\lambda}, \gamma_{\lambda} \rangle$ be a Neutrosophic set on E, then λ^{C} defined as $\lambda^{C} = \{\langle e, \gamma_{\lambda}(e), 1 - \sigma_{\lambda}(e), \eta_{\lambda}(e) \rangle : e \in E\}$

Definition 2.6 [11]

Let E be a non-empty set, and Neutrosophic sets λ and μ in the form

 $\lambda = \{\langle e, \eta_{\lambda}(e), \sigma\lambda(e), \gamma\lambda(e) \rangle : e \in E\}$ and

 $\mu = \{ \langle e, \eta_{\mu}(e), \sigma_{\mu}(e), \gamma_{\mu}(e) \rangle : e \in E \}.$

Then we consider definition for subsets $(\lambda \subseteq \mu)$.

 $\lambda \subseteq \mu$ defined as: $\lambda \subseteq \mu \iff \eta_{\lambda}(e) \le \eta_{\mu}(e)$, $\sigma_{\lambda}(e) \le \sigma_{\mu}(e)$ and $\gamma_{\lambda}(e) \ge \gamma_{\mu}(e)$ for all $e \in E$

Proposition 2.7 [11]

For any Neutrosophic set λ , then the following condition are holds:

(i) $0_N \subseteq \lambda$, $0_N \subseteq 0_N$

(ii) $\lambda \subseteq 1_N$, $1_N \subseteq 1_N$

Definition 2.8 [11]

Let E be a non-empty set, and $\lambda=<e, \eta_{\mu}(e), \sigma_{\lambda}(e), \gamma_{\lambda}(e)>$, $\mu=<e, \eta_{\mu}(e), \sigma_{\mu}(e), \gamma_{\mu}(e)>$ be two

Neutrosophic sets. Then

(i) $\lambda \cap \mu$ defined as $:\lambda \cap \mu = \langle e, \eta_{\lambda}(e) \wedge \eta_{\mu}(e), \sigma_{\lambda}(e) \wedge \sigma_{\mu}(e), \gamma_{\lambda}(e) \vee \gamma_{\mu}(e) \rangle$

(ii) $\lambda U \mu$ defined as : $\lambda U \mu = \langle e, \eta_{\lambda}(e) V \eta_{\mu}(e), \sigma_{\lambda}(e) V \sigma_{\mu}(e), \gamma_{\lambda}(e) \Lambda \gamma_{\mu}(e) \rangle$

Proposition 2.9 [11]

For all λ and μ are two Neutrosophic sets then the following condition are true:

(i) $(\lambda \cap \mu)^C = \lambda^C \cup \mu^C$

(ii) $(\lambda \cup \mu)^C = \lambda^C \cap \mu^C$.

Definition 2.10 [16]

A Neutrosophic topology is a non-empty set E is a family τ_N of Neutrosophic subsets in E satisfying the following axioms:

(i) 0_N , $1_N \in \tau_N$,

(ii) $G_1 \cap G_2 \in \tau_N$ for any G_1 , $G_2 \in \tau_N$,

(iii) $\bigcup G_i \in \tau_N$ for any family $\{G_i \mid i \in J\} \subseteq \tau_N$.

the pair (E, τ_N) is called a Neutrosophic topological space.

The element Neutrosophic topological spaces of τ_N are called Neutrosophic open sets.

A Neutrosophic set λ is closed if and only if λ^{C} is Neutrosophic open.

Example 2.11[16]

Let $E=\{e\}$ and

 $A_1 = \{ < e, .6, .6, .5 > : e \in E \}$

 $A_2 = \{ \langle e, .5, .7, .9 \rangle : e \in E \}$

 $A_3 = \{ \langle e, .6, .7, .5 \rangle : e \in E \}$

 $A_4 = \{ < e, .5, .6, .9 > : e \in E \}$

Then the family $\tau_N = \{0_N, 1_N, A_1, A_2, A_3, A_4\}$ is called a Neutrosophic topological space on E.

Definition 2.12[16]

Let (E, τ_N) be Neutrosophic topological spaces and $\lambda = \{ \langle e, \eta_{\lambda}(e), \sigma_{\lambda}(e), \gamma_{\lambda}(e) \rangle : e \in E \}$ be a Neutrosophic set in E. Then the Neutrosophic closure and Neutrosophic interior of λ are defined by

Neu-cl(λ)= \cap {D:D is a Neutrosophic closed set in E and $\lambda \subseteq D$ }

Neu-int(λ)= $\bigcup \{C:C \text{ is a Neutrosophic open set in E and } C \subseteq \lambda \}$.

Definition 2.13

Let (E, τ_N) be a Neutrosophic topological space. Then λ is called

- (i) Neutrosophic regular Closed set [7] (Neu-RCS in short) if λ =Neu-Cl(Neu-Int(λ)),
- (ii) Neutrosophic α-Closed set[7] (Neu-αCS in short) if Neu-Cl(Neu-Int(Neu-Cl(λ)))⊆λ,
- (iii) Neutrosophic semi Closed set [13] (Neu-SCS in short) if Neu-Int(Neu-Cl(λ)) $\subseteq \lambda$,
- (iv) Neutrosophic pre Closed set [18] (Neu-PCS in short) if Neu-Cl(Neu-Int(λ)) $\subseteq \lambda$,

Definition 2.14

Let (E, τ_N) be a Neutrosophic topological space. Then λ is called

- (i). Neutrosophic regular open set [7](Neu-ROS in short) if λ =Neu-Int(Neu-Cl(λ)),
- (ii). Neutrosophic α -open set [7](Neu- α OS in short) if $\lambda \subseteq$ Neu-Int(Neu-Cl(Neu-Int(λ))),
- (iii). Neutrosophic semi open set [13](Neu-SOS in short) if $\lambda \subseteq \text{Neu-Cl}(\text{Neu-Int}(\lambda))$,
- (iv). Neutrosophic pre open set [18] (Neu-POS in short) if $\lambda \subseteq \text{Neu-Int}(\text{Neu-Cl}(\lambda))$,

Definition 2.15

Let (E, τ_N) be a Neutrosophic topological space. Then λ is called

(i). Neutrosophic generalized closed set[9](Neu-GCS in short) if Neu-cl(λ) \subseteq U whenever λ \subseteq U and U is a Neu-

OS in E.

- (ii). Neutrosophic generalized semi closed set[17] (Neu-GSCS in short) if Neu-scl(λ) \subseteq U Whenever λ \subseteq U and U is a Neu-OS in E.
- (iii).Neutrosophic α generalized closed set [14](Neu-αGCS in short) if Neu-αcl(λ)⊆U whenever λ⊆U and U is a Neu-OS in E .
- (iv). Neutrosophic generalized alpha closed set [10] (Neu-G α CS in short) if Neu- α cl(λ) \subseteq U whenever λ \subseteq U and U is a Neu- α OS in E .

The complements of the above mentioned Neutrosophic closed sets are called their respective Neutrosophic open sets

Definition 2.16 [8]

Let (E, τ_N) be a Neutrosophic topological space. Then λ is called Neutrosophic α generalized Semi closed set (Neu- α GSCS in short) if Neu- α cl(λ) \subseteq U whenever λ \subseteq U and U is a Neu-SOS in E

The complements of Neutrosophic αGS closed sets is called Neutrosophic αGS open sets.

3. Neutrosophic ags-Continuity maps

In this section we Introduce Neutrosophic α -generalized semi continuity maps and study some of its properties. **Definition 3.1.**

A maps $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ is called a Neutrosophic α -generalized semi continuity (Neu- α GS continuity in short) $f^{-1}(\mu)$ is a Neu- α GSCS in (E_1, τ_N) for every Neu-CS μ of (E_2, σ_N)

Example 3.2.

Let $E_1=\{a_1,a_2\}$, $E_2=\{b_1,b_2\}$, $U=\langle e_1,(.7,.5,.8),(.5,.5,.4)\rangle$ and $V=\langle e_2,(1,.5,.9),(.2,.5,.3)\rangle$. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively.

Define a maps $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Then f is a Neu- α GS continuity maps.

Theorem 3.3.

Every Neu-continuity maps is a Neu-αGS continuity maps.

Proof.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu-continuity maps. Let λ be a Neu-CS in E_2 . Since f is a Neu-continuity maps, $f^1(\lambda)$ is a Neu-CS in E_1 . Since every Neu-CS is a Neu- α GSCS, $f^1(\lambda)$ is a Neu- α GSCS in E_1 . Hence f is a Neu- α GS continuity maps.

Example 3.4.

Neu-αGS continuity maps is not Neu-continuity maps

Let $E_1=\{a_1, a_2\}$, $E_2=\{b_1, b_2\}$, $U=< e_1$, (.5,.5,.3), (.7,.5,.8)> and $V=< e_2$, (.4,.5,.3), (.8,.5,.9)>. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic sets on E_1 and E_2 respectively. Define a maps $f:(E_1,\tau_N)\to (E_2,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=< y$, (.3,.5,.4), (.9,.5,.8)> is Neu-CS in E_2 , $f^{-1}(\lambda)$ is a Neu- α GSCS but not Neu-CS in E_1 . Therefore $f: a: Neu-\alpha$ GS continuity maps but not a Neu-continuity maps.

Theorem 3.5.

Every Neu-α continuity maps is a Neu-αGS continuity maps.

Proof.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α continuity maps. Let λ be a Neu-CS in E_2 . Then by hypothesis $f^{-1}(\lambda)$ is a Neu- α CS in E_1 . Since every Neu- α CS is a Neu- α GSCS, $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Hence f is a Neu- α GS continuity maps.

Example 3.6.

Neu-αGS continuity maps is not Neu-α continuity maps

Let $E_1=\{a_1,a_2\}$, $E_2=\{b_1,b_2\}$, $U=<e_1,(.5,.5,.6)$, (.7,.5,.6)> and $V=<e_2$, (.3,.5,.9), (.5,.5,.7)>. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1,\tau_N)\to (E_2,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=<e_2$, (.9,.5,.3), (.7,.5,.5)> is Neu-CS in E_2 , $f^1(\lambda)$ is a Neu- α GSCS continuity maps.

Remark 3.7.

Neu-G continuity maps and Neu-αGS continuity maps are independent of each other.

Example 3.8.

Neu- α GS continuity maps is not Neu-G continuity maps.

Let $E_1=\{a_1, a_2\}$, $E_2=\{b_1, b_2\}$, $U=< e_1, (.5, .5, .6)$, (.8, .5, .4)> and $V=< e_2, (.7, .5, .4)$, (.9, .5, .3)>. Then $\tau_N=\{0_N, U, 1_N\}$ and $\sigma_N=\{0_N, V, 1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1, \tau_N) \longrightarrow (E_2, \sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Then f is Neu- α GS continuity maps but not Neu-G continuity maps.

Since $\lambda = \langle e_1, (.4, .5, .7), (.3, .5, .9) \rangle$ is Neu-CS in E_2 , $f^1(\lambda) = \langle e_2, (.4, .5, .7), (.7, .5, .3) \rangle$ is not Neu-GCS in E_1 .

Example 3.9.

Neu-G continuity maps is not Neu-αGS continuity maps.

Let $E_1=\{a_1, a_2\}$, $E_2=\{b_1, b_2\}$, $U=\langle e_1, (.6,.5,.4)$, $(.8,.5,.2)\rangle$ and $V=\langle e_2, (.3,.5,.7)$, $(.1,.5,.9)\rangle$. Then $\tau_N=\{0_N, U, 1_N\}$ and $\sigma_N=\{0_N, V, 1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1, \tau_N) \to (E_2, \sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Then f is Neu-G continuity maps but not a Neu- α GS continuity maps.

Since $\lambda = \langle e_2, (.7, .5, .3), (.9, .5, .1) \rangle$ is Neu-CS in E_2 , $f^{-1}(\lambda) = \langle e_1, (.7, .5, .3), (.9, .5, .1) \rangle$ is not Neu- α GSCS in E_1 .

Theorem 3.10.

Every Neu-αGS continuity maps is a Neu-GS continuity maps.

Proof.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps. Let λ be a Neu-CS in E_2 . Then by hypothesis $f^1(\lambda)$ Neu- α GSCS in E_1 . Since every Neu- α GSCS is a Neu-GSCS, $f^1(\lambda)$ is a Neu-GSCS in E_1 . Hence f is a Neu-GS continuity maps.

Example 3.11.

Neu-GS continuity maps is not Neu-αGS continuity maps.

Let $E_1=\{a_1, a_2\}$, $E_2=\{b_1, b_2\}$, $U=< e_1,(.8,.5,.4)$, (.9,.5,.2)> and $V=< e_2,(.3,.5,.9)$, (0.1,.5,.9)>. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1,\tau_N)\to (E_2,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=< e_2,(.9,.5,.3),(.9,.5,.1)>$ is Neu-CS in E_2 , $f^1(\lambda)$ is Neu-GSCS in E_1 but not Neu- α GSCS in E_1 . Therefore f is a Neu-GS continuity maps but not a Neu- α GS continuity maps.

Remark 3.12.

Neu-P continuity maps and Neu-αGS continuity maps are independent of each other.

Example 3.13.

Neu-P continuity maps is not Neu- α GS continuity maps Let $E_1=\{a_1,a_2\}$, $E_2=\{b_1,b_2\}$, $U=\langle e_1,(.3,.5,.7),(.4,.5,.6)\rangle$ and $V=\langle e_2,(.8,.5,.3),(.9,.5,.2)\rangle$. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1,\tau_N)\to (E_2,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=\langle e_2,(.3,.5,.8),(.2,.5,.9)\rangle$ is Neu-CS in E_2 , $f^1(\lambda)$ is Neu-PCS in E_1 but not Neu- α GSCS in E_1 . Therefore f is a Neu-P continuity maps but not Neu- α GS continuity maps.

Example 3.14.

Neu-αGS continuity maps is not Neu-P continuity maps

Let $E_1=\{a_1, a_2\}$, $E_2=\{b_1, b_2\}$, $U=<e_1, (.4,.5,.8), (.5,.5,.7)>$ and $V=<e_1, (.5,.5,.7)$, (.6,.5,.6)> and $W=<e_2, (.8,.5,.4)$, (.5,.5,.7)>. Then $\tau_N=\{0_N,U,V,1_N\}$ and $\sigma_N=\{0_N,W,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ by $f(a_1) = b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=<y$, (.4,.5,.8), (.7,.5,.5)> is Neu- α GSCS but not Neu-PCS in E_2 , $f^1(\lambda)$ is Neu- α GSCS in E_1 but not Neu-PCS in E_1 . Therefore f is a Neu- α GS continuity maps but not Neu-P continuity maps.

Theorem 3.15.

Every Neu-αGS continuity maps is a Neu-αG continuity maps.

Proof.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps. Let λ be a Neu-CS in E_2 . Since f is Neu- α GS continuity maps, $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Since every Neu- α GSCS is a Neu- α GCS, $f^{-1}(\lambda)$ is a Neu- α GCS in E_1 . Hence f is a Neu- α G continuity maps.

Example 3.16.

Neu- αG continuity maps is not Neu- αGS continuity maps

Let $E_1=\{a_1,a_2\}$, $E_2=\{b_1,b_2\}$, $U=< e_1,(.1,.5,.7),(.3,.5,.6)>$ and $V=< e_2,(.7,.5,.4),(.6,.5,.5)>$. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1,\tau_N)\to (E_2,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Since the Neutrosophic set $\lambda=< e_2,(.4,.5,.7),(.5,.5,.6)>$ is Neu-CS in E_2 , $f^1(\lambda)$ is Neu- α GCS in E_1 but not Neu- α GSCS in E_1 . Therefore f is a Neu- α G continuity maps but not a Neu- α GS continuity maps.

Theorem 3.17.

Every Neu- αGS continuity maps is a Neu-G α continuity maps.

Proof.

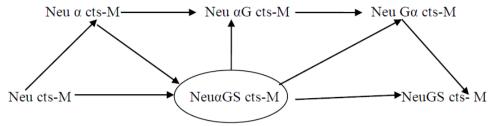
Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps. Let λ be a Neu-CS in E_2 . Since f is Neu- α GS continuity maps, $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Since every Neu- α GSCS is a Neu-G α CS, $f^{-1}(\lambda)$ is a Neu-G α CS in E_1 . Hence f is a Neu-G α C continuity maps.

Example 3.18.

Neu-Ga continuity maps is not Neu-aGS continuity maps Let $E_1 = \{a_1, a_2\}$, $E_2 = \{b_1, b_2\}$, $U = \{e_1, (.5, .5, .7), (.3, .5, .9)\}$ and $V = \{e_2, (.6, .5, .6), (.5, .5, .7)\}$. Then $\tau_N = \{0_N, U, 1_N\}$ and $\sigma_N = \{0_N, V, 1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f: (E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ by $f(a_1) = b_1$ and $f(a_2) = b_2$. Since the Neutrosophic set $\lambda = \{e_1, e_2, e_3, e_4, e_5\}$ is Neu-CS in E_2 , $f^{-1}(\lambda)$ is Neu-Ga CS in E_1 but not Neu-aGSCS in E_1 . Therefore f is a Neu-Ga continuity maps but not a Neu-aGS continuity maps.

Remark 3.19.

We obtain the following diagram from the results we discussed above.



Theorem 3.20.

A maps $f:(E_1,\tau_N) \rightarrow (E_2,\sigma_N)$ is Neu- α GS continuity if and only if the inverse image of each Neutrosophic set in E_2 is a Neu- α GSOS in E_1 .

Proof.

first part Let λ be a Neutrosophic set in E_2 . This implies λ^C is Neu-CS in E_2 . Since f is Neu- α GS continuity, f $^1(\lambda^C)$ is Neu- α GSCS in E_1 . Since $f^1(\lambda^C)=(f^1(\lambda))^C$, $f^1(\lambda)$ is a Neu- α GSOS in E_1 .

Converse part Let λ be a Neu-CS in E_2 . Then λ^C is a Neutrosophic set in E_2 . By hypothesis $f^{-1}(\lambda^C)$ is Neu- α GSOS in E_1 . Since $f^{-1}(\lambda^C) = (f^{-1}(\lambda))^C$, $(f^{-1}(\lambda))^C$ is a Neu- α GSOS in E_1 . Therefore $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Hence f is Neu- α GS continuity.

Theorem 3.21.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a maps and $f^{-1}(\lambda)$ be a Neu-RCS in E_1 for every Neu-CS λ in E_2 . Then f is a Neu- α GS continuity maps.

Proof.

Let λ be a Neu-CS in E_2 and $f^{-1}(\lambda)$ be a Neu-RCS in E_1 . Since every Neu-RCS is a Neu- α GSCS, $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Hence f is a Neu- α GS continuity maps.

Definition 3.22.

A Neutrosophic Topology (E, τ_N) is said to be an

- (i)Neu- αga U_{1/2}(in short Neu- αga U_{1/2}) space ,if every Neu- $\alpha GSCS$ in E is a Neu-CS in E,
- (ii) Neu-αgbU_{1/2}(in short Neu-αgbU_{1/2}) space ,if every Neu-αGSCS in E is a Neu-GCS in E,
- (iii)Neu- $\alpha g_c U_{1/2}$ (in short Neu- $\alpha g_c U_{1/2}$) space, if every Neu- $\alpha GSCS$ in E is a Neu-GSCS in E.

Theorem 3.23.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps, then f is a Neu-continuity maps if E_1 is a Neu- α ga $U_{1/2}$ space.

Proof.

Let λ be a Neu-CS in E_2 . Then $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 , by hypothesis. Since E_1 is a Neu- α gaU_{1/2}, $f^{-1}(\lambda)$ is a Neu-CS in E_1 . Hence f is a Neu-continuity maps.

Theorem 3.24.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps, then f is a Neu-G continuity maps if E_1 is a Neu-G space.

Proof.

Let λ be a Neu-CS in E_2 . Then $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 , by hypothesis. Since E_1 is a Neu- α gb $U_{1/2}$, $f^{-1}(\lambda)$ is a Neu-GCS in E_1 . Hence f is a Neu-G continuity maps.

Theorem 3.25.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps, then f is a Neu-GS continuity maps if E_1 is a Neu- α GS continuity maps.

Proof.

Let λ be a Neu-CS in E_2 . Then $f^1(\lambda)$ is a Neu- α GSCS in E_1 , by hypothesis. Since E_1 is a Neu- α GCS in E_1 . Hence f is a Neu-GS continuity maps.

Theorem 3.26.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps and $g:(E_2, \sigma_N) \rightarrow (E_3, \rho_N)$ be an Neutrosophic continuity, then $g \circ f:(E_1, \tau_N) \rightarrow (E_3, \rho_N)$ is a Neu- α GS continuity.

Proof.

Let λ be a Neu-CS in E_3 . Then $g^{-1}(\lambda)$ is a Neu-CS in E_2 , by hypothesis. Since f is a Neu- α GS continuity maps, f $^1(g^{-1}(\lambda))$ is a Neu- α GSCS in E_1 . Hence $g \circ f$ is a Neu- α GS continuity maps.

Theorem 3.27.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a maps from Neutrosophic Topology in E_1 in to a Neutrosophic Topology E_2 . Then the following conditions set are equivalent if E_1 is a Neu- $\alpha_{ga}U_{1/2}$ space.

- (i) f is a Neu-αGS continuity maps.
- (ii) if μ is a Neutrosophic set in E₂ then f⁻¹(μ) is a Neu- α GSOS in E₁.
- (iii) f¹(Neu-int(μ))⊆Neu-int(Neu-Cl(Neu-int(f¹(μ)))) for every Neutrosophic set μ in E₂.

Proof.

- $(i) \rightarrow (ii)$: is obviously true.
- (ii) \rightarrow (iii): Let μ be any Neutrosophic set in E_2 . Then Neu-int(μ) is a Neutrosophic set in E_2 . Then $f^{-1}(\text{Neu-int}(\mu))$ is a Neu- α GSOS in E_1 . Since E_1 is a Neu- α gsuce, $f^{-1}(\text{Neu-int}(\mu))$ is a Neutrosophic set in E_1 . Therefore $f^{-1}(\text{Neu-int}(\mu)) = \text{Neu-int}(f^{-1}(\text{Neu-int}(\mu))) \subseteq \text{Neu-int}(f^{-1}(\text{Neu-int}(\mu)))$.
- (iii) \rightarrow (i) Let μ be a Neu-CS in E_2 . Then its complement μ^C is a Neutrosophic set in E_2 . By Hypothesis f^1 (Neu-int(μ^C)) \subseteq Neu-int(Neu-Cl(Neu-int(f^1 (Neu-int(μ^C))))). This implies that $f^1(\mu^C)\subseteq$ Neu-int(Neu-Cl(Neu-int(f^1 (Neu-int(μ^C))))). Hence $f^1(\mu^C)$ is a Neu- α OS in E_1 . Since every Neu- α OS is a Neu- α GSOS, $f^1(\mu^C)$ is a Neu- α GSOS in E_1 . Therefore $f^1(\mu)$ is a Neu- α GSCS in E_1 . Hence f is a Neu- α GS continuity maps.

Theorem 3.28.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a maps. Then the following conditions set are equivalent if E_1 is a Neu- $\alpha_{ga}U_{1/2}$ space. (i) f is a Neu- α GS continuity maps.

- (ii) $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 for every Neu-CS λ in E_2 .
- (iii) Neu-Cl(Neu-int(Neu-Cl($f^{-1}(\lambda)$))) $\subseteq f^{-1}(Neu-Cl(\lambda))$ for every Neutrosophic set λ in E_2 .

Proof.

- $(i) \rightarrow (ii)$: is obviously true.
- (ii) \rightarrow (iii): Let λ be a Neutrosophic set in E_2 . Then Neu-Cl(λ) is a Neu-CS in E_2 . By hypothesis, f^{-1} (Neu-Cl(λ)) is a Neu- α GSCS in E_1 . Since E_1 is a Neu- α gsCS in E_1 . Therefore Neu-Cl(f^{-1} (Neu-Cl(λ)))= f^{-1} (Neu-Cl(λ)). NowNeu-Cl(Neu-int(Neu-Cl($f^{-1}(\lambda$)))) \subseteq Neu-Cl(Neu-int(Neu-Cl(λ))).
- (iii) \rightarrow (i): Let λ be a Neu-CS in E_2 . By hypothesis Neu-Cl(Neu-int(Neu-Cl($f^{-1}(\lambda)$))) $\subseteq f^{-1}(Neu-Cl(\lambda))=f^{-1}(\lambda)$. This implies $f^{-1}(\lambda)$ is a Neu- α CS in E_1 and hence it is a Neu- α GSCS in E_1 . Therefore f is a Neu- α GS continuity maps.

Definition 3.29.

Let (E, τ_N) be a Neutrospohic topology. The Neutrospohic alpha generalized semi closure (Neu- α GSCl(λ)in short) for any Neutrosophic set λ is Defined as follows. Neu- α GSCl(λ)= \cap { K|K is a Neu- α GSCS in E₁ and $\lambda \subseteq$ K}. If λ is Neu- α GSCS, then Neu- α GSCl(λ)= λ .

Theorem 3.30.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS continuity maps. Then the following conditions set are hold.

- (i) $f(\text{Neu-}\alpha GSCl(\lambda)) \subseteq \text{Neu-Cl}(f(\lambda))$, for every Neutrosophic set λ in E_1 .
- (ii) Neu- α GSCl(f⁻¹(μ)) \subseteq f⁻¹(Neu-Cl(μ)), for every Neutrosophic set μ in E₂.

Proof.

- (i) Since Neu-Cl($f(\lambda)$) is a Neu-CS in E_2 and f is a Neu- α GS continuity maps, f^1 (Neu-Cl($f(\lambda)$)) is Neu- α GSCS in E_1 . That is Neu- α GSCl(λ) \subseteq f^1 (Neu-Cl($f(\lambda)$)). Therefore $f(\text{Neu-}\alpha\text{GSCl}(\lambda)) \subseteq \text{Neu-Cl}(f(\lambda))$, for every Neutrosophic set λ in E_1 .
- (ii) Replacing λ by $f^1(\mu)$ in (i) we get $f(\text{Neu-}\alpha GSCl(f^1(\mu))) \subseteq \text{Neu-}Cl(f(f^1(\mu))) \subseteq \text{Neu-}Cl(\mu)$. Hence $\text{Neu-}\alpha GSCl(f^1(\mu)) \subseteq f^1(\text{Neu-}Cl(\mu))$, for every Neutrosophic set μ in E_2 .

4. Neutrosophic α-Generalized Semi Irresolute Maps

In this section we Introduce Neutrosophic α -generalized semi irresolute maps and study some of its characterizations.

Definition 4.1.

A maps $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ is called a Neutrosophic alpha-generalized semi irresolute (Neu- α GS irresolute) maps if $f^{-1}(\lambda)$ is a Neu- α GSCSin (E_1, τ_N) for every Neu- α GSCS λ of (E_2, σ_N)

Theorem 4.2.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS irresolute, then f is a Neu- α GS continuity maps.

Proof.

Let f be a Neu- α GS irresolute maps. Let λ be any Neu-CS in E_2 . Since every Neu-CS is a Neu- α GSCS, λ is a Neu- α GSCS in E_2 . By hypothesis $f^{-1}(\lambda)$ is a Neu- α GSCS in E_2 . Hence f is a Neu- α GS continuity maps.

Example 4.3.

Neu-αGS continuity maps is not Neu-αGS irresolute maps.

Let $E_1=\{a_1,\,a_2\},\,E_2=\{b_1,\,b_2\},\,U=<\,e_1,(.4,.5,\,.7),\,(.5,.5,.6)>$ and $V=<\,e_2$, $(.8,.5,.3),\,(.4,.6,\,.7)>$. Then $\tau_N=\{0_N,U,1_N\}$ and $\sigma_N=\{0_N,V,1_N\}$ are Neutrosophic Topologies on E_1 and E_2 respectively. Define a maps $f:(E_1,\,\tau_N)\to (E_2,\,\sigma_N)$ by $f(a_1)=b_1$ and $f(a_2)=b_2$. Then f is a Neu- α GS continuity. We have $\mu=<\,e_2,(.2,.5,\,.9),\,(.6,.5,\,.5)>$ is a Neu- α GSCS in E_2 but $f^{-1}(\mu)$ is not a Neu- α GSCS in E_1 . Therefore f is not a Neu- α GSCS irresolute maps.

Theorem 4.4.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS irresolute, then f is a Neutrosophic irresolute maps if E_1 is a Neu- α ga $U_{1/2}$ space.

Proof.

Let λ be a Neu-CS in E₂. Then λ is a Neu- α GSCS in E₂. Therefore $f^{-1}(\lambda)$ is a Neu- α GSCS in E₁, by hypothesis. Since E₁ is a Neu- α gsCS in E₁, by hypothesis. Hence f is a Neutrosophic irresolute maps.

Theorem 4.5.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ and $g:(E_2, \sigma_N) \rightarrow (E_3, \rho_N)$ be Neu- α GS irresolute maps, then $g \circ f:(E_1, \tau_N) \rightarrow (E_3, \rho_N)$ is a Neu- α GS irresolute maps.

Proof.

Let λ be a Neu- α GSCS in E₃. Then $g^{-1}(\lambda)$ is a Neu- α GSCS in E₂. Since f is a Neu- α GS irresolute maps. $f^{-1}((g^{-1}(\lambda)))$ is a Neu- α GSCS in E₁. Hence gof is a Neu- α GS irresolute maps.

Theorem 4.6.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS irresolute and $g:(E_2, \sigma_N) \rightarrow (E_3, \rho_N)$ be Neu- α GS continuity maps, then $g \circ f:(E_1, \tau_N) \rightarrow (E_3, \rho_N)$ is a Neu- α GS continuity maps.

Proof

Let λ be a Neu-CS in E3. Then $g^{-1}(\lambda)$ is a Neu- α GSCS in E2. Since f is a Neu- α GS irresolute,

 $f^{-1}((g^{-1}(\lambda)))$ is a Neu- α GSCS in E_1 . Hence $g \circ f$ is a Neu- α GS continuity maps.

Theorem 4.7.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a Neu- α GS irresolute, then f is a Neu-G irresolute maps if E_1 is a Neu-G irresolute map if E_2 irresolute map if E_1 is a Neu-G irresolute map if E_2 irresolute map

Proof.

Let λ be a Neu- α GSCS in E_1 . By hypothesis, $f^{-1}(\lambda)$ is a Neu- α GSCS in E_1 . Since E_1 is a Neu- α GSCS in E_1 . Hence f is a Neu-GCS in E_1 . Hence f is a Neu-GCS in E_1 .

Theorem 4.8.

Let $f:(E_1, \tau_N) \rightarrow (E_2, \sigma_N)$ be a maps from a Neutrosophic Topology E_1 Into a Neutrosophic Topology E_2

- . Then the following conditions set are equivalent if E_1 and E_2 are Neu- $_{\alpha ga}U_{1/2}$ spaces.
- (i) f is a Neu-αGS irresolute maps.
- (ii) $f^{-1}(\mu)$ is a Neu- α GSOS in E_1 for each Neu- α GSOS μ in E_2 .
- (iii) Neu-Cl($f^{-1}(\mu)$) $\subseteq f^{-1}$ (Neu-Cl(μ)) for each Neutrosophic set μ of E_2 .

Proof.

- (i) \rightarrow (ii) : Let μ be any Neu- α GSOS in E_2 . Then μ^C is a Neu- α GSCS in E_2 . Since f is Neu- α GS irresolute, $f^1(\mu^C)$ is a Neu- α GSCS in E_1 . But $f^1(\mu^C) = (f^1(\mu))^C$. Therefore $f^1(\mu)$ is a Neu- α GSOS in E_1 .
- (ii) \rightarrow (iii) : Let μ be any Neutrosophic set in E_2 and $\mu \subseteq \text{Neu-Cl}(\mu)$. Then $f^1(\mu) \subseteq f^1(\text{Neu-Cl}(\mu))$. Since Neu-Cl(μ) is a Neu-CS in E_2 , Neu-Cl(μ) is a Neu- α GSCS in E_2 . Therefore (Neu-Cl(μ))^C is a Neu- α GSOS in E_2 . By hypothesis, $f^1((\text{Neu-Cl}(\mu))^C)$ is a Neu- α GSOS in E_1 . Since $f^1((\text{Neu-Cl}(\mu))^C) = (f^1(\text{Neu-Cl}(\mu)))^C, f^1(\text{Neu-Cl}(\mu))$ is a Neu- α GSCS in E_1 . Since E_1 is Neu- α gaU_{1/2} space, $f^1(\text{Neu-Cl}(\mu))$ is a Neu-CS in E_1 . Hence Neu-Cl($f^1(\mu)$) $\subseteq \text{Neu-Cl}(f^1(\text{Neu-Cl}(\mu))$. That is Neu-Cl($f^1(\mu)$) $\subseteq f^1(\text{Neu-Cl}(\mu))$.
- (iii) \rightarrow (i): Let μ be any Neu- α GSCS in E_2 . Since E_2 is Neu- $_{\alpha ga}U_{1/2}$ space, μ is a Neu-CS in E_2 and Neu-Cl(μ)= μ .Hence $f^1(\mu)=f^1(\text{Neu-Cl}(\mu)\supseteq \text{Neu-Cl}(f^1(\mu))$. But clearly $f^1(\mu)\subseteq \text{Neu-Cl}(f^1(\mu))$. Therefore Neu-Cl($f^1(\mu)$) is a Neu- α GSCS in E_1 . Thus f is a Neu- α GS irresolute maps.

Conclusion

In this research paper using Neu- α GSCS(Neutrosophic α gs-closed sets) we are defined Neu- α GS continuity maps and analyzed its properties after that we were compared already existing Neutrosophic continuity maps to Neu- α GSCS continuity maps. Furthermore we were extended to this maps to Neu- α GS irresolute maps , Finally This concepts can be extended to future Research for some mathematical applications.

References

- [1] Abdel-Basset, M., Saleh, M., Gamal, A., & Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number . *Applied Soft Computing*, 77, 438-452.
- [2] Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field . *Computers in Industry*, 106, 94-110.
- [3] Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2019). A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. *Journal of medical systems*, 43(2), 38.
- [4] Abdel-Baset, M., Chang, V., & Gamal, A. (2019). Evaluation of the green supply chain management practices: A novel neutrosophic approach. *Computers in Industry*, 108, 210-220.
- [5] Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. *Design Automation for Embedded Systems*, 1-22.
- [6] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986),87-94.
- [7] I.Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions In Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, Vol. 16, 2017, (16-19)
- [8] V.Banu priya, S.Chandrasekar, Neutrosophic α generalized semi closed set(Communicated)

- [9] R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets, *New trends in Neutrosophic theory and applications* Volume II- 261-273,(2018).
- [10] R. Dhavaseelan, S. Jafari and md. Hanif page, Neutrosophic generalized α-contra-continuity, *creat. math. inform.* 27 (2018), no. 2, 133 139
- [11] Florentin Smarandache ,Neutrosophic and NeutrosophicLogic,First International Conference On Neutrosophic ,Neutrosophic Logic, Set, Probability, and Statistics University of New MeEico, Gallup, NM 87301, USA (2002), smarand@unm.edu
- [12] Floretin Smaradache, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, *Journal of Defense Resourses Management*. 1(2010), 107-114.
- [13] Ishwarya, P and Bageerathi, K., On Neutrosophic semiopen sets in Neutrosophic topological spaces, *International Jour. of Math. Trends and Tech.* 2016, 214-223.
- [14] D.Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March 2018.
- [15] A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, *Journal computer Sci. Engineering*, Vol.(ii) No.(7)(2012).
- [16] A.A.Salama and S.A.Alblowi, Neutrosophic set and Neutrosophic topological space, *ISOR J.mathematics*, Vol.(iii) ,Issue(4),(2012).pp-31-35
- [17] V.K.Shanthi ,S.Chandrasekar, K.SafinaBegam, Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, *International Journal of Research in Advent Technology*, Vol.6, No.7, July 2018, 1739-1743
- [18] V. Venkateswara Rao, Y. Srinivasa Rao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, *International Journal of ChemTech Research*, Vol.10 No.10, pp 449-458, 2017
- [19] Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. (2019). An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: *A New Trend in Brain Processing and Analysis*. IEEE Access, 7, 29734-29744.
- [20] Zadeh, L. A. "Fuzzy sets", *Information and Control*, 8, 338-353 (1965).

Received: January 7, 2019. Accepted: May 20, 2019