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Abstract. This research introduces a comprehensive Universal Data Envelopment Analysis (DEA) model 

to handle real-world problems fraught with uncertainty of every operational facet. Apart from all this, this 

framework has a feature of embracing many level variations: deterministic, stochastic, fuzzy, and 

neutrosophic, in both input and output variables, unlike the traditional DEA models, which are limited to 

deterministic. Besides accommodating different orientation types detected in models such as input-

oriented and output-oriented, it also incorporates variable and constant return types of scale. The main 

objective of this study is to develop a flexible DEA model that can measure and rank, under uncertain 

conditions, the performance efficiency of organizations having comparable input-output structures. The 

proposed model seeks to identify inefficient organizations so as to improve specifically on those areas to 

have a much better outcome in overall efficiency. This provides decision-makers with very strong and 

versatile options for efficient measures, even in the context of heterogeneous and imprecise data. The 

paradigm for this study lies in bringing together several ways of handling uncertainty under one umbrella. 

This study is much better than the conventional DEA models. Possible restrictions, however, on 

applicability in very large data sets and computation time complexities would need further probing. 

 

Keywords: Data Envelopment Analysis; Neutrosophic Analysis; Efficiency Assessment; Uncertainty Integration; 

Multi-Level Uncertainty; Healthcare Facility; Triangular neutrosophic number 

 

 

 

1. Introduction 
In these days, managers are now required not only to make collaborative decisions, but also interpret 

abundant data related to their business or organization. The biggest difficulty is finding valuable insight from this 

flood of data, and this insight can be used to improve organizational performance. Efficiency measurement represents 

a vital domain of interest within the complex nexus of dimensions that characterize organizational performance. One 

of the most rising challenges across organizations is questioning them on whether they believe themselves to be more 

efficient than one or more industry competitors. Performance measurement has evolved into necessary means of 

answering questions about how to measure productivity, including efficiency, effectiveness and accountability. 

Traditional performance measurement systems tend to present an incomplete picture of organizational performance 

leading to the risk of managers missing some important areas for development. In this sense efficiency is measured 

against established goals, whether it relates to the level of output produced, profit achieved, or cost avoided [1].
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Data Envelopment Analysis (DEA) is a nonparametric method in operations research that is used to evaluate 

the relative efficiency and performance of diverse entities, such as firms, organizations, or functionally similar but 

independent operational units, often referred to as Decision-Making Units (DMUs) [2, 3]. These DMUs are usually 

specified by a vector of outputs and inputs. The main focus of a DEA investigation is to determine the relative 

efficiency of each DMU with respect to its peers. Based on this assessment, all entities are grouped in "efficient" or 

"inefficient" and it determines how much input/output slack is needed to convert an inefficient DMU into an efficient 

one. Radial distance from inefficient (DMU) to efficiency frontier indicates how much more efficient DMUs must be. 

An interesting property of the DEA algorithm is the fact that it can be applied without having an explicit specification 

(including a functional form) for the production function. Overall, the DEA model has the advantage of the ability to 

treat multiple inputs and outputs [4], which can improve the flexibility of this approach. Nevertheless, one important 

shortcoming of classical DEA models is that they do not deal with the uncertainty variations on input and output 

variables. Such a constraint makes the ordinary DEA models exceedingly exposed to prima facie uncertainty variables 

such as statistical error, data source scarcity, and usual randomness/vagueness/neutrosophicness of all economic 

phenomena. Thus, the use of classical DEA approaches to assess efficiency is very sensitive to variations in 

uncertainty, since such differences might cause DMU’s changes between efficient and inefficient groups. 

Recent research dealt with randomness of data within the DEA framework, and important steps have been 

taken. Among the output-oriented stochastic DEA models, two streams of approach are maintained. First, it is assumed 

that all variables are uniformly random [4, 5, 6], while in the second, only the output variables are random with inputs 

considered as deterministic [7, 8, 9]. Similarly, the input-oriented stochastic DEA models have also developed in two 

ways: one with outputs being random and inputs deterministic [10]. These models share common assumptions: they 

assume independence between the same random variables across different DMUs and identical distribution patterns 

for all stochastic variables. Expanding on these works, a few researchers have advanced novel robust stochastic DEA 

methodologies, which enhances the capability of the field to address uncertainty further. Researchers have recently 

studied randomness of data in DEA context, and development of the field further into important promises. Under the 

output-oriented stochastic DEA modeling, however, two streams of approach have been held. In the first, all variables 

are considered random [4, 5, 6]; in the second, the random ones are only considered output variables, while inputs are 

deterministic [7, 8, 9]. Along the same lines have come up these input-oriented stochastic DEA-models, one treating 

output random and inputs as deterministic [10]. These families of models share common assumptions: they assume 

the independence of the same random variables across different DMUs and by symmetry for all stochastic variables, 

the models are assumed to share the same distribution.  

A few researchers built upon these works to develop novel robust stochastic DEA methodologies that further 

empower the field to address uncertainty. El-Demerdash et al. [11, 12] proposed a Stochastic Input-Oriented DEA 

model for evaluating the efficiency of decision-making units under uncertainty in input variables and/or output 

variables to provide realistic and reliable assessments of efficiency in environments where input values are subject to 

variability. Montazeri [13] furthered the construction of fuzzy stochastic DEA model to portray the synergistic 

relevance of joining fuzziness and randomness better to counter uncertainty in efficiency assessment. Sihotang et al. 

[14] modified DEA model for stochastic decision-making in production and supply chain planning under uncertain 

operational conditions. The reliability of efficiency measuring was improved by Syhotong et al. [15] providing for 

stochastic DEA considerations which in turn would stabilize DEA results when operating in unstable data conditions.  

In this respect, DEA models have been developed utilizing fuzzy logical approaches to capture the inherent vagueness 

of the variables. The development work follows two major avenues: First the classical fuzzy DEA models. Saati, et 

al., [16] developed a fuzzy DEA model to assess the efficiency and ranking of DMUs under uncertainty and 

emphasized handling imprecise inputs and outputs, offering a more flexible and realistic evaluation framework. Liu, 

et al., [17] applied fuzzy DEA to evaluate product design schemes, considering the vagueness inherent in design 

parameters and enable more accurate and practical assessments in the early stages of product development. Chiang 

and Che [18] proposed a fuzzy robust evaluation model combining Bayesian Belief Networks and weight-restricted 

DEA for ranking New Product Development project to manage uncertainty and enhance decision making in project 

selection. Khoshfetrat and Daneshvar [19] introduced fuzzy DEA models by refining the frontier structure to enhance 

discriminatory power and provide more precise efficiency analysis under fuzzy data conditions. 

The input-output-oriented fuzzy DEA methods were presented as the second route. Kakao and Liu [20] were 

the pioneers in presenting the mathematical programming approach for ranking the DMUs within the framework of 

fuzzy DEA. They emphasized effective discrimination between DMUs and had a mechanism for handling imprecise 

input-output data very well. Liu [21] put forward the fuzzy DEA/Analytic Hierarchy Approach for determining 
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flexible manufacturing systems in uncertain conditions and situations. It aimed at supporting decision-making by 

combining the analysis of efficiency with preference-based ranking. Azadeh et al. [22] discussed hybrid 

methodologies combining neural networks through fuzzy DEA for optimal location for solar plants, all under 

uncertainty and complexity, while handling multiple uncertainties concerning the technical, economic, and 

environmental parameters involved. Zerafat Angiz, et al. [23] presented a discrete fuzzy DEA model for evaluating 

the efficiency of DMUs under imprecise data while retaining robustness in the efficiency assessment process. Kaleibar, 

et al., [24] modified a centralized resource allocation model under a variable return to scale DEA model using fuzzy 

data to better accommodate a more flexible and fair resource allocation among DMUs in uncertain environments. with 

routes establishing that all variables, inputs and/or outputs are considered fuzzy. These models are distinguished 

further by their assumption that all fuzzy variables have some standard, common individual membership function. 

This includes the most outstanding contributions, one being that of Hatami-Marbini et al. [25] which provided an 

adaptable but otherwise flexible cross-efficiency evaluation methodology through a fuzzy output-oriented DEA model 

conceived specifically for supplier performance assessment. Or Tharwat et al. [26, 27] developed the models about 

input-output orientation. However, Mohanta & Sharanappa [28] achieved this application to fuzzy DEA: the spherical 

fuzzy DEA, which can represent uncertainty of decision makers regarding assessment of data. Stanojević, B., & 

Stanojević, M. [29] presented an empirical Monte Carlo simulation to visualize fuzzy efficiencies within the wholly 

fuzzy DEA models. 

The recent development on DEA methodology to deal with neutrosophic uncertainty of the novel approach 

in the efficiency analysis. Edalatpanah [30] was the first one who introduced neutrosophic components into inputs as 

well as outputs. Furthermore, Abdelfattah [31] worked by incorporating triangular neutrosophic variables to derive a 

more developed model capturing degrees of truth, indeterminacy, and falsity within values of data. The field 

progressed even further with many critical contributions in the field. Kahraman et al. [32] integrated methods of DEA 

to Neutrosophic Analytic Hierarchy Process to improve performance assessment. Yang et al. [33] proceeded further 

by considering all variables in the form of single-valued neutrosophic triangular number representation and Mao et al. 

[34] developed an efficient neutrosophic DEA model that has been uniquely considered on undesirable outputs based 

on an aggregation operator approach. Other fairly recent works are the input-oriented neutrosophic DEA model by El-

Demerdash et al. [35], and the approach to model uncertainty of both input and output data by Farnam et al. [36]. A 

particularly comprehensive development was that of Almutairi et al. [37], who presented a model that could do the 

following: determining whether variables should be treated as deterministic or neutrosophic, accommodating both 

input and output orientations, and handling multiple types of returns to scale (constant and variable). 

These advancements in DEA methodologies, incorporating stochastic, fuzzy or neutrosophic elements, 

represent a significant shift in the way decision-making units are evaluated, offering more nuanced and comprehensive 

approaches to handle uncertainty in real-world data. Even though the above literature survey in DEA has yielded new 

models, these models still exhibit certain limitations. Firstly, the DEA models that have been developed lack the 

generality needed to effectively handle both deterministic variables and variables characterized by various forms of 

uncertainty. Secondly, the existing DEA models that do address uncertainty in variables typically categorize all 

variables, whether they are inputs or outputs, into a single category of uncertainty, be either in their randomness, 

vagueness, or neutrosophic nature. Thirdly, the DEA models; that are introduced to handle different orientation types, 

whether input or output, and to manage distinct return-to-scale types, such as constant or variable; remain relatively 

scarce. Lastly, a number of these newly developed models are specifically tailored to address certain applications, 

limiting their versatility and adaptability across different domains. 

So, the main objective of this study is to create a comprehensive DEA model capable of accommodating a 

wide spectrum of variable types, including deterministic, stochastic, fuzzy, and neutrosophic variations, applied to 

both input and output parameters. This model will also address various orientation types, whether output-oriented or 

input-oriented, and consider different return-to-scale scenarios, encompassing both constant return to scale (CRS) and 

variable return to scale (VRS). The ultimate goal is to utilize this model to assess and compare the relative efficiency 

of a collection of organizations that share common input-output characteristics. Furthermore, the model aims to 

provide actionable recommendations to organizations that are found to be inefficient, enabling them to enhance their 

overall performance. 

This paper is structured as follows: In the second section, we outline the basic mathematical framework of 

DEA. In the third section, we introduce our novel contribution: a generalized DEA model that incorporates multi-level 

uncertainty integration. In the fourth section, we show the practical applicability of our proposed model by 
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implementing it in a case study.  Section fifth introduces the comparison of the proposed approach eith the existing 

method and  the sensitivity analysis. Finally, in the sixth section, we conclude the paper with a comprehensive 

summary of our findings and discuss promising avenues for future research.  

2. Basic Data Envelopment Analysis Mathematical Models 
Arguably, there are two DEA models. The CRS model [2] that a given amount of input will yield a 

proportional increase in output. The second category is known as VRS model which is a refinement by Banker et al. 

[38] where one would not expect a constant relationship between changes in inputs and outputs. The VRS is advanced 

as a refinement of the CRS model in a way that all the efficient DMUs are covered with a convex curve representing 

efficient frontiers. Further, there are also output oriented and input-oriented DEA model’s classification. Input-

oriented DEA model’s frontier is determined by reducing the scale of an input in proportion to its amount that is used 

to produce a given amount of output for a DMU. In a similar manner to input oriented models, output-oriented DEA 

models seek the maximum possible increase of output under an unchanged amount of input. So, we presented two 

basic distinct models for this study, an output-oriented CRS model presented in Model (M-1), and an input-oriented 

CRS model presented in Model (M-2). 

A basic CRS Output-Oriented DEA model 

𝑀𝑎𝑥 ∅ 

𝑠. 𝑡. 

∑𝜆𝑖𝑦𝑖𝑘

𝑛

𝑖=1

≥ ∅𝑦𝑝𝑘   , ∀𝑘 = 1… 

  ∑ 𝜆𝑖𝑥𝑖𝑗
𝑛
𝑖=1  ≤  𝑥𝑝𝑗     , ∀𝑗 = 1… . 𝑣              

                                                                                                                                                                       (𝑀 − 1) 
       𝜆𝑖  ≥ 0, (𝑖 = 1,2, … , 𝑛)                                               

 

A basic CRS Input-Oriented DEA model   

𝑀𝑖𝑛 𝜃 

𝑠. 𝑡. 

∑𝜆𝑖𝑥𝑖𝑗

𝑛

𝑖=1

 ≤  𝜃𝑥𝑝𝑗    , ∀𝑗 = 1… . 𝑣 

      ∑ 𝜆𝑖𝑦𝑖𝑘
𝑛
𝑖=1 ≥ 𝑦𝑝𝑘   , ∀𝑘 = 1…𝑤                                                                                                                (𝑀 − 2) 

                                                                            

 

        𝜆𝑖  ≥ 0, (𝑖 = 1,2, … , 𝑛)                                                                                                      

  

where k: number of outputs (1 to ‘w’); j: number of inputs (1 to ‘v’); i: number of DMUs (1 to ‘n’); 𝑦𝑖𝑘 is the amount 

of output k for DMU i,  𝑥𝑖𝑗 is the amount of input j for DMU i, and  𝜆𝑖 is the weight given to DMU i. 

The models can be written as VRS models instated of CRS ones by adding a new constraint (∑ 𝜆𝑖 = 1
𝑛
𝑖=1 )  to both 

(M-1) and (M-2) models. This constraint is formed as a combination convex of DMUs with positive λ’s in the optimal 

solution. 

3. Developing A Generalized Data Envelopment Analysis Model 

A major development in DEA methodology is the formulation of more general and flexible models. This 

section introduces a new method that outperforms the traditional DEA models: the Generalized Mathematical Model 

for DEA. This model permits the incorporation of stochastic, fuzzy, and neutrosophic measures to assess performance 

efficiency under uncertainty. Great adaptability is one of the major strengths of this model. It moves effortlessly 

between input-oriented and output-oriented analyses, offering the means of relative efficiency measurement. Besides 

that, the model enables both constant return to scale and variable returns to scale assumptions, hence it can cope with 

efficiency analysis for any kind of operating scale. 
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This section will aim at an analysis of the changes in basic rules of this new DEA model regarding the patterns 

graph transformation using parametric techniques and thus increasing the robustness of the models applied even in 

the case of complex, uncertain and multi-dimensional situations. In this context, whereby managers are becoming 

more and more concerned with the framework design of organizational decision support systems, this model appears 

to be well suited for the practical applications for real life situational performance measurement and decision making. 

The subsequent remarks and propositions aim to establish a comprehensive DEA model for assessing the relative 

efficiency of each DMU while accommodating variables of distinct natures (deterministic, fuzzy, stochastic, and 

neutrosophic) independently. In addition, it accommodates the orientation types and allows for different kinds of 

return to scale. 

Remark 1: Consider a versatile DEA model capable of addressing both input- and output-oriented problems, 

accommodating both CRS and VRS. The following model (M-3) represents a generalized adaptation of the traditional 

DEA model 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 = 1…𝑣 

 ∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘            , ∀𝑘 = 1…𝑤 

𝑛

𝑖=1

                        

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛)                                                                                                                                          (𝑀 − 3) 

where 𝜉
𝑀

 is the model type variable for orientation, which is defined as: 

 𝜉𝑀 = {
1     𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑
0        𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐼𝑛𝑝𝑢𝑡 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑

      

 and 𝜉
𝑅
 is the model type variable for return to scale, which is defined as: 

𝜉
𝑅
= {

1        𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑢𝑟𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒
0        𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑢𝑟𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒

   

As a result, we can identify three distinct cases:  

● 𝜉
𝑀
+ 𝜉𝑅 = 2, represents a output-oriented VRS DEA model. 

● 𝜉
𝑀
+ 𝜉𝑅 = 1 {

𝐼𝑓 𝜉𝑀 = 1, 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝐶𝑅𝑆  𝐷𝐸𝐴 𝑚𝑜𝑑𝑒𝑙.
 𝐼𝑓 𝜉𝑅 = 1, 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝑉𝑅𝑆   𝐷𝐸𝐴 𝑚𝑜𝑑𝑒𝑙.

   

● 𝜉
𝑀
+ 𝜉𝑅 = 0, represents an input-oriented CRS DEA model. 

a- First stage - handle fuzzy variation: In this part, we have developed fuzzy generalized DEA models, which are 

unable to handle certain input or output variables. All other variables are considered deterministic in nature. 

 
Remark 2: If either output and/or input are considered as fuzzy variables, then the fuzzy equivalent generalized DEA 

model to evaluate the 𝑝𝑡ℎ DMU efficiency level presented in Model (M – 3) can be formulated as follows:  

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖�̃�𝑖𝑗  ≤  𝜉𝑀�̃�𝑝𝑗 + (1 − 𝜉𝑀)𝜃�̃�𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐹 
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∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘 

𝑛

𝑖=1

           , ∀𝑘 ∈ 𝐾𝐷 

∑𝜆𝑖�̃�𝑖𝑘 ≥ 𝜉𝑀∅�̃�𝑝𝑘 + (1 − 𝜉𝑀) �̃�𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐹 

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 4) 

where �̃�𝑖𝑗  is the fuzzy input j for DMU 𝑖, �̃�𝑖𝑘 is the fuzzy output k for DMU 𝑖, 𝐽𝐷 is the deterministic inputs set, 𝐽𝐹  is 

the  fuzzy inputs set, 𝐽  are all the inputs set, 𝐾𝐷 is the deterministic outputs set, 𝐾𝐹 is the fuzzy outputs set, and K  are 

all the outputs set. Taking into consideration, 𝐽𝐷 ∪ 𝐽𝐹 = 𝐽 and 𝐾𝐷 ∪ 𝐾𝐹 = 𝐾. 

We can note that, when input, output, or both observations are treated as fuzzy variables, the deterministic inequalities 

are transformed into corresponding fuzzy inequalities. This transformation utilizes principles from fuzzy set theory as 

outlined in [39]. 

Proposition 1: considering fuzzy input variables (�̃�𝑖𝑘 ∈ 𝐾𝐹) have triangular membership functions, then the crisp 

equivalent linear model for fuzzy generalized DEA model in the context of Model (M - 4) can be expressed as follows: 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖�̃�𝑖𝑗  ≤  𝜉𝑀�̃�𝑝𝑗 + (1 − 𝜉𝑀)𝜃�̃�𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐹 

   ∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘 

𝑛

𝑖=1

           , ∀𝑘 ∈ 𝐾𝐷  

∑𝜆𝑖�̃�𝑖𝑘 ≥ 𝜉𝑀∅�̃�𝑝𝑘 + (1 − 𝜉𝑀) �̃�𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐹 

𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝐿 ≤ �̃�𝑖𝑘 ≤ 𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝑈        , ∀𝑘 ∈ 𝐾𝐹      

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 5) 

where 𝑦𝑖𝑘
𝐿  is the fuzzy output variable 𝑘 for DMU 𝑖 lower value, 𝑦𝑖𝑘

𝑀 is the fuzzy output variable 𝑘 for DMU 𝑖 median 

value, 𝑦𝑖𝑘
𝑈  is the fuzzy output variable 𝑘 for DMU 𝑖 upper value, and 𝛼 is the fuzzy variables 𝛼-cut level. 

Proof: Consider an input fuzzy numbers triangular membership function that are used for explaining input fuzzy for 

(M-5) as follows: 

𝜇�̃�𝑖𝑘 =

{
  
 

  
 
0  ,                          𝑦

𝑖𝑘
≤  𝑦

𝑖𝑘
𝐿

  
𝑦𝑖𝑘−𝑦𝑖𝑘

𝐿

𝑦𝑖𝑘
𝑀−𝑦𝑖𝑘

𝐿  ,       𝑦𝑖𝑘
𝐿 ≤  𝑦

𝑖𝑘
≤ 𝑦

𝑖𝑘
𝑀

 
𝑦𝑖
𝑈−𝑦𝑖𝑘

𝑦𝑖𝑘
𝑈−𝑦𝑖𝑘

𝑀  ,        𝑦𝑖𝑘
𝑀 ≤  𝑦

𝑖𝑘
≤ 𝑦

𝑖𝑘
𝑈

0 ,                           𝑦
𝑖𝑘
≥  𝑦

𝑖𝑘
𝑈

                                        (1) 
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�̃�𝑖𝑘 = (𝑦𝑖𝑘
𝐿 , 𝑦𝑖𝑘

𝑀, 𝑦𝑖𝑘
𝑈 ),      0 ≤ 𝑦𝑖𝑘

𝐿 ≤ 𝑦𝑖𝑘
𝑀 ≤ 𝑦𝑖𝑘

𝑈  → �̃�𝑖𝑘 ∈ [𝑦𝑖𝑘
𝐿 , 𝑦𝑖𝑘

𝑈 ]                 (2) 

𝜇�̃�𝑖𝑘  as express in eq. (1) defines the α-cuts of outputs �̃�𝑖𝑘 for triangular fuzzy numbers of arithmetic 

operations. This approach yields intervals representing lower and upper bounds at different α-levels. The following 

outlines the application of α-cut interval operations to fuzzy inputs. 

𝜇�̃�𝑖𝑘 ≥ 𝛼
𝑦𝑖𝑘−𝑦𝑖𝑘

𝐿

𝑦𝑖𝑘
𝑀−𝑦𝑖𝑘

𝐿 ≥ 𝛼 
𝑦𝑖𝑘
𝑈−𝑦𝑖𝑘

𝑦𝑖𝑘
𝑈−𝑦𝑖𝑘

𝑀 ≥ 𝛼                   (3) 

�̃�𝑖𝑘 ∈ [𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝐿 , 𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝑈  ]                                               (4) 

Proposition 2: considering fuzzy input variables (�̃�𝑖𝑗 ∈ 𝐽𝐹) have triangular membership functions, then the crisp 

equivalent linear model for fuzzy generalized DEA model in the context of Model (M - 5) can be expressed as follows: 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖�̃�𝑖𝑗  ≤  𝜉𝑀�̃�𝑝𝑗 + (1 − 𝜉𝑀)𝜃�̃�𝑝𝑗  

𝑛

𝑖=1

            , ∀𝑗 ∈ 𝐽𝐹 

𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼)𝑥𝑖𝑗

𝐿 ≤ �̃�𝑖𝑗 ≤ 𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼)𝑥𝑖𝑗

𝑈            , ∀𝑗 ∈ 𝐽𝐹 

 ∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐷          

∑𝜆𝑖�̃�𝑖𝑘 ≥ 𝜉𝑀∅�̃�𝑝𝑘 + (1 − 𝜉𝑀) �̃�𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐹 

𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝐿 ≤ �̃�𝑖𝑘 ≤ 𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝑈        , ∀𝑘 ∈ 𝐾𝐹      

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

                            𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛)                                                                                                (𝑀 − 6) 
where 𝑥𝑖𝑗

𝐿  is the input fuzzy variable 𝑗 for DMU 𝑖 lower value, 𝑥𝑖𝑗
𝑀 is the input fuzzy variable 𝑗 for DMU 𝑖 median 

value, 𝑥𝑖𝑗
𝑈 is the input fuzzy variable 𝑗 for DMU 𝑖 upper value, and 𝛼 is the level of 𝛼-cut for fuzzy variables j 

Proof: Consider an input fuzzy numbers triangular membership function that are used for explaining input fuzzy for 

(M-6) as follows: 

𝜇�̃�𝑖𝑗 =

{
  
 

  
 

0  ,                          𝑥𝑖𝑗 ≤  𝑥𝑖𝑗
𝐿

  
𝑥𝑖𝑗−𝑥𝑖𝑗

𝐿

𝑥𝑖𝑗
𝑀−𝑥𝑖𝑗

𝐿  ,          𝑥𝑖𝑗
𝐿 ≤  𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗

𝑀

𝑥𝑖𝑗
𝑈−𝑥𝑖𝑗

𝑥𝑖𝑗
𝑈−𝑥𝑖𝑗

𝑀  ,         𝑥𝑖𝑗
𝑀 ≤  𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗

𝑈

0 ,                           𝑥𝑖𝑗 ≥  𝑥𝑖𝑗
𝑈

                         (5) 

�̃�𝑖𝑗 = (𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀, 𝑥𝑖𝑗
𝑈),       0 ≤ 𝑥𝑖𝑗

𝐿 ≤ 𝑥𝑖𝑗
𝑀 ≤ 𝑥𝑖𝑗

𝑈  → �̃�𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈]                            (6) 

𝜇�̃�𝑖𝑗 as express in eq. (5) defines the α-cuts of inputs �̃�𝑖𝑗  for triangular fuzzy numbers of arithmetic 

operations. This approach yields intervals representing lower and upper bounds at different α-levels. The following 

outlines the application of α-cut interval operations to fuzzy inputs. 
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𝜇�̃�𝑖𝑗 ≥ 𝛼
𝑥𝑖𝑗−𝑥𝑖𝑗

𝐿

𝑥𝑖𝑗
𝑀−𝑥𝑖𝑗

𝐿 ≥ 𝛼 
𝑥𝑖𝑗
𝑈−𝑥𝑖𝑗

𝑥𝑖𝑗
𝑈−𝑥𝑖𝑗

𝑀 ≥ 𝛼                                    (7)  

    �̃�𝑖𝑗 ∈ [𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼) 𝑥𝑖𝑗

𝐿 , 𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼) 𝑥𝑖𝑗

𝑈]                                                   (8)  

b- Second Stage - handle stochastic variations: In this part, we have constructed stochastic generalized DEA 

model, which integrates stochastic elements for any certain either output and/or input variable. However, the 

remaining variables are treated to be deterministic. 

Proposition 4: assuming that either output and/or input are random variables, then the equivalent generalized chance-

constraint DEA model to evaluate the efficiency level for DMU 𝑝 within Model (M - 3) can be formulated as follows: 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

𝑝𝑟  {∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

}    ≥ (1 − 𝜂𝑗)     , ∀𝑗 ∈ 𝐽𝑆 

  ∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐷             

𝑝𝑟 {∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

   }     ≥ (1 − 𝜂𝑘)      , ∀𝑘 ∈ 𝐾𝑆 

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 7) 

  where 𝜂
𝑗
 is the level of significance for stochastic input variable 𝑗, 𝜂

𝑘
 is the level of significance for stochastic output 

variable 𝑘, 𝐽𝑆 is the stochastic inputs set, 𝐽: all inputs sets, 𝐽𝐷 ∪ 𝐽𝑆 = 𝐽 , 𝐾𝑆 is the stochastic outputs set, and 𝐾 is the 

all outputs set, 𝐾𝐷 ∪ 𝐾𝑆 = 𝐾. 

Detailed proof is presented at [40]. 

Proposition 5: Assume the random input variable (𝑥𝑖𝑗 ∈ 𝐽𝑠) is normally distributed, then the deterministic nonlinear 

equivalent model, for generalized stochastic DEA model presented in (M-7) for 𝑝𝑡ℎ DMU, is as follows: 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗

𝑛

𝑖=1

 ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗              , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖𝜇𝑖𝑗 − 𝜉𝑀𝜇𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝜇𝑝𝑗

𝑛

𝑖=1

≤ 𝑒𝑗√(𝜆𝑝 − (1 − 𝜉𝑀)𝜃)
2
𝜎𝑝𝑗
2 + ∑ 𝜆𝑖

2𝜎𝑖𝑗
2

𝑛

𝑖=1 𝑖≠𝑝 

        , ∀𝑗 ∈  𝐽𝑆 

∑𝜆𝑖𝑦𝑖𝑘

𝑛

𝑖=1

≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘            , ∀𝑘 ∈ 𝐾𝐷 
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𝑝𝑟 {∑𝜆𝑖𝑦𝑖𝑘

𝑛

𝑖=1

≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘   }     ≥ (1 − 𝜂𝑘)      , ∀𝑘 ∈ 𝐾𝑆 

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 8) 
Proof: assume that each input 𝑥𝑖𝑗 ∈ 𝐽𝑠 is normally distributed with a mean 𝜇

𝑖𝑗
 and variance 𝜎𝑖𝑗

2 . Now, define the 

random variable for all input 𝑗 ∈  𝐽𝑆 

           𝑢𝑗 =∑𝜆𝑖𝑥𝑖𝑗 − 𝜉𝑀𝑥𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗  

𝑛

𝑖=1

                                                                                              (9) 

with mean and variance: 

        𝐸(𝑢𝑗) =∑𝜆𝑖𝜇𝑖𝑗 − 𝜉𝑀𝜇𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝜇𝑝𝑗  ≡  𝜇𝑢𝑗

𝑛

𝑖=1

               ,                                                          (10) 

          𝑣𝑎𝑟(𝑢𝑗) = (𝜆𝑝 − (1 − 𝜉𝑀)𝜃)
2
𝜎𝑝𝑗
2 + ∑ 𝜆𝑖

2𝜎𝑖𝑗
2 ≡ 𝜎𝑢𝑗

2

𝑛

𝑖=1 𝑖≠𝑝 

         .                                                     (11) 

Since the 𝑥𝑖𝑗′𝑠 are normally distributed, 𝑥𝑖𝑗~ N (𝜇𝑢𝑗 ,  𝜎𝑢𝑗
2 ), 𝑧𝑗 denote the equivalent standardized normal value 

for the variable 𝑢𝑗, as follows, 

 

                                    𝑧𝑗 =
𝑢𝑗 − 𝜇𝑢𝑗
𝜎𝑢𝑗

     .                                                                                                                 (12) 

Hence,   

 𝑝𝑟 {∑𝜆𝑖𝑥𝑖𝑗 ≤ 𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑚

𝑖=1

} = 𝑝𝑟{𝑢𝑗 ≤ 0} = 𝑝𝑟 {𝑧𝑗 ≤
−𝜇𝑢𝑗
𝜎𝑢𝑗

}   .                                     (13) 

Using the normal distribution symmetry property, 

        𝑝𝑟 {𝑧𝑗 ≤
−𝜇𝑢𝑗
𝜎𝑢𝑗

} = 𝑝𝑟 {𝑧𝑗 ≥
𝜇𝑢𝑗
𝜎𝑢𝑗
} = 1 − 𝜑(

𝜇𝑢𝑗
𝜎𝑢𝑗
)   ,                                                                            (14) 

where 𝜑( ) denotes the distribution function for cumulative standard. The equivalent restriction for the chance-

constrained DEA problem inequality as follows: 

        1 − 𝜑 (
𝜇𝑢𝑗
𝜎𝑢𝑗
) ≥ (1 − 𝛼𝑗)         ,                                                                                                                      (15) 

         𝜑 (
𝜇𝑢𝑗
𝜎𝑢𝑗
) ≤ 𝜑(𝑒𝑗)    .                                                                                                                                         (16) 

𝜑(𝑒) is determined by referencing the standard normal distribution table. Therefore, the final equation can be 

written as 

𝜇𝑢𝑗 ≤ 𝑒𝑗𝜎𝑢𝑗  .                                                                                                                                                            (17) 

So, the next step is to substitute Eq. (10) and (11) in Eq. (17), i.e., 
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∑𝜆𝑖𝜇𝑖𝑗

𝑛

𝑖=1

− 𝜉𝑀𝜇𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝜇𝑝𝑗 ≤ 𝑒𝑗√(𝜆𝑝 − (1 − 𝜉𝑀)𝜃)
2
𝜎𝑝𝑗
2 + ∑ 𝜆𝑖

2𝜎𝑖𝑗
2

𝑛

𝑖=1 𝑖≠𝑝 

    .                           (18) 

Proposition 6: Assume both the random output and input variables (𝑦𝑖𝑘 ∈ 𝐾𝑠, 𝑥𝑖𝑗 ∈ 𝐽𝑠) are normally distributed, then 

the deterministic nonlinear equivalent model, for generalized stochastic DEA model presented in (M-8) for the 

𝑝𝑡ℎ DMU, is as follows: 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖𝜇𝑖𝑗 − 𝜉𝑀𝜇𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝜇𝑝𝑗 ≤ 𝑒𝑗√(𝜆𝑝 − (1 − 𝜉𝑀)𝜃)
2
𝜎𝑝𝑗
2 + ∑ 𝜆𝑖

2𝜎𝑖𝑗
2

𝑛

𝑖=1 𝑖≠𝑝 

𝑛

𝑖=1

        , ∀𝑗 ∈  𝐽𝑆 

∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐷 

∑𝜆𝑖𝜇𝑖𝑘 − 𝜉𝑀∅𝜇𝑝𝑘 − (1 − 𝜉𝑀)𝜇𝑝𝑘 ≥ 𝑒𝑘√(𝜆𝑝 − 𝜉𝑀∅)
2𝜎𝑝𝑘

2 + ∑ 𝜆𝑖
2𝜎𝑖𝑘

2

𝑛

𝑖=1 𝑖≠𝑝 

𝑛

𝑖=1

 , ∀𝑘 ∈  𝐾𝑠 

𝜉
𝑅
[∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 9) 

Proof: consider each output 𝑦𝑖𝑘 ∈ 𝐾𝑠 to be normally distributed, 𝑦𝑖𝑘~ N (𝜇
𝑖𝑘

, 𝜎𝑖𝑘
2 ). so, we can define 𝑢𝑘as a random 

variable for all output variables taking into consideration 𝑘 ∈  𝐾𝑠  

           𝑢𝑘 =∑𝜆𝑖𝑦𝑖𝑘 − 𝜉𝑀∅𝑦𝑝𝑘 − (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

                                                                                          (19) 

with mean and variance:  

            𝐸(𝑢𝑘) =∑𝜆𝑖𝜇𝑖𝑘 − 𝜉𝑀∅𝜇𝑝𝑘 − (1 − 𝜉𝑀) 𝜇𝑝𝑘 ≡ 𝜇𝑢𝑘

𝑛

𝑖=1

                                                                      (20) 

          𝑣𝑎𝑟(𝑢𝑘) = (𝜆𝑝 − 𝜉𝑀∅)
2𝜎𝑝𝑘

2 + ∑ 𝜆𝑖
2𝜎𝑖𝑘

2 ≡ 𝜎𝑢𝑘
2

𝑛

𝑖=1 𝑖≠𝑝 

                                                                         (21) 

Since 𝑦𝑖𝑘′𝑠 are normally distributed, 𝑦𝑖𝑘~  N (𝜇𝑢𝑘 ,  𝜎𝑢𝑘
2 ), so let 𝑧𝑘 denote the equivalent standardized normal value for 

the variable 𝑢𝑘, as follows, 

               𝑧𝑘 =
𝑢𝑘 − 𝜇𝑢𝑘
𝜎𝑢𝑘

                                                                                                                                        (22) 

Hence,  

      𝑝𝑟 {∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

} = 𝑝𝑟{𝑢𝑘 ≥ 0} = 𝑝𝑟 {𝑧𝑘 ≥
−𝜇𝑢𝑘
𝜎𝑢𝑘

}                               (23) 
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Using the normal distribution symmetry property, 

         𝑝𝑟 {𝑧𝑘 ≥
−𝜇𝑢𝑘
𝜎𝑢𝑘

} = 𝑝𝑟 {𝑧𝑘 ≤
𝜇𝑢𝑘
𝜎𝑢𝑘

} = 𝜑 (
𝜇𝑢𝑘
𝜎𝑢𝑘

)                                                                                    (24) 

where 𝜑( ) denotes the distribution function for cumulative standard. The equivalent restriction for the 

chance-constrained DEA problem inequality [40] as follows: 

𝜑 (
𝜇𝑢𝑘
𝜎𝑢𝑘
) ≥ (1 − 𝛼𝑘)                                                                                                                                            (25) 

𝜑 (
𝜇𝑢𝑘
𝜎𝑢𝑘
) ≥ 𝜑(𝑒𝑘)                                                                                                                                                  (26) 

The value of 𝜑(𝑒) is determined by referencing the standard normal distribution table. Therefore, the final 

equation can be written as 

𝜇𝑢𝑘 ≥ 𝑒𝑘𝜎𝑢𝑘                                                                                                                                                               (27) 

Substitution equations (20) and (21) in equation (27) leads to 

∑𝜆𝑖𝜇𝑖𝑘 − 𝜉𝑀∅𝜇𝑝𝑘 − (1 − 𝜉𝑀)𝜇𝑝𝑘

𝑛

𝑖=1

≥ 𝑒𝑘√(𝜆𝑝 − 𝜉𝑀∅)
2𝜎𝑝𝑘

2 + ∑ 𝜆𝑖
2𝜎𝑖𝑘

2

𝑛

𝑖=1 𝑖≠𝑝 

 , ∀𝑘 ∈  𝐾𝑠                        (28) 

c- Third stage - handle neutrosophic variation: In this part, we make the attempt to construct neutrosophic 

generalized DEA model with two assumptions; some specific variables either input and/or output are neutrosophic 

in nature while the remaining are deterministic under the first assumption. 

- Definition 1[37]: Let 𝑈 be the field of all objects and let 𝑢 be an arbitrary object element in 𝑈, 𝑢 ∈ 𝑈. A 

neutrosophic set of (�̃�𝑁) is expressed as �̃�𝑁 = {〈𝑢: 𝑇�̃�𝑁(𝑢), 𝐼�̃�𝑁(𝑢), 𝐹�̃�𝑁(𝑢)〉, 𝑢 ∈

𝑈, 𝑇�̃�𝑁(𝑢), 𝐼�̃�𝑁(𝑢), 𝐹�̃�𝑁(𝑢) ∈]0−, 1+[}, where 𝑇�̃�𝑁(𝑢), 𝐼�̃�𝑁(𝑢), and 𝐹�̃�𝑁(𝑢) are membership functions 

representing truth, indeterminacy, and falsity, respectively. 

- Definition 2 [37]: the general formulation of the neutrosophic set single value (�̃�𝑆𝑉𝑁) concerning to non-

empty set 𝑢 is �̃�𝑆𝑉𝑁 = {〈𝑢, 𝑇�̃�𝑁(𝑢), 𝐼�̃�𝑁(𝑢), 𝐹�̃�𝑁(𝑢)〉, 𝑢 ∈ 𝑈}. In this representation, 

𝑇�̃�𝑁(𝑢), 𝐼�̃�𝑁(𝑢), 𝐹�̃�𝑁(𝑢) all take the values 0− ≤ 𝑇�̃�𝑁(𝑢) + 𝐼�̃�𝑁(𝑢) + 𝐹�̃�𝑁(𝑢) ≤ 3+, such that 𝑢 is an 

element of the set 𝑈. 

- Definition 3 [37]: let �̃�𝑇𝑁 = 〈(𝑎, 𝑏, 𝑐); 𝐿�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 , 𝐹�̃�𝑇𝑁〉 be a triangular neutrosophic single valued 

(SVTFN), Then SVTFN as Score function  

   𝑆𝐹(�̃�𝑇𝑁) = (
1

4
(𝑎 + 2𝑏 + 𝑐)) (

1

3
(2 + 𝐿�̃�𝑇𝑁 − 𝛿�̃�𝑇𝑁 − 𝐹�̃�𝑇𝑁))                                                                    (29)      

Remark 3: If certain variable either output and/or input are considered as neutrosophic variables, then the equivalent 

neutrosophic generalized DEA model to evaluate the pth DMU relative efficiency level in model (M – 3) can be 

formulated as follows:  

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖�̃�𝑖𝑗
𝑇𝑁  ≤  𝜉𝑀�̃�𝑝𝑗

𝑇𝑁 + (1 − 𝜉𝑀)𝜃�̃�𝑝𝑗
𝑇𝑁

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝑁 

∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐷 
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∑𝜆𝑖�̃�𝑖𝑘
𝑇𝑁 ≥ 𝜉𝑀∅�̃�𝑝𝑘

𝑇𝑁 + (1 − 𝜉𝑀) �̃�𝑝𝑘
𝑇𝑁

𝑛

𝑖=1

             , ∀𝑘 ∈ 𝐾𝑁  

𝜉𝑅 [∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 10) 

where 𝐽𝑁 is the neutrosophic inputs set, 𝐽 is  all the inputs set, 𝐽𝐷 ∪ 𝐽𝑁 = 𝐽, and 𝐾𝑁 is the neutrosophic outputs set, and 

𝐾  is all the outputs set, where  𝐾𝐷 ∪ 𝐾𝑁 = 𝐾. 

 

Remark 4: Assume that each input �̃�𝑖𝑗
𝑇𝑁 ∈ 𝐽𝑁 and �̃�𝑖𝑘

𝑇𝑁 ∈ 𝐾𝑁 are triangular neutrosophic variables, then the 

deterministic equivalent linear model explained in the neutrosophic generalized DEA model (M-10) for pth DMU is 

given below based on a single valued triangular neutrosophic set definition (as shown in definition 3): 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖 𝑆𝐹(�̃�𝑖𝑗
𝑇𝑁)  ≤  𝜉𝑀  𝑆𝐹(�̃�𝑝𝑗

𝑇𝑁) + (1 − 𝜉𝑀)𝜃 𝑆𝐹(�̃�𝑝𝑗
𝑇𝑁)

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝑁 

∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘            , ∀𝑘 ∈ 𝐾𝐷 

𝑛

𝑖=1

 

∑𝜆𝑖 𝑆𝐹(�̃�𝑖𝑘
𝑇𝑁) ≥ 𝜉𝑀∅ 𝑆𝐹(�̃�𝑝𝑘

𝑇𝑁) + (1 − 𝜉𝑀) 𝑆𝐹(�̃�𝑝𝑘
𝑇𝑁)

𝑛

𝑖=1

             , ∀𝑘 ∈ 𝐾𝑁  

𝜉𝑅 [∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                 (𝑀 − 11) 

Finally, the proposed generalized DEA model, designed to accommodate various types of variable variations 

(deterministic, fuzzy, stochastic, and neutrosophic), is demonstrated in model (M-12). This model integrates the 

formulations from Models (M-3), (M-6), (M-9), and (M-11) into a unified framework represented by model (M-12).  

 

 

𝑀𝑖𝑛  𝜉𝑀∅ − (1 − 𝜉𝑀)𝜃 

𝑠. 𝑡.                                                                           

∑𝜆𝑖𝑥𝑖𝑗  ≤  𝜉𝑀𝑥𝑝𝑗 + (1 − 𝜉𝑀)𝜃𝑥𝑝𝑗

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖�̃�𝑖𝑗  ≤  𝜉𝑀�̃�𝑝𝑗 + (1 − 𝜉𝑀)𝜃�̃�𝑝𝑗  

𝑛

𝑖=1

            , ∀𝑗 ∈ 𝐽𝐹 

𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼)𝑥𝑖𝑗

𝐿 ≤ �̃�𝑖𝑗 ≤ 𝛼𝑥𝑖𝑗
𝑀 + (1 − 𝛼)𝑥𝑖𝑗

𝑈            , ∀𝑗 ∈ 𝐽𝐹 

∑𝜆𝑖𝜇𝑖𝑗 − 𝜉𝑀𝜇𝑝𝑗 − (1 − 𝜉𝑀)𝜃𝜇𝑝𝑗 ≤ 𝑒𝑗√(𝜆𝑝 − (1 − 𝜉𝑀)𝜃)
2
𝜎𝑝𝑗
2 + ∑ 𝜆𝑖

2𝜎𝑖𝑗
2

𝑛

𝑖=1 𝑖≠𝑝 

𝑛

𝑖=1

        , ∀𝑗 ∈  𝐽𝑆 
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∑𝜆𝑖 𝑆𝐹(�̃�𝑖𝑗
𝑇𝑁)  ≤  𝜉𝑀  𝑆𝐹(�̃�𝑝𝑗

𝑇𝑁) + (1 − 𝜉𝑀)𝜃 𝑆𝐹(�̃�𝑝𝑗
𝑇𝑁)

𝑛

𝑖=1

             , ∀𝑗 ∈ 𝐽𝑁 

∑𝜆𝑖𝑦𝑖𝑘 ≥ 𝜉𝑀∅𝑦𝑝𝑘 + (1 − 𝜉𝑀) 𝑦𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐷 

∑𝜆𝑖�̃�𝑖𝑘 ≥ 𝜉𝑀∅�̃�𝑝𝑘 + (1 − 𝜉𝑀) �̃�𝑝𝑘

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝐹 

𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝐿 ≤ �̃�𝑖𝑘 ≤ 𝛼𝑦𝑖𝑘
𝑀 + (1 − 𝛼)𝑦𝑖𝑘

𝑈        , ∀𝑘 ∈ 𝐾𝐹 

∑𝜆𝑖𝜇𝑖𝑘 − 𝜉𝑀∅𝜇𝑝𝑘 − (1 − 𝜉𝑀)𝜇𝑝𝑘 ≥ 𝑒𝑘√(𝜆𝑝 − 𝜉𝑀∅)
2𝜎𝑝𝑘

2 + ∑ 𝜆𝑖
2𝜎𝑖𝑘

2

𝑛

𝑖=1 𝑖≠𝑝 

𝑛

𝑖=1

 , ∀𝑘 ∈  𝐾𝑠 

∑𝜆𝑖 𝑆𝐹(�̃�𝑖𝑘
𝑇𝑁) ≥ 𝜉𝑀∅ 𝑆𝐹(�̃�𝑝𝑘

𝑇𝑁) + (1 − 𝜉𝑀) 𝑆𝐹(�̃�𝑝𝑘
𝑇𝑁) 

𝑛

𝑖=1

            , ∀𝑘 ∈ 𝐾𝑁                         

𝜉𝑅 [∑𝜆𝑖 − 1

𝑛

𝑖=1

] = 0 

    𝜆𝑖  ≥ 0, (𝑖 = 1,2, … . , 𝑛) ,                                                                                                   (𝑀 − 12) 

4. Case Study 

In this case study, we apply the proposed robust and versatile DEA framework in the assessment of relative efficiency 

performance for hospitals. Hospitals are quite complex organizations; therefore, the level of uncertainty surrounding 

some or all the inputs and/or outputs can provide suitable grounds for illustrating the versatility of the DEA model. 

Their operational inputs and outputs are usually driven by factors that can be deterministic, stochastic, fuzzy, or 

neutrosophic; therefore, the efficiency assessment approach should be flexible and robust. The case selected involves 

a comparison of five comparable hospitals, namely H1, H2, H3, H4, and H5, operating within similar contexts and 

providing comparable healthcare services. Various inputs form parts of the analysis, such as the number of doctors, 

number of nurses, annual budget, and medical equipment available. In addition, outputs to be measured will include 

the number of patients treated, patient satisfaction rate, and treatment success rate. These reflect both certainty and 

uncertainty, classified as follows: deterministic variables include the Number of doctors, number of nurses; stochastic 

variables include Patient satisfaction rate, treatment success rate; fuzzy variables are medical equipment; neutrosophic 

variables are Annual budget, number of patients treated. It, therefore, gives an indication that this model can handle a 

wide range of data sets. These input and output variables data are presented in the following Table 1and Table 2, 

respectively. 

 

 

Table 1 Data for the hospital’s input variables 

Hospital 
Number of 

Doctors 

Number of 

nurses 
Annual Budget (millions) Medical Equipment 

H1 20 50 
〈(4.8, 5, 5.2); 0.9,0.4,0.1〉 (0.4, 0.6, 0.8) 

H2 15 40 
〈(3.8, 4, 5.5); 0.9,0.7,0.1〉 (0.2, 0.3, 0.4) 

H3 30 70 
〈(5.5, 6, 6.3); 0.9, 0.4, 0.1〉 (0.55, 0.6, 0.85) 

H4 18 45 
〈(4.5, 5, 5.5); 0.8, 0.5, 0.1〉 (0.2, 0.5, 0.7) 

H5 25 60 
〈(4.2,4.7,5.2); 0.9, 0.4, 0.1〉 (0.15, 0.4, 0.7) 
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Table 2 Data for the hospital’s output variables 

Hospital 
Number of Patients Treated 

(thousands) 

Patient Satisfaction Rate % 

(𝜇, 𝜎2) 

Treatment Success Rate % 

(𝜇, 𝜎2) 

H1 
〈(1.8, 2, 2.1); 1.0, 0.0,0.0〉 

(85, 5) (90, 3) 

H2 
〈(1.3, 1.4, 1.5); 1.0,0.0,0.0〉 

(80, 6) (85, 4) 

H3 
〈(2.8, 3, 3.2); 1.0,0.0,0.0〉 

(90, 4) (95, 2) 

H4 
〈(2.3, 2.45, 2.6); 1.0,0.0,0.0〉 

(82, 4) (88, 3) 

H5 
〈(1.9,2 , 2.2); 1.0,0.0,0.0〉 

(87, 4) (92, 2) 

 

A proposed algorithm to address the problem under investigation can be implemented in two distinct 

scenarios, both of which may indicate how the departments under consideration may be considered to be relatively 

efficient. Scenario 1: A generalized VRS output-oriented VRS DEA is executed as specified in Model M-

12, with 𝜉𝑀 + 𝜉𝑅 = 2.  Scenario 2: A generalized VRS input-oriented DEA is executed as specified in Model M-

12, with 𝜉𝑀 + 𝜉𝑅 = 1, with 𝜉𝑅 = 1.  

This will provide an LP formulation to evaluate, in relative terms, the efficiency level of each hospital. In each case, 

the five models for the five different hospitals are solved using GAMS programming language. The results of the 

relative efficiency estimated for each hospital involved are presented in Table 3 below. 

Table 3 Hospital Relative efficiency Results for each Scenario  

Hospital Scenario 1 Scenario 2 

H1 100% 100% 

H2 36% 44% 

H3 100% 100% 

H4 44% 56% 

H5 80% 66% 

 

5. Results Comparison and Sensitivity Analysis 
            Results analysis reveal that the developed models return promising and comparable results. While VRS DEA 

models consistently identify the efficient and inefficient DMUs without regard to orientation, either to output or input, 

efficiency scores for inefficient DMUs could be different. This is so because changes in inputs and outputs do not 

always relate proportionally. Table 3 shows the relative efficiencies score for each hospital in two scenarios. These 

efficiency scores for the two scenarios have the following implications for the performance of the five hospitals: 

Hospitals H1 and H3 achieved efficient scores (1.0) in both scenarios, indicating they are operating at optimal 

efficiency levels, and These hospitals serve as benchmarks for the others in the study. For the remaining hospitals, 

hospital H2 shows the lowest efficiency scores (0.36 and 0.44), hospital H4 demonstrates moderate inefficiency (0.44 

and 0.56), and hospital H5 shows better performance but still room for improvement (0.80 and 0.66). We notice that 

the input-oriented scenario (Scenario 2) generally yielded higher efficiency scores than the output-oriented scenario, 

this means that hospitals might have more control over their input utilization than their output generation. The variation 

in scores between the two scenarios depicts the flexibility and adaptability of the proposed DEA model in capturing 

different efficiency dimensions. Finally, we can recommend: 

- Benchmark Hospitals (H1 and H3): these hospitals represent best practices and can serve as a model for others. 

It is true that their current practices need to be maintained, but continuous monitoring is recommended to 

uphold their efficiency. 

- Inefficient Hospitals (H2, H4, and H5): H2 requires major improvements in both input utilization and output 

generation. Efforts should emphasize enhancements in operational processes, staff productivity, and patient 

care outcomes. H4: the amelioration in Scenario 2 suggests that it needs to focus on its input optimization. It 
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should try investing in training, utilizing equipment, and budget allocation. H5: does better on both H2 and 

H4, but it must balance input optimization with output improvement. To enhance efficiency, it may use 

strategies that streamline operations and reallocate resources. 

 

6. Conclusion and Future works 
This research developed and demonstrated a strong and flexible DEA framework that had already addressed complex 

challenges in efficiency assessment under different forms of uncertainty. By implementation on the case study of 

hospitals, we successfully validated its capabilities to treat deterministic, stochastic, fuzzy, and neutrosophic variables 

simultaneously in input and output parameters, which was considered an advance in the methodology of DEA. The 

proposed framework has several key strengths and contributions. First, the ability to handle multiple types of data 

uncertainty within a model represents a substantial improvement over the traditional DEA approach. Second, the 

flexibility in handling both input-oriented and output-oriented scenarios, with different returns to scale assumptions, 

makes the framework a comprehensive tool for efficiency assessment across diverse organizational contexts. The 

validation of the practical applicability of our framework, as obtained from the hospital case study, indicates that there 

are significant differences in the efficiency scores of the analyzed units, ranging from 0.36 to 1.0. This application 

shows that the model is able to highlight both benchmark performers and opportunities for improvement, thus 

providing valuable insights for decision-makers in performance management and resource allocation. 

Moreover, the capability of the framework to provide tangible scores about efficiency while considering multiple 

forms of uncertainty gives this model considerable strength in terms of supporting any decision. Such features are 

helpful in complex organizations where conventional deterministic approaches would probably miss operational 

nuances. The future avenues of this research open with the possibility of additional types and sources of uncertainties 

or data that may be incorporated within the framework. Longitudinal studies could also be done to assess the change 

in efficiencies over time and adapt the model to an application in an industrial context; maintain robustness in dealing 

with uncertainty. The contribution of this research to the field of efficiency assessment is, therefore, immense with an 

all-encompassing, flexible, and reliable DEA framework. That is where the strength of the model lies: it can handle 

different forms of uncertainty while retaining practical applicability; hence, it is a useful tool for decision-makers in 

various sectors, especially in complex organizational settings where uncertainty may be inherent in operational 

processes. 

The aim of this research is developed a DEA model that bear its novelty and generality in considering the different 

sources of uncertainty—deterministic, fuzzy, stochastic, or neutrosophic—in a common framework. However, its 

application imposes several limitations. Among these restrictions, enlarged computational complexity can be put as a 

foremost one. The conjoining of all sorts of evidence in a unified framework LP-based DEA model will put a lot of 

computational capabilities in stake especially for its generalization to large-scale problems. Another area of concern 

is scalability. This model has been tried only on a limited number of five hospitals, with performance and scalability 

to larger databases with many DMUs with complex interdependencies needing to be further duly checked. Also, even 

if neutrosophic data lend high expressiveness to modeling uncertainty, soul-searching interpretability may prove tough 

to those practitioners placed in the context of actual healthcare setups, where data clarity and verification must precede 

everything else. Lastly, a static analysis is conducted with the current model, while the dynamic aspect providing 

support for performance adjustment commensurate to changing time is the most crucial ingredient in the long-term 

assessment of care efficiency. 

Finally, future research would include working around the above limits to make the model more useful. Creating 

dynamic DEA models under a neutrosophic framework may be one of them, whereby performance would be captured 

in time-series trends. Another possible extension could be a generalization of the model to cover multi-sector 

efficiency analysis, like in education, energy, or even transportation, where uncertainty mostly is manifested in inputs 

and outputs. Moreover, it could also include machine learning or metaheuristic algorithms in optimizing scale-large 

problems and increasing computational efficiencies. Future work could also involve developing decision-support 

frameworks or visualization tools to enhance interpretability of complex fuzzy and neutrosophic results to end-users. 

Lastly, comparative studies among different paradigms of uncertainty models would go a long way in adding 

credibility to the robustness and reliability of the proposed framework across different real-world applications. 
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