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Abstract: In this paper we present a neutrosophic exponential-ratio estimator for calculating the 

population mean using simple random sampling. In sampling methods classical statistics always 

depends on exact and complete data, but when we are dealing with unclear data these all become 

insufficient. By managing ambiguous and indeterminate data, neutrosophic statistics an extension 

of fuzzy and classical statistics addresses this drawback. The bias and mean square error (MSE) of 

proposed estimator are derived up to the first approximation order. Comparative study shows that 

it is more efficient than existing estimators, especially when we are working with data that is 

imprecise or of the neutrosophic kind. The proposed approach produces interval-based estimations 

in contrast to traditional estimators, which summarizes the unknown population mean with 

minimal MSE, improving reliability. The effectiveness of the estimator is confirmed by simulations 

and neutrosophic data sets, highlighting its potential in situations where uncertainty is common in 

the real world. 

 

Keywords: Neutrosophic statistics, population mean, exponential-ratio estimator, bias, mean 
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1. Introduction 

In sample surveys, the statistical technique that works with indeterminate data and inference 

techniques with varying degrees of indeterminacy is called neutrophilic statistics. Based on interval 

analysis, it is an expansion of interval statistics. All sets and intervals, including finite discrete sets, 

are covered by neutrophilic statistics, which is based on set analysis. Classical and interval statistics 

assume that each member of the sample or population belongs 100% of the time, but neutrosophic 

statistics can account for individuals who are partially belonging or not belonging. The accuracy of 

data obtained by neutrosophic statistics is higher than that of classical and interval statistics. It works 

with data and inference methods and is more flexible than traditional statistics. Neutrosophic and 

interval statistics overlap if all sets are intervals, each individual is 100% representative of the sample 

or population, and there is only one probability distribution curve. However, more non-classical 

statistical techniques are required than classical ones since our environment contains more unclear 

data. 

In traditional statistics, data are known and created by discrete numerical values. Numerous 

writers developed several estimators for calculating the finite population mean under classical 

statistics when auxiliary data was included. Instead of using the study variable alone, the study 
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revealed that when there is a good correlation between the study variable and the auxiliary variable, 

we obtain considerably lower sampling error for the ratio and, as a result, we may use less sampling 

for ratio estimation. One paper [1] included a thorough overview of ratio estimation, along with 

examples and its features. Alternatively, the ratio estimation approach lowers the sample size while 

maintaining the same level of precision [2]. Classic ratio, regression, and exponential approaches are 

easy to compute population mean estimates. These methods use auxiliary variable parameters like 

coefficients of variation, skewness, and kurtosis, and require knowledge of the auxiliary variable's 

population characteristics. 

The author of [3] considered supplementary data and suggested the best linear unbiased (BLU) 

estimator, a typical regression estimate of the population mean of the study variable. The traditional 

ratio estimate of population mean under SRS was presented by [2]. Using supplementary data, [4] 

proposed a product and ratio estimate of the population mean under SRS. A ratio type estimate for 

the population mean under SRS was proposed by [5]. An exponential ratio estimate of population 

mean under SRS was suggested by [6]. Using known auxiliary variable parameters, [7-10] proposed 

various modified ratio estimators of population mean under SRS. A population mean estimator of 

the generalized exponential ratio type was proposed by [11] and improved by [12] using [13] method. 

While [14] considered the co-efficient of variation and median of an auxiliary variable and developed 

an estimation procedure of population mean, [15] used the coefficient of skewness of the auxiliary 

variable and presented a ratio method of estimation of population mean. A modified ratio estimator 

of population mean was developed by [16] using a linear combination of the quartile deviation and 

the co-efficient of skewness. [17] proposed a modified ratio estimator of population mean using the 

size of the sample selected from the population. An improved ratio cum exponential ratio estimate 

of population mean was proposed by [18]. To create a new ratio estimator for predicting population 

mean under SRS, [19] used a coefficient of variation, correlation coefficient, and regression coefficient. 

In order to estimate population mean using SRS, [20] proposed a few improved ratio estimators. 

Using a variety of auxiliary data, [21] created a class of population mean estimators under SRS. 

Neutrosophic statistics specifically addresses unpredictability and indeterminacy. [22] introduced 

the idea of neutrosophic statistics, which was then expanded upon by [23,24], who saw it as a 

generalization of both classical and neutrosophic statistics. Additionally, [25] provided a basic 

overview of neutrosophic statistics. For the first time in the history of neutrosophic statistics, [26] 

have created the neutrosophic ratio-type estimators to estimate the mean of the inadequate 

population using auxiliary information to resolving the problem of estimating the population mean 

of neutrosophic data. Using Neutrosophic studies and an auxiliary variable, [27] provides a 

Neutrosophic exponential-type estimator for population mean estimation in the presence of 

uncertainty.  

Inspired from all previous work, we suggested an improved neutrosophic exponential-ratio 

estimator which extend the work of [26] to estimate population mean with auxiliary information, 

addressing sample uncertainty. Although several estimators have been developed based on classical 

statistics, but they do not meet the requirements arising from uncertainty and indeterminacy of a 

real data. While some neutrosophic statistics have been introduced for estimating the parameters, 

such estimators either do not achieve high MSE and PRE efficiencies or are not sufficiently adaptive 

to the auxiliary information. There are few studies in the literature considering exponential-ratio 

estimators in neutrosophic environment. These limitations open up a research gap to propose 

various efficient neutrosophic estimators that can provide better estimations as compared to existing 

neutrosophic methods and also in situations having imperfect information or interval values.  

To fill this gap, the current study suggests a new neutrosophic exponential-ratio estimator for 

estimating population mean under simple random sampling. To optimize performance, the proposed 

method combines existing estimators by taking advantage of the coefficient of variation as auxiliary 

variable, and a balancing parameter is introduced. The new estimator is derived in a way that can 

be handled analytically and theoretically compared with existing neutrosophic estimator and 

classical estimator. The practical utility of the new construction is showcased with a real dataset and 
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benchmark simulation study where it is associated with reductions in mean squared error and 

percentage relative efficiency. 

There are several essential differences between the proposed estimator and the already available 

classical and neutrosophic estimators. The first is that the classical estimators assume that the data is 

precise and do not consider the uncertainty or indeterminacy that often arises in real-life conditions. 

The proposed estimator is developed based on neutrosophic statistics, allowing it to be suitable for 

processing imprecise and interval-valued data. The second is that most of the already developed 

neutrosophic estimators are either performable with the use of only simple ratio or product form or 

do not use auxiliary variable for the estimator construction. To generalize, a novel method introduces 

an exponential-ratio form of the new estimator, which includes the coefficient of variation of an 

auxiliary variable and applies a balancing parameter that optimizes efficiency. Such design not only 

increases the accuracy of the estimation but also enhances flexibility in an uncertain environment, 

making the estimator more robust and applicable. Additionally, we compare our neutrosophic 

exponential ratio estimator to other Existing estimators which demonstrate its superiority under 

certain conditions and efficiency criteria are developed, as described in Section 3. Section 4 presents 

quantifiable data on the efficacy of the recommended strategies. Finally, Section 5 provides classical 

and neutrosophic real and simulated data sets, section 6 focused on conclusion. 

2. Materials & Methodology 

Consider a finite population of 'N' units 𝛫 = (𝛫1, 𝛫2, … … . 𝛫𝑁) that contains a neutrosophic 

random sample of size 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈]. For the the ith (i=1,2,…….N) unit from P, let 𝑦𝑁(𝑖) and 𝑥𝑁(𝑖)  

stand for the study variable and auxiliary variable. 

Let 𝑦𝑁(𝑖) is the ith representative observation of our neutrosophic data, originating from 𝑦𝑁(𝑖) ∈

[𝑦𝐿, 𝑦𝑈] and in the same way for the auxiliary variable 𝑥𝑁(𝑖) ∈ [𝑥𝐿, 𝑥𝑈]. Let �̅�𝑁(𝑖) ∈ [�̅�𝐿, �̅�𝑈] is our key 

neutrosophic variable and �̅�𝑁(𝑖) ∈ [�̅�𝐿, �̅�𝑈] is associated with our study variable and serves as our 

auxiliary neutrosophic variable �̅�𝑁 . Furthermore, 𝑌𝑁(𝑖) ∈ [𝑌𝐿, 𝑌𝑈]  and 𝑋𝑁(𝑖) ∈ [𝑋𝐿, 𝑋𝑈]  are the 

statistics for the neutrosophic data. Also let 𝐶𝑦𝑁 ∈ [𝐶𝑦𝐿, 𝐶𝑦𝑈] and 𝐶𝑥𝑁 ∈ [𝐶𝑥𝐿, 𝐶𝑥𝑈] are coefficients of 

variation for neutrosophic 𝑌𝑁 , 𝑋𝑁  and 𝜌𝑦𝑥𝑁 ∈ [𝜌𝑦𝑥𝐿, 𝜌𝑦𝑥𝑈] is the association between 𝑌𝑁  and 𝑋𝑁 

that is neutrosophic. 

Assume that the neutrosophic mean error terms Δ𝑦𝑁 ∈ [Δ𝑦𝐿, Δ𝑦𝑈] and Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈]. Let the 

study's neutrosophic sets be calculated as  

�̅�𝑁(𝑖) = �̅�𝑁 + Δ𝑦𝑁(𝑖) and �̅�𝑁(𝑖) = �̅�𝑁 + Δ𝑥𝑁(𝑖)  

such that  

𝐸(Δ𝑦𝑁) = 𝐸(Δ𝑦𝑁) = 0;  

𝐸(Δ𝑦𝑁
2  ) = 𝛿𝑁𝐶𝑦𝑁

2 ; 𝐸(Δ𝑥𝑁
2  ) = 𝛿𝑁𝐶𝑥𝑁

2 ; 

𝐸(Δ𝑦𝑁Δ𝑥𝑁 ) = 𝛿𝑁𝐶𝑦𝑥𝑁;  

Where 𝐶𝑦𝑥𝑁 = 𝜌𝑦𝑥𝑛𝐶𝑦𝑁𝐶𝑥𝑁; 𝛿𝑁 = [
1

𝑛𝑁
−

1

𝑁𝑁
]; 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈];  

Δ𝑦𝑁
2 ∈ [Δ𝑦𝐿

2 , Δ𝑦𝑈
2 ]; Δ𝑥𝑁

2 ∈ [Δ𝑥𝐿
2 , Δ𝑥𝑈

2 ]; Δ𝑦𝑥𝑁 ∈ [Δ𝑦𝑥𝐿, Δ𝑦𝑥𝑈];  

𝑆𝑦𝑁 ∈ [𝑆𝑦𝐿, 𝑆𝑦𝑈]; 𝑆𝑥𝑁 ∈ [𝑆𝑥𝐿, 𝑆𝑥𝑈]; 𝑆𝑦𝑥𝑁 ∈ [𝑆𝑦𝑥𝐿, 𝑆𝑦𝑥𝑈];  

𝐶𝑦𝑁 ∈ [𝐶𝑦𝐿, 𝐶𝑦𝑈]; 𝐶𝑥𝑁 ∈ [𝐶𝑥𝐿, 𝐶𝑥𝑈]; 𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈];  

𝜌𝑦𝑥𝑁 ∈ [𝜌𝑦𝑥𝐿, 𝜌𝑦𝑥𝑈] respectively.  

We may use a range of existing estimators, such as the unbiased estimator, ratio estimator, and 

exponential estimator for population mean estimation under indeterminacy, to estimate the 

performance of our suggested estimator. These estimators are represented as follows 

Typically, the unbiased neutrosophic estimator is provided by 

�̂�𝑁 = �̅�𝑛 
With the MSE, 

𝑀𝑆𝐸 (�̂�𝑁) = 𝛿𝑁�̅�𝑁
2𝐶𝑦𝑁

2         (1) 

[26] suggested neutrosophic ratio estimator for determining the finite population mean in the 

presence of auxiliary variables is as follows: 
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�̂�𝑅𝑁 = �̅�𝑁 (
�̅�𝑁

�̅�𝑁
) 

�̂�𝑅𝑁 = �̅�𝑁 (
�̅�𝑁 + Δ𝑦𝑁

�̅�𝑁 + Δ𝑥𝑁

) 

Where, �̂�𝑅𝑁 ∈ [�̂�𝑅𝐿, �̂�𝑅𝑈], Δ𝑦𝑁 ∈ [Δ𝑦𝐿, Δ𝑦𝑈] and Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈] 

The bias and MSE of the �̂�𝑅𝑁 up to the first order of approximation are given below, 

𝐵𝑖𝑎𝑠(�̂�𝑅𝑁) = 𝛿𝑁�̅�𝑁[𝐶𝑥𝑁
2 − 𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑅𝑁) = 𝛿𝑁�̅�𝑁
2[𝐶𝑦𝑁

2 + 𝐶𝑥𝑁
2 − 2𝐶𝑦𝑥𝑁]      (2) 

Where, 𝛿𝑁 ∈ [𝛿𝑁𝐿, 𝛿𝑁𝑈], 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ], 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ], 𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈] 

The mean for a finite population in the presence of auxiliary variables is estimated by [26] using 

a neutrosophic exponential-type estimator inspired from [6]: 

�̂�𝑒𝑥𝑝𝑁 = �̅�𝑁𝑒𝑥𝑝 (
�̅�𝑁 − �̅�𝑁

�̅�𝑁 + �̅�𝑁

) 

�̂�𝑒𝑥𝑝𝑁 = (�̅�𝑁 + Δ𝑦𝑁)𝑒𝑥𝑝 (−
Δ𝑥𝑁

2�̅�𝑁

(1 +
Δ𝑥𝑁

2�̅�𝑁

)
−1

) 

Where �̂�𝑒𝑥𝑝𝑁 ∈ [�̂�𝑒𝑥𝑝𝐿, �̂�𝑒𝑥𝑝𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , Δ𝑦𝑁 ∈

[Δ𝑦𝐿 , Δ𝑦𝑈], Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈]. 

The bias and MSE of �̂�𝑒𝑥𝑝𝑁 up to first-degree of approximation are 

𝐵𝑖𝑎𝑠(�̂�𝑒𝑥𝑝𝑁) = 𝛿𝑁�̅�𝑁 [
3

8
𝐶𝑥𝑁

2 −
1

2
𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑒𝑥𝑝𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 +
1

4
𝐶𝑥𝑁

2 − 𝐶𝑦𝑥𝑁]      (3) 

Where 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈],  𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈], 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ], 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ], 𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈]. 

Inspired by reference [9], [26] have created an altered version of the neutrosophic ratio estimator, 

utilizing the coefficient of variation as an auxiliary variable. 

�̂�𝑆𝐷𝑟𝑁 = �̅�𝑁 (
�̅�𝑁 + 𝐶𝑥𝑁

�̅�𝑁 + 𝐶𝑥𝑁
) 

�̂�𝑆𝐷𝑟𝑁 = (�̅�𝑁 + Δ𝑦𝑁) (1 +
Δ𝑥𝑁

�̅�𝑁 + 𝐶𝑥𝑁

)
−1

(
�̅�𝑁 + 𝐶𝑥𝑁

�̅�𝑁 + 𝐶𝑥𝑁 + Δ𝑥𝑁

) 

Where �̂�𝑆𝐷𝑟𝑁 ∈ [�̂�𝑆𝐷𝑟𝐿, �̂�𝑆𝐷𝑟𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , Δ𝑦𝑁 ∈

[Δ𝑦𝐿 , Δ𝑦𝑈], Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈], C𝑥𝑁 ∈ [C𝑥𝐿, C𝑥𝑈] 

For the Bias and MSE of �̂�𝑆𝐷𝑟𝑁 up to the first order of approximation we get, 

𝐵𝑖𝑎𝑠(�̂�𝑆𝐷𝑟𝑁) = 𝛿𝑁�̅�𝑁 [(
�̅�𝑁

�̅�𝑁 + 𝐶𝑥𝑁

)

2

𝐶𝑥𝑁
2 − (

�̅�𝑁

�̅�𝑁 + 𝐶𝑥𝑁

) 𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑆𝐷𝑟𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 + (
�̅�𝑁

�̅�𝑁+𝐶𝑥𝑁
)

2

𝐶𝑥𝑁
2 − (

�̅�𝑁

�̅�𝑁+𝐶𝑥𝑁
) 𝐶𝑦𝑥𝑁]    (4) 

Where 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈] , 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ] , 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ] , 𝐶𝑦𝑥𝑁 ∈

[𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈]. 

Inspired by [10], employing the neutrosophic ratio-type estimator provided as well as the 

coefficient of variation and kurtosis 

�̂�𝑈𝑆1𝑟𝑁 = �̅�𝑁 (
�̅�𝑁𝛽2(𝑥)𝑁 + 𝐶𝑥𝑁

�̅�𝑁𝛽2(𝑥)𝑁 + 𝐶𝑥𝑁
) 

�̂�𝑈𝑆1𝑟𝑁 = (�̅�𝑁 + Δ𝑦𝑁) (1 +
𝛽2(𝑥)𝑁Δ𝑥𝑁

�̅�𝑁𝛽2(𝑥)𝑁 + 𝐶𝑥𝑁

)

−1

 

�̂�𝑈𝑆2𝑟𝑁 = �̅�𝑁 (
�̅�𝑁𝐶𝑥𝑁 + 𝛽2(𝑥)𝑁

�̅�𝑁𝐶𝑥𝑁 + 𝛽2(𝑥)𝑁
) 

�̂�𝑈𝑆2𝑟𝑁 = (�̅�𝑁 + Δ𝑦𝑁) (1 +
𝐶𝑥𝑁Δ𝑥𝑁

�̅�𝑁𝐶𝑥𝑁 + 𝛽2(𝑥)𝑁
)

−1

 

Where �̂�𝑈𝑆1𝑟𝑁 ∈ [�̂�𝑈𝑆1𝑟𝑁, �̂�𝑈𝑆1𝑟𝑁], �̂�𝑈𝑆2𝑟𝑁 ∈ [�̂�𝑈𝑆2𝑟𝑁, �̂�𝑈𝑆2𝑟𝑁], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈

[�̅�𝐿, �̅�𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈], Δ𝑦𝑁 ∈ [Δ𝑦𝐿, Δ𝑦𝑈], Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈], 𝐶𝑥𝑁 ∈ [𝐶𝑥𝐿, 𝐶𝑥𝑈], 𝛽2(𝑥)𝑁 ∈ [𝛽2(𝑥)𝐿, 𝛽2(𝑥)𝑈] 

For the Bias and MSE of �̂�𝑆𝐾𝑟𝑁 up to the first order of approximation we get, 
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𝐵𝑖𝑎𝑠(�̂�𝑈𝑆1𝑟𝑁) = 𝛿𝑁�̅�𝑁 [(
�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁 + 𝐶𝑥𝑁

)

2

𝐶𝑥𝑁
2 − (

�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁 + 𝐶𝑥𝑁

) 𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑈𝑆1𝑟𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 + (
�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁+𝐶𝑥𝑁
)

2

𝐶𝑥𝑁
2 − 2 (

�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁+𝐶𝑥𝑁
) 𝐶𝑦𝑥𝑁]   (5) 

𝐵𝑖𝑎𝑠(�̂�𝑈𝑆2𝑟𝑁) = 𝛿𝑁�̅�𝑁 [(
�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁 + 𝛽2(𝑥)𝑁

)

2

𝐶𝑥𝑁
2 − (

�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁 + 𝛽2(𝑥)𝑁

) 𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑈𝑆2𝑟𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 + (
�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁+𝛽2(𝑥)𝑁
)

2

𝐶𝑥𝑁
2 − 2 (

�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁+𝛽2(𝑥)𝑁
) 𝐶𝑦𝑥𝑁]   (6) 

Where 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈], 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈], 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ], 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ], 

𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈], 𝛽2(𝑥)𝑁 ∈ [𝛽2(𝑥)𝐿, 𝛽2(𝑥)𝑈]. 

[26] suggested an additional neutrosophic estimator in which the coefficient of kurtosis is 

considered as an auxiliary variable. 

�̂�𝑆𝐾𝑟𝑁 = �̅�𝑁 (
�̅�𝑁 + 𝛽2(𝑥)𝑁

�̅�𝑁 + 𝛽2(𝑥)𝑁
) 

�̂�𝑆𝐾𝑟𝑁 = (�̅�𝑁 + Δ𝑦𝑁) (1 +
Δ𝑥𝑁

�̅�𝑁 + 𝛽2(𝑥)𝑁

)

−1

 

Where �̂�𝑆𝐾𝑟𝑁 ∈ [�̂�𝑆𝐾𝑟𝐿, �̂�𝑆𝐾𝑟𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , Δ𝑦𝑁 ∈

[Δ𝑦𝐿 , Δ𝑦𝑈], Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈], 𝛽2(𝑥)𝑁 ∈ [𝛽2(𝑥)𝐿, 𝛽2(𝑥)𝑈] 

For the Bias and MSE of �̂�𝑆𝐾𝑟𝑁 up to the first order of approximation we get, 

𝐵𝑖𝑎𝑠(�̂�𝑆𝐾𝑟𝑁) = 𝛿𝑁�̅�𝑁 [(
�̅�𝑁

�̅�𝑁 + 𝛽2(𝑥)𝑁

)

2

𝐶𝑥𝑁
2 − (

�̅�𝑁

�̅�𝑁 + 𝛽2(𝑥)𝑁

) 𝐶𝑦𝑥𝑁] 

𝑀𝑆𝐸(�̂�𝑆𝐾𝑟𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 + (
�̅�𝑁

�̅�𝑁+𝛽2(𝑥)𝑁
)

2

𝐶𝑥𝑁
2 − 2 (

�̅�𝑁

�̅�𝑁+𝛽2(𝑥)𝑁
) 𝐶𝑦𝑥𝑁]   (7) 

Where 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈], 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈], 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ], 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ], 𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈]. 

[26] proposed a generalized exponential-type neutrosophic estimator to calculate a finite 

population mean: 

�̂�𝐾𝑁𝑁 = �̅�𝑁𝑒𝑥𝑝 [𝛼 (
�̅�𝑁

1
ℎ − �̅�𝑁

1
ℎ

�̅�𝑁

1
ℎ + (𝑎 − 1)�̅�𝑁

1
ℎ

)] 

�̂�𝐾𝑁𝑁 = (�̅�𝑁 + Δ𝑦𝑁)𝑒𝑥𝑝 [−
𝛼Δ𝑥𝑁

𝑎ℎ�̅�𝑁

(1 +
Δ𝑥𝑁

ℎ�̅�𝑁

−
Δ𝑥𝑁

𝑎ℎ�̅�𝑁

)
−1

] 

Where �̂�𝐾𝑁𝑁 ∈ [�̂�𝐾𝑁𝐿, �̂�𝐾𝑁𝑈], �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , �̅�𝑁 ∈ [�̅�𝐿, �̅�𝑈] , Δ𝑦𝑁 ∈

[Δ𝑦𝐿 , Δ𝑦𝑈] , Δ𝑥𝑁 ∈ [Δ𝑥𝐿, Δ𝑥𝑈] , (−∞ < 𝛼 < ∞)  and ℎ(ℎ > 0)  are real constant, 𝑎(𝑎 ≠ 0)  is another 

constant. 

For the Bias and MSE of �̂�𝑆𝐾𝑟𝑁 up to the first order of approximation we get, 

𝐵𝑖𝑎𝑠(�̂�𝐾𝑁𝑁) = 𝛿𝑁�̅�𝑁 [
𝛼𝐶𝑥𝑁

2

𝑎ℎ2
−

𝛼𝐶𝑥𝑁
2

𝑎2ℎ2
+

𝛼2𝐶𝑥𝑁
2

2𝑎2ℎ2
−

𝛼𝐶𝑦𝑥𝑁

𝑎ℎ
] 

𝑀𝑆𝐸(�̂�𝐾𝑁𝑁) = 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 +
𝛼2𝐶𝑥𝑁

2

𝑎2ℎ2 −
2𝛼𝐶𝑦𝑥𝑁

𝑎ℎ
]      (8) 

Where 𝛿𝑁 ∈ [𝛿𝐿, 𝛿𝑈], 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈], 𝐶𝑥𝑁
2 ∈ [𝐶𝑥𝐿

2 , 𝐶𝑥𝑈
2 ], 𝐶𝑦𝑁

2 ∈ [𝐶𝑦𝐿
2 , 𝐶𝑦𝑈

2 ], 𝐶𝑦𝑥𝑁 ∈ [𝐶𝑦𝑥𝐿, 𝐶𝑦𝑥𝑈].  

3. Proposed Estimator 

To address the issue of data indeterminacy with neutrosophic data, several preexisting 

estimators were converted into neutrosophic estimators. Using the coefficient of variation as an 

auxiliary variable, we have created a modified version of the neutrosophic exponential ratio 

estimator, inspired by [4,26]. 

�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆) = 𝛼𝑁 (
�̅�𝑁

�̅�𝑁
) �̅�𝑁 + (1 − 𝛼𝑁)�̅�𝑁𝑒𝑥𝑝 (

�̅�𝑁−�̅�𝑁

�̅�𝑁
)    (9) 

�̅�𝑁 & �̅�𝑁 are the sample means and �̅�𝑁 & �̅�𝑁 are the population means of the auxiliary and 

study variables, respectively. 
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𝛼𝑁 is a balancing parameter to balance the contribution of the two parts of the estimator: the 

ratio term and the exponential term. 

Now expand and simplifying the equation (9), we get 

(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆) − �̅�𝑁) = �̅�𝑁 (−Δ𝑥𝑁
+

3

2
Δ𝑥𝑁

2 + 𝛼𝑁 (Δ𝑦𝑁
− Δ𝑦𝑁

Δ𝑥𝑁
−

1

2
Δ𝑥𝑁

))  (10) 

Now take the expectation on equation (10) we get 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) = �̅�𝑁𝛿𝑁 (
3

2
C𝑥𝑁

2 − 𝛼𝑁𝐶𝑦𝑥𝑁) 

Now for the MSE take the square on both the sides of equation (10), we get 

(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆) − �̅�𝑁)
2

= �̅�𝑁
2 (Δ𝑥𝑁

2 + 𝛼𝑁
2 Δ𝑦𝑁

2 − 2𝛼𝑁Δ𝑦𝑁
Δ𝑥𝑁

)    (11) 

Now take the expectations on both the sides of equation (11), we get 

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) = 𝛿𝑁�̅�𝑁
2(C𝑥𝑁

2 + 𝛼𝑁
2 C𝑦𝑁

2 − 2𝛼𝑁𝐶𝑦𝑥𝑁) 

Now to optimize the value of 𝛼𝑁 take the derivation with respect to 𝛼𝑁 of 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) 

we get 
𝑑

𝑑𝛼𝑁
𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) = 0 

𝑑

𝑑𝛼𝑁
{�̅�𝑁

2θN (C𝑥𝑁
2 + 𝛼𝑁

2 C𝑦𝑁
2 − 2𝛼𝑁𝜌𝑦𝑥𝑁

C𝑦𝑁
C𝑥𝑁

)} = 0 

�̅�ℎ
2θN[0 + 2 𝛼𝑁𝐶𝑦𝑁

2 − 2𝜌𝑦𝑥𝑁
𝐶𝑦𝑁

𝐶𝑥𝑁
] = 0 

2 𝛼𝑁𝐶𝑦𝑁
2 = 2𝜌𝑦𝑥𝑁

𝐶𝑦𝑁
𝐶𝑥𝑁

 

𝛼𝑁 =
𝜌𝑦𝑥𝑁

𝐶𝑥𝑁

𝐶𝑦𝑁

= 𝜑𝑁 

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) = 𝛿𝑁�̅�𝑁
2(C𝑥𝑁

2 + 𝜑𝑁
2 C𝑦𝑁

2 − 2𝜑𝑁𝐶𝑦𝑥𝑁)     (12) 

4. Proposed Estimator Theoretical Comparison in Stratified Random Sampling 

The following observations will be made when we compare the suggested estimator �̂�𝑝𝑟𝑜𝑝(𝑆𝑅𝑆) 

with the existing estimators covered in Sect. (2). 

Observation 1: from equation (1) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�0), if and only if   𝑀𝑆𝐸 (�̂�0) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝(𝑆𝑅𝑆)) > 0,  

Or if  𝛿𝑁�̅�𝑁
2(𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) − C𝑥𝑁

2 + 2𝜑𝑁𝐶𝑦𝑥𝑁) > 0. 

Observation 2: from equation (2) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑅𝑁),  if and only if  𝑀𝑆𝐸 (�̂�𝑅𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if 𝛿𝑁�̅�𝑁
2[𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) − 2𝐶𝑦𝑥𝑁(1 + 𝜑𝑁)] > 0. 

Observation 3: from equation (3) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑒𝑥𝑝𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝑒𝑥𝑝𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if  𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) −

3

4
𝐶𝑥𝑁

2 − 𝐶𝑦𝑥𝑁(1 + 2𝜑𝑁)] > 0. 

Observation 4: from equation (4) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑆𝐷𝑟𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝑆𝐷𝑟𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if  𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) + ((

�̅�𝑁

�̅�𝑁+𝐶𝑥𝑁
)

2

− 1) 𝐶𝑥𝑁
2 − (

�̅�𝑁

�̅�𝑁+𝐶𝑥𝑁
+ 2𝜑𝑁) 𝐶𝑦𝑥𝑁] > 0. 

Observation 5: from equation (5) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑈𝑆1𝑟𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝑈𝑆1𝑟𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) + ((

�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁+𝐶𝑥𝑁
)

2

− 1) 𝐶𝑥𝑁
2 − 2𝐶𝑦𝑥𝑁 (

�̅�𝑁𝛽2(𝑥)𝑁

�̅�𝑁𝛽2(𝑥)𝑁+𝐶𝑥𝑁
+ 𝜑𝑁)] > 0. 

Observation 6: from equation (6) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑈𝑆2𝑟𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝑈𝑆2𝑟𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) + ((

�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁+𝛽2(𝑥)𝑁
)

2

− 1) 𝐶𝑥𝑁
2 − 2𝐶𝑦𝑥𝑁 (

�̅�𝑁𝐶𝑥𝑁

�̅�𝑁𝐶𝑥𝑁+𝛽2(𝑥)𝑁
+ 𝜑𝑁)] > 0. 

Observation 7: from equation (7) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝑆𝐾𝑟𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝑆𝐾𝑟𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 
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Or if 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) + ((

�̅�𝑁

�̅�𝑁+𝛽2(𝑥)𝑁
)

2

− 1) 𝐶𝑥𝑁
2 − 2𝐶𝑦𝑥𝑁 (

�̅�𝑁

�̅�𝑁+𝛽2(𝑥)𝑁
+ 𝜑𝑁)] > 0. 

Observation 8: from equation (8) and (12)  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) < 𝑀𝑆𝐸 (�̂�𝐾𝑁𝑁), if and only if   𝑀𝑆𝐸 (�̂�𝐾𝑁𝑁) − 𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝𝑁(𝑆𝑅𝑆)) > 0, 

Or if 𝛿𝑁�̅�𝑁
2 [𝐶𝑦𝑁

2 (1 − 𝜑𝑁
2 ) + C𝑥𝑁

2 (
𝛼2

𝑎2ℎ2 − 1) − 2𝐶𝑦𝑥𝑁 (
𝛼

𝑎ℎ
+ 𝜑𝑁)] > 0. 

5. Numerical Study 

5.1 Numerical Comparison for the real and simulated data set: 

 

Table 1.  Neutrosophic and Classical real data for the population parameter. 

Neutrosophic Parameter Neutrosophic Interval 
Classical 

Parameter 

Classical 

Value 

𝑁𝑁 (750, 850) countries/districts 𝑁  800 

𝑛𝑁 (75, 80) regions 𝑛  75 

�̅�𝑁 (140000, 160000) tests �̅�  150,000 

�̅�𝑁 (25000, 35000) cases �̅�  30,000 

𝑆𝑥𝑁
2  (30000, 40000) 𝑆𝑥 

2  35,000 

𝑆𝑦𝑁
2  (10000, 15000) 𝑆𝑦 

2  12,500 

𝜌𝑦𝑥𝑁 (0.5, 0.6) 𝜌𝑦𝑥  0.55 

𝐶𝑥𝑁 (0.001237, 0.00125) 𝐶𝑥  0.0012472 

𝐶𝑦𝑁 (0.0004, 0.003499271) 𝐶𝑦  0.0037 

𝛽2(𝑥)𝑁 (3.0, 3.4)(slightly leptokurtic) 𝛽2(𝑥)  3.2 

 

5.2 Empirical study 

 

To assess the effectiveness and efficiency of the suggested neutrosophic ratio-type estimators, we 

empirically investigated the situation using actual COVID-19 data. The number of confirmed cases 

in different locations as well as the overall number of COVID-19 tests performed are included in this 

dataset. The study variable (Y) indicates the number of verified COVID-19 cases, whereas the 

auxiliary variable (X) shows the number of tests performed. 

 

5.3 Description of the Data 

 

The COVID-19 dataset was gathered from publicly accessible and validated sources, such as Johns 

Hopkins University (JHU) and the World Health Organization (WHO). The information was taken 

out for the time frame of March 2020–December 2021. India is the region chosen for this study, which 

includes data from several states and union territories. 

Data Sources 

• World Health Organization (WHO): https://covid19.who.int  

• Johns Hopkins University (JHU) COVID-19 Dashboard: 

https://coronavirus.jhu.edu/map.html  

Table 2. MSE of Neutrosophic and Classical estimators for the real population. 

Estimator MSE Neutrosophic Estimator MSE Classical 

ȳN (129.52381, 169.852941) ȳ 151.0416667 

ȳRN (101.853441, 118.717603) ȳR 112.3553024 

ȳexpN (112.590958, 138.866786) ȳexp 127.4693179 

ȳSDrN (101.853441, 118.717603) ȳSDr 112.3553026 

ȳUS1rN (101.853441, 118.717603) ȳUS1r 112.3553025 

https://covid19.who.int/
https://coronavirus.jhu.edu/map.html
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ȳUS2rN (102.117179, 119.2161305) ȳUS2r 112.7261892 

ȳSKrN (101.853768, 118.718229) ȳSKr 112.3557668 

ȳKNN (97.1428571, 108.705882) ȳKN 105.3515625 

ȳPropN (9.29300292, 13.8713235) ȳProp 11.799375 

 

 
Figure 1. Neutrosophic MSE of estimators for the real population. 

 

 
Figure 2. Classical MSE of estimators for the real population. 

 

Table 3. PRE of Neutrosophic and Classical estimators for the real population. 

Estimator PRE Neutrosophic Estimator PRE Classical 

ȳN (100, 100) ȳ 100 

ȳRN (127.17, 143.07) ȳR 134.432166 

ȳexpN (115.04, 122.31) ȳexp 118.4925668 

ȳSDrN (127.17, 143.07) ȳSDr 134.4321658 

ȳUS1rN (127.17, 143.07) ȳUS1r 134.432166 

ȳUS2rN (126.84, 142.47) ȳUS2r 133.9898632 
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ȳSKrN (127.17, 143.07) ȳSKr 134.4316104 

ȳKNN (133.33, 156.25) ȳKN 143.3691756 

ȳPropN (1224.49, 1393.78) ȳProp 1280.081925 

 

 
Figure 3. Neutrosophic PRE of estimators for the real population. 

 

 
Figure 4. Classical PRE of estimators for the real population. 

 

Table 4. Neutrosophic and Classical simulated data for the population parameter. 

Neutrosophic Parameter Neutrosophic Interval 
Classical 

Parameter 
Classical Value 

𝑁𝑁 (1200, 1200) 𝑁  1200 

𝑛𝑁 (30, 30) 𝑛  30 

�̅�𝑁 (160.5, 175.3) �̅�  169.222 

�̅�𝑁 (70.5, 80.7) �̅�  76.2299 

𝑆𝑥𝑁
2  (37.21, 51.84) 𝑆𝑥 

2  41.119774 

𝑆𝑦𝑁
2  (182.25, 327.61) 𝑆𝑦 

2  183.23519 
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𝜌𝑦𝑥𝑁 (0.015, 0.025) 𝜌𝑦𝑥  0.0245 

𝐶𝑥𝑁 (0.38006, 0.041072) 𝐶𝑥  0..379 

𝐶𝑦𝑁 (0.1914894, 0.2242875) 𝐶𝑦  0.1776 

𝛽2(𝑥)𝑁 (0.07, 0.21) 𝛽2(𝑥)  0.1306 

 

Table 5. MSE of Neutrosophic and Classical estimators for the simulated population. 

Estimator MSE Neutrosophic Estimator MSE Classical 

ȳN (5.92, 10.65) ȳ 5.96 

ȳRN (6.12, 10.91) ȳR 6.16 

ȳexpN (5.964, 10.69) ȳexp 5.99 

ȳSDrN (6.12, 10.91) ȳSDr 6.164 

ȳUS1rN (6.12, 10.91) ȳUS1r 6.16 

ȳUS2rN (6.12, 10.9) ȳUS2r 6.16 

ȳSKrN (6.121, 10.906) ȳSKr 6.164 

ȳKNN (5.922, 10.641) ȳKN 5.95 

ȳPropN (0.23, 0.36) ȳProp 0.27 

 

 
Figure 5. Neutrosophic MSE of estimators for the simulated population. 
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Figure 6. Classical MSE of estimators for the simulated population. 

 

Table 6. PRE of Neutrosophic and Classical estimators for the simulated population. 

Estimator PRE Neutrosophic Estimator PRE Classical 

ȳN (100, 100) ȳ 100 

ȳRN (96.76, 97.62) ȳR 96.61 

ȳexpN (99.32, 99.62) ȳexp 99.39 

ȳSDrN (96.77, 97.62) ȳSDr 96.61 

ȳUS1rN (96.79, 99.63) ȳUS1r 96.63 

ȳUS2rN (96.8, 97.69) ȳUS2r 96.76 

ȳSKrN (96.77, 97.63) ȳSKr 96.62 

ȳKNN (100.02, 100.06) ȳKN 100.06 

ȳPropN (2539.09, 2983.87) ȳProp 2197.26 

 

 
Figure 7. Neutrosophic PRE of estimators for the simulated population. 
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Figure 8. Classical PRE of estimators for the simulated population. 

6. Result Analysis and Conclusion 

Real Data Results: The findings from the COVID-19 real dataset, as summarized in Table 2, along 

with the Figure 1 & 2 shows that the proposed neutrosophic exponential-ratio estimator has the least 

MSE value when compared to the classical and alternative neutrosophic estimators. Specifically, the 

suggested estimator is having superior MSE intervals, giving more precision. as per shown in table 

2, the range of the MSE of the suggested estimator is (9.293, 13.871), while the traditional estimator 

has an MSE of 11.799. Similarly, The PRE values shown in Table 3 along with the Figure 3 & 4 that is 

also demonstrate considerable efficiency gains. The suggested estimator gets the PRE values ranging 

from 1224.49% to 1393.78% when compared to the traditional estimator, demonstrating its strength 

and effectiveness in handling neutrosophic data. 

Simulated Data Results: The simulated dataset also given in Tables 4. The suggested estimator 

consistently performs better than the traditional classical and alternative neutrosophic estimators in 

terms of MSE and PRE. As per shown in Table 5 along with Figure 5 & 6, the MSE range for the 

suggested estimator is (0.23, 0.36), while the standard version has an MSE of 0.27. By observing the 

Table 6 and Figure 7 & 8 the suggested estimator has the range of PRE values as high as 2539.09% to 

2983.87%, indicating remarkable performance in contexts with varied levels of uncertainty. 

7. Conclusion 

This study introduces an improved neutrosophic exponential-ratio estimator for estimating 

population mean using simple random sampling. The data uncertainties were effectively resolved 

and the proposed method was found to outperform with the existing estimators in terms of MSE and 

PRE. Regarding types of data, neutrosophic statistics show more scope and flexibility than traditional 

statistics enabling them to work with complex data better. This approach must be considered in 

further research in connection with other designs of sampling such as stratified or cluster sampling 

and in other domains where uncertainty is an issue with the data. 
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