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Abstract. This paper introduces a novel of Neutrosophic Hyper Soft Rough Matrix (NHSRM). We discuss
various operators on NHSRM such as addition, multiplication, scalar multiplication and complement. Addi-
tionally, we develop several properties, including associativity, distributivity and De Morgan’s laws, utilizing
operators such as union, intersection, complement, arithmetic mean, weighted arithmetic mean, geometric mean,
weighted geometric mean, harmonic mean and weighted harmonic mean. Further we propose a score function
as part of this work. To demonstrate the application of the proposed work, a multi-attribute decision-making
problem is considered. The score matrix obtained from three different operators are compared, and the results

are illustrated graphically.
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1. Introduction

In a traditional matrix, each element is well-defined and unambiguous, and these matri-
ces are widely used in various mathematical fields, including linear transformations in vector
spaces, computer graphics, signal processing, and data analysis. Fuzzy matrices have been
widely studied for their utility in representing uncertainty and imprecision. In a fuzzy ma-
trix |22, each element is either a fuzzy number or a degree of membership, typically within
the interval [0, 1], indicating levels of truth, membership, or uncertainty. These matrices are

particularly valuable in addressing situations involving vague or imprecise information. Their
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applications span various domains, including artificial intelligence, control systems, and deci-
sion support systems, where traditional matrices often lack the flexibility required to handle
such complex scenarios.

The soft matrix, rooted in soft set theory, provides an advanced framework by allowing mul-
tiple and context-specific parameterizations to describe uncertainty, offering greater flexibility
in modeling and analysis. This approach extends the capabilities of traditional methods by
incorporating parameter dependency, reducing ambiguity, broadening applicability, and en-
hancing versatility. Soft matrices prove particularly useful in various fields where traditional
crisp values are insufficient to capture the complexities of real-world situations. The Dynamism
of fuzzy soft matrices lies in their ability to incorporate parameter dependency, reduce am-
biguity, and broaden applicability across diverse fields. Applications have been explored in
artificial intelligence, data analysis, decision support systems, and pattern recognition, where
traditional frameworks often fail to capture the complexities and subtleties of real-world sce-
narios. As a result, fuzzy soft matrices have emerged as a powerful tool for tackling challenges
involving high levels of uncertainty and variability. Cagman and Enginoglu [5], Borah et al. [3]
developed fuzzy soft matrices, which serve as a matrix representation of fuzzy soft sets, and
established operations on these matrices that facilitate theoretical studies in fuzzy soft set
theory.

Fuzzy Soft Rough Matrix extends the fuzzy soft matrix by integrating rough set theory,
which provides mechanisms to approximate sets using lower and upper approximations. This
allows the matrix to handle situations where there is incomplete or indeterminate information,
distinguishing between lower approximation and upper approximations. It is widely applied in
decision support systems, pattern recognition, data mining, medical diagnostics, environmental
modeling, control systems, supply chain management, and risk assessment. Muthukumar and
Krishnan [14] initiated generalized fuzzy soft rough matrices and their operations, which play
a crucial role in advancing theoretical studies in fuzzy soft rough sets. Their work provides a
foundation for applying these matrices to model and analyze complex systems.

The Fuzzy Soft Matrix is extended to the Intuitionistic Fuzzy Soft Matrix (IFSM) by in-
corporating the concept of intuitionistic fuzzy sets, which includes both membership and non-
membership degrees along with a degree of hesitation. The IFSM provides a framework for
analyzing problems with multiple sources of uncertainty, capturing more detailed and nu-
anced information than standard fuzzy soft matrices. Chetia et al. [6] established five distinct
types of product for intuitionistic fuzzy soft matrices and explore their theoretical proper-
ties. These operations and definitions make IFSMs a functional tool for advancing studies in

intuitionistic fuzzy soft set theory, with potential applications in fields that require nuanced

J. Boobalan & E. Mathivadhana, An Approach to Neutrosophic Hyper Soft Rough Matrix
and its Application



Neutrosophic Sets and Systems, Vol. 85, 2025 3@

decision-making in engineering. Neutrosophic Fuzzy Soft Matrices (NFSMs) enhance the rep-
resentation of uncertainty by explicitly incorporating indeterminacy as a distinct parameter
alongside truth and falsehood, providing a more detailed and versatile framework compared
to the hesitation-based representation in Intuitionistic Fuzzy Soft Matrices (IFSMs). NFSMs
is designed for more complex and dynamic environments, such as big data analytics, where
explicit modeling of indeterminate states is essential. Sumathi and Arockiarani |20] introduced
new operations on fuzzy neutrosophic soft matrices, expanding the potential applications of
these matrices in dealing with uncertainty and imprecision in complex systems. Their re-
search highlights innovative matrix operations, such as addition and multiplication, which
enhance the versatility of neutrosophic models in decision-making and other computational
applications. These contributions provide a solid foundation for understanding the practical
implementation of fuzzy neutrosophic soft matrices in various real-world contexts. Uma et
al. [21] explored Fuzzy Neutrosophic Soft Matrices of Type I and Type II, offering signifi-
cant advancements in the application of neutrosophic principles to matrix operations. Their
work presents novel methods for handling uncertainty and imprecision in complex systems,
particularly in decision-making environments. These contributions broaden the scope of fuzzy
neutrosophic models and provide a more robust framework for analyzing real-world problems
involving multi-criteria decision analysis and other computational tasks.

Smarandache [16] extended the concept of soft sets to hyper soft sets by transforming the
function into a multi-attribute function. This development allowed for a more comprehensive
representation of data involving multiple parameters. A hyper soft matrices lies in the latter’s
ability to represent and analyze multi-attribute data, enabling more flexible and comprehensive
modeling of complex, interdependent systems compared to the single-parameter framework of
soft matrices. These matrices are particularly useful in scenarios where multiple interrelated
attributes must be considered, such as in complex system modeling, risk assessment, and multi-
objective optimization. They also enhance the handling of unpredictability in medical decision
support, environmental modeling, and financial forecasting. In contrast, hyper soft rough
matrices go a step further by introducing the lower and upper approximations of rough set
theory, which allow for distinguishing between known and unknown information, particularly
when dealing with higher degree of uncertainty. It is offering a more advanced mechanism for
classification and decision-making in systems where data may be ambiguous or partial.

An Intuitionistic Hyper Soft Rough Matrix (IHSRM) was introduced to offer a more com-
prehensive and flexible framework that can handle uncertainty at different levels through
membership, non-membership, and indeterminacy. This makes it particularly suitable for
complex systems, multi-criteria decision-making, and fields like data mining, machine learn-

ing, and information retrieval, where precise modeling and handling of diverse uncertainties
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are essential. Lei Zhou et al. [12] proposed a comprehensive framework for studying relation-
based intuitionistic fuzzy rough approximation operators. This framework incorporates both
constructive and axiomatic approaches and establishes several fundamental properties of in-
tuitionistic fuzzy rough approximation operators. Jafar and Saeed [§] expanded the concept
of Neutrosophic hypersoft sets to Neutrosophic Hyper Soft Matrices (NHSM), providing a
detailed study of these matrices along with relevant examples. Jayasudha and Raghavi [10]
explored various operations on Neutrosophic Hypersoft Matrices and demonstrated their prac-
tical applications in complex decision-making scenarios. Their work provided a comprehensive
framework for applying neutrosophic principles to matrix operations, expanding the scope
of these models in real-world applications. This study offers valuable insights that comple-
ment the methodologies applied in the current research, particularly in addressing the specific
aspects of uncertainty in data modeling and multi-criteria decision analysis.

In this paper, we extend the concept of NHSM to NHSRM. The NHSRM is a novel mathe-
matical model designed to address these challenges by integrating several advanced concepts
from neutrosophic logic, soft set theory, hyper-soft sets, and rough set theory. This hybrid
model offers a powerful and flexible tool for managing complex decision-making scenarios where
traditional methods fall short. This enables NHSRM to handle situations where data is not
only uncertain but also partially known or ambiguous, which is particularly useful in fields
like pattern recognition, decision-making under uncertainty, and machine learning, where such
approximations improve decision boundaries and classification accuracy. NHSM focuses on the
representation of uncertainty without incorporating the rough set-based approximations, mak-
ing it suitable for less complex scenarios. In contrast, NHSRM provides a more comprehensive
framework by integrating rough set-based approximations, which makes it better suited for
handling more complex and nuanced problems. The scope of this work is to develop some no-
tions and operations with various properties of NHSRM along with a suitable decision-making
problem.

In this paper, the following section of the proposed work organizes as follows:

e Section 2 presents the foundational key preliminaries, establishing the essential con-
cepts and terminologies necessary for understanding the theoretical framework.

e Section 3 defines the key concepts, operators, and various results related to NHSRM.
This section also discusses the mathematical operations used in NHSRM, such as ad-
dition, multiplication, and composition, and examines the properties and results that
emerge from applying these operations.

e The proposed work illustrates the method through its application to decision-making
problems, comparing the weighted arithmetic mean, weighted geometric mean, and
weighted harmonic mean operators with the use of a score function in section 4. This
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section effectively highlights how these operators can be applied within the NHSRM
framework to tackle complex decision-making tasks.

e In section 5, an in-depth evaluation of the performance, accuracy, or efficiency of the
proposed method, model, or technique is typically conducted in comparison to existing
methods. In the context of this work, the NHSRM can be compared with traditional
decision-making models like weighted arithmetic mean, weighted geometric mean, and
weighted harmonic mean operators. These operators, when applied within NHSRM,
can be assessed in terms of their effectiveness in solving decision-making problems that
involve multi-attribute data and uncertainty.

e Conclusion and result are discussed in section 6.

The Neutrosophic Hyper Soft Rough Matrix (NHSRM) model is constrained by the re-
quirement for accurate parameter adjustments, challenges in interpreting intricate outcomes,
dependence on expert input for weight determination, and limited flexibility in handling dy-

namic data changes.

2. Preliminaries

Definition 1 (Neutrosophic set) [17] Let U be universe set, the neutrosophic set N on
the universe set U is defined as N = [T'(z),I(z), F(x)], where the characteristic functions
T,I,F:U —[0,1]and 0 < T'(x)+I(x)+ F(z) < 3, T, I, F are neutrosophic components which
defines the degree of truth, the degree of indeterminacy and the degree of falsity respectively.
Definition 2 (Soft rough set) [14] Let R = (¢, A) be a soft set over U the pair S = (U, R)
is called a soft approximation space. Based on the soft approximation space S, define the

following two operations:
apro(X) ={u € U;3a € A,u € p(a) C X)

aprg(X) ={u € U;3a € A,u € p(a),p(a) N X # ¢)

Assigning to every subset X C U two sets apr((X) and aprg(X), which are called the soft
S lower approximation and the soft S upper approximation of X respectively. In general,
apr S(X ) and aprg(X) as soft rough approximation of X with respect to S. Moreover the sets
Poss(X) = apr ((X)

Negs(X) = U — aprg(X)

Bndg(X) = aprg(X)—apr (X) are called the soft S - positive region, the soft S - negative
region and the soft S - boundary region of X respectively.

If aprg(X) = apr4(X), X is said to be S - definable, otherwise X is called a soft S - rough set.
Definition 3 (Hyper Soft Set) [9] Let U be the universe set and P(U) be the power set of
U. Suppose a1, ag, as, ..., a, where n > 1 be n distinct attributes whose corresponding attribute
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values respectively the set A1, As...., A, with A;NA; = ¢,i# jandi,j € {1,2,...,n} then the
pair (p, A1 x Agx....x A,) is called a hyper soft set over U, where ¢ : A} x Ay x....x A, — P(U).
Definition 4 (Hyper soft rough set) [11] Let U be the universe set and P(U) be the power
set of U. Suppose aq, as, as, ..., a, where n > 1 be n distinct attributes whose corresponding at-
tribute values Ay, As...., A, respectively. Let S; C A;,j € {1,2,...,n}jthen [[}_, S; C [}, 4;.
The pair (¢, [[}—, S;) = P(U) where ¢ is a mapping defined by ¢ : [[}_, S; — P(U) is called
hyper soft rough set. The lower and upper neutrosophic hyper soft approximation spaces
of X € P(U) with respect to (¢, [[}_ Sk) are denoted by apr(X) and apr(X) respectively,
defined by

@S(X) ={ueU;3ai,ay,...,an € A,u € p(a1,az,...,a,) C X)

aprg(X) = {u € U;3a1,ag,...,a, € Aju € p(ay,as, ...,an), p(a1,az,...,an) N X # @)

If @pr(X) # apr(X), then X is hyper soft rough set, otherwise it is called as hyper soft rough
definable set.
Definition 5 (Neutrosophic Hyper Soft Matrix) [8] Let U = {u1,ua, ..., uq} and P(U)
be the universal set and the power set, respectively. Consider Ay, As...., Ag, for § > 1, where
f is well-defined attributes, the corresponding attributive values are A7', A%*...., A%” and their
relation A" x A2 x....XA%", where q1,q2,43,...,qn = 1, 2, ..., n; then the pair (p, AT x A2 x

.. x Af") is said to be a neutrosophic hyper soft set over U, where ¢ : (A{' x AP x ... x A}") —
P(U) is defined as

(AT x AP x o x ARY) = {(u, Th(u), I(u), Fx(u)) € U, X € (AT x A x ... x AT}

If B;j = X(ui,Aﬁ?), where ¢ = ¢,2,3,...,a,7 = 1,2,3,....,68 and kK = ¢1,¢2,93, ...,q, then a

BH B12 Bl,B
. By1 B ... Bog
matrix is defined as [Bjj] .5 = | . ‘ .
Bat Baz . Bag)
where Byj = (T (ui), Lk (ui), Fax (ui), ui € U, Al e (AT x AP x ... x AT) = (T, 15, FF)

Definition 6 (Neutrosophic Hyper Soft Rough Set) [19] Let U be an non-empty universe
set and P(U) be the power set of U. Let E be the set of parameters, E = {A;, As,...4,},
where A; N A; = 0 fori # j. Let S; C Aj,j € {1,2,...,n} then []}_, S]’-“ C ITj—, Af. The
pair (o, [T5_, S]k) = P(U) where ¢ is a mapping defined by ¢ : [}, S;? — P(U) is called
neutrosophic hyper soft rough set. The triplet (U, ¢, H Sk) is called neutrosophic hyper
soft approximation space. The lower and upper neutrosophic hyper soft approximation spaces
of X € P(U) with respect to (U, ¢, = Sk) are denoted by apr(X) and apr(X) respectively,
defined by
u

apry (X) = {(I1j= S, {<uA(u), va(u), wa(u)
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If apr (X)) # apr N(X ), then X is neutrosophic hyper soft rough set, otherwise it is called as
neutrosophic hyper soft rough definable set.

3. Neutrosophic Hyper Soft Rough Matrix (NHSRM)

In this section, the definition, basic operations and various properties of NHSRM are pre-
sented.
Definition 7 (NHSRM) Let U = {ui,u2,...,uq} be an non-empty universe set and
P(U) be the power set of U. Let E be the set of parameters, £ = {A;, As,...A,}, where
A;inAj = 0fori # j. Let S; C Aj,j € {1,2,...,n} then [[}_, Sf C I, A;?. The pair
(¢, H?Zl S;“) = P(U), where ¢ is a mapping defined by ¢ : H?:1 Sf — P(U) is called neutro-
sophic hyper soft rough set. Each element u € U is associated with the values determined by
the hyper soft set, where each parameter can take multiple values. For each element u € U
related with a parameter A; is represented by the triplet (73;, I;j, F;j) where T;; is the truth
membership function, I;; is the indeterminacy membership function and Fj; is the falsity mem-
bership function, Tj;, I;;, Fi; € [0,1]. If P; = v(ui,A;?), where i =1,2,3,....m,7=1,2,3,....,n
and k = q1,92, 93, ..., qn then a NHSRM is defined as

[ <E ;p11> <E ;p12> <E ;P1n> ]
1 12 n
<E ;P21> <E ;P22> <E ;P2n>
P =[Py = 21 22 2n
<P P> <P :Pp> ... <P ;Pp,>
L ml m?2 mn E
Lower Approximation matrix is denoted by P = (1_’?3', .ZJ'DA, EP) , 0< Ili + Ié + E{D' < 3 and
_ij ij o dj_ij gy dj g
Upper Approximation matrix is denoted by P;; = (E?, Ii];-, FZI;) , 0< Tzlj + IZJ; + Filjj <3

Thus, we can represent any neutrosophic Hyper Soft Rough Set in term of neutrosophic Fuzzy
Hyper Soft Rough Matrix.

Example 1

The NHSRM P of order 4 x 3 is written as

[ ((0.8,0.3,0.2); (0.6,0.5,0.1))  {(0.4,0.2,0.3): (0.9,0.2,0.1)) ((0.5,0.4,0.2); (0.7,0.5,0.1)) ]
o ((0.3,0.4,0.0): (0.5,0.8,0.7))  ((0.8,0.7,0.5); (0.9,0.5,0.4)) ((1.0,0.5,0.2); (0.5,0.6,0.0))
((0.9,0.1,0.2): (0.5,0.6,0.0))  ((0.7,0.2,0.1); (0.6,0.5,0.0)) ((0.8,0.2,0.3); (0.3,0.2,0.5))

| ((1.0,0.5,0.4);(0.2,0.3,0.5))  ((0.9,0.5,0.1); (0.7,0.8,1.0)) {(0.6,0.4,0.2); (0.5,0.2,0.5)) |

Definition 8 (Square NHSRM) A NHSRM of order m x n is said to be square NHSRM,
if m = n i.e., the number of rows and numbers of columns are equal. This ”"square” structure
signifies that the matrix represents an equal balance between the objects in the universe of
discourse and the hierarchical parameters.

Example 2
The square NHSRM P of order 3 x 3 is written as
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((0.8,0.3,0.2); (0.6,0.5,0.1))  ((0.4,0.2,0.3); (0.9,0.2,0.1)) ((0.5,0.4,0.2); (0.7,0.5,0.1))
P = | ((0.3,0.4,0.0); (0.5,0.8,0.7)) ((0.8,0.7,0.5);(0.9,0.5,0.4)) ((1.0,0.5,0.2); (0.5,0.6,0.0))
((0.9,0.1,0.2); (0.5,0.6,0.0))  ((0.7,0.2,0.1); (0.6,0.5,0.0)) ((0.8,0.2,0.3); (0.3,0.2,0.5))
Definition 9 (Diagonal NHSRM) A square NHSRM of order n x n is said to be a diagonal
NHSRM, if all of its non-diagonal elements are (0, 0, 1) and the main diagonal elements are
considered as non-zero.
Example 3
The diagonal NHSRM P of order 3 x 3 is written as

((0.8,0.3,0.2); (0.6,0.5,0.1))  ((0.0,0.0,1.0); (0.0,0.0,1.0)) ((0.0,0.0,1.0); (0.0, 0.0, 1.0))
P = ((0.0,0.0,1.0); (0.0,0.0,1.0)) {(1.0,0.3,0.5); (0.4,0.2,1.0)) {(0.0,0.0,1.0); (0.0, 0.0, 1.0))
((0.0,0.0,1.0); (0.0,0.0,1.0))  ((0.0,0.0,1.0); (0.0,0.0,1.0)) {(0.8,0.2,0.3); (0.3,0.2,0.5))

Definition 10 (Symmetric NHSRM) A square NHSRM of order n x n is said to be a
symmetric NHSRM, if its transpose be equal to itself. This means that for every element
in the matrix, the entry at position (i, j) is identical to the entry at the position (j, i). i.e.
P = PT(or) [Py] = [Py] Vi, j
Example 4
The symmetric NHSRM P of order 3 x 3 is written as

((0.8,0.3,0.2); (0.6,0.5,0.1))  ((0.3,0.4,0.0); (0.5,0.8,0.7)) ((0.5,0.4,0.2); (0.7,0.5,0.1))
P = ((0.3,0.4,0.0); (0.5,0.8,0.7)) {(0.8,0.7,0.5); (0.9,0.5,0.4)) ((0.7,0.2,0.1); (0.6, 0.5,0.0))
((0.5,0.4,0.2); (0.7,0.5,0.1))  ((0.7,0.2,0.1); (0.6,0.5,0.0)) ((0.8,0.2,0.3); (0.3,0.2,0.5))

Definition 11 (Transpose) The transpose of a square NHSRM of order n x n is obtained

by switching its rows and columns, similar to the transpose operation in standard matrices.
This operation allows us to examine relationships from a different perspective, effectively
interchanging the roles of elements and hierarchical parameters.

[Py]" = [(IPJI,’,E;) (77,15 FP)]

ji g g

Example 5
Consider Example 2, the transpose of P is given by

((0.8,0.3,0.2); (0.6,0.5,0.1))  ((0.3,0.4,0.0); (0.5,0.8,0.7)) ((0.9,0.1,0.2); (0.5, 0.6, 0.0))
PT = | ((0.4,0.2,0.3); (0.9,0.2,0.1))  ((0.8,0.7,0.5); (0.9,0.5,0.4)) ((0.7,0.2,0.1); (0.6, 0.5, 0.0))
((0.5,0.4,0.2); (0.7,0.5,0.1))  ((1.0,0.5,0.2): (0.5,0.6,0.0)) {(0.8,0.2,0.3); (0.3,0.2,0.5))

Definition 12 (Addition) Let P = [P;;] and @ = [Q;;] be two NHSRMs of same order,

where [P;] = |(TF, 17, FF (TP,IP,FP) and [Q;;] = | (19,19 F? (TQ,IQ,FQ)
i z] i R Y] i R
we define the addition in NHSRM as follows:

PrQ= Kmax(:r??,:r%max(ﬁ,I?),min(F%f,F?)> (max(TP 79), max(I¥, I9), min( ¥ FQ))]

Y REEY] ©j Ty VR ]
v vJ LY 2] 2]
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Example 6
Let P and Q be two NHSRM of order 3 x 3,

((0.8,0.3,0.2); (0.6,0.5,0.1))  ((0.4,0.2,0.3): (0.9,0.2,0.1)) ((0.5,0.4,0.2); (0.7,0.5,0.1))
P = {(0.3,0.4,0.0); (0.5,0.8,0.7)) {(0.8,0.7,0.5); (0.9,0.5,0.4)) {((1.0,0.5,0.2); (0.5,0.6,0.0))
((0.9,0.1,0.2); (0.5,0.6,0.0))  ((0.7,0.2,0.1); (0.6,0.5,0.0))  ((0.8,0.2,0.3); (0.3,0.2,0.5))

((0.5,0.2,0.0); (0.4,0.3,0.1))  ((0.6,0.8,0.2); (0.7,0.3,0.2)) ((0.7,0.6,0.0); (1.0,0.4,0.1))
Q=] ((0.6,0.7,0.1); (0.8,0.9,0.3)) ((0.4,1.0,0.1); (0.9,0.2,0.3)) ((1.0,0.6,0.0); (0.7,0.1,0.3))
((0.4,0.3,0.2); (0.7,0.6,0.2))  ((1.0,0.5,0.7); (0.8,0.4,1.0))  {(0.3,0.2,0.4); (0.5, 0.7, 0.6))

then

((0.8,0.3,0.0); (0.6,0.5,0.1))  {(0.6,0.8,0.2): (0.9,0.3,0.1)) ((0.7,0.6,0.0); (1.0,0.5,0.1))
P+Q = | {(0.6,0.7,0.0); (0.8,0.9,0.3)) ((0.8,1.0,0.1); (0.9,0.5,0.3)) ((1.0,0.6,0.0); (0.7,0.6,0.0))
((0.9,0.3,0.2); (0.7,0.6,0.0))  {(1.0,0.5,0.1); (0.8,0.5,0.0)) ((0.8,0.2,0.3); (0.5,0.7,0.5))
Definition 13 (Multiplication) Let P = [F;;] and Q = [Q;;] be two NHSRMs of same order,
where [Py] = |( 17,17, FF (TZP,IZP,FP) and [Qy] = | (179,19, F9 (:/;Q,If?,FQ)
i ij i v i i i I
we define the multiplication in NHSRM as follows:

PQ = Kmin(Tf; ,IZ),min@Z ,[2),max(EZ ,Fi)) (mln(Tu,TZ]) min(Z7, 19), max(F} ,Fg))}
Example 7

In Example 6, the result is derived by applying Definition 13.

((0.5,0.2,0.2); (0.4,0.3,0.1))  {(0.4,0.2,0.3); (0.7,0.2,0.2)) ((0.5,0.4,0.2); (0.7,0.4,0.1))
P.Q=| ((0.3,0.4,0.1);(0.5,0.8,0.7)) ((0.4,0.7,0.5); (0.9,0.2,0.4)) ((1.0,0.5,0.2); (0.5,0.1,0.3))
((0.4,0.1,0.2); (0.5,0.6,0.2))  ((0.7,0.2,0.7); (0.6,0.4,1.0))  ((0.3,0.2,0.4); (0.3,0.2,0.6))

Definition 14 (Scalar Multiplication) Let P = [P;;| be the NHSRM of order m x n, where

[Py] = [(TP v FP) (TZI;, 15, FP)] and « € [0, 1] is the scalar then scalar multiplication
ij i i

of NHSRM P is given by
aP = [aPj] = [(af%,a[?,a}f?) (aTg,aIf;,aFP)}
ij ij ij
Example 8
By using definition 14 in Example 2, if & = 0.1 then the result is as follows:
0.08,0.03,0.02

I : 0.04,0.02,0.03); (0.05,0.04,0.02);\
0.06,0.05, 0.01

( )
( ) 0.09,0.02,0.01 0.07,0.05,0.01
<(o.o3, 0.04, 0.00);> <
(0.1)P =
( )
( )
)

( )

( ) )
(0.08,0.07,0.05); 0.10,0.05,0.02);
0.05,0.08,0.07 (0.09,0.05,0.04) 0.05,0.06, 0.00)
0.09,0.01,0.02); (0.07,0.02,0.01); 0.08,0.02,0.03);

| \(0.05,0.06,0.00 (0.06,0.05,0.00) (0.03,0.02,0.05) / |
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Definition 15 (Complement) Let P = [P;;] be the NHSRM of order m x n, where
[P] = [<IP,1P,EP) (TP Ji FP)} then P¢ — KE?J—[?,IP) (FP 1- 1P TP)]

b b b
i i g o ij ij g R
is the complement of P.

Example 9
The complement of NHSRM P in Example 2 is formulated as

((0.2,0.7,0.8); (0.1,0.5,0.6))  ((0.3,0.8,0.4); (0.5,0.8,0.7)) ((0.2,0.6,0.5); (0.1,0.5,0.7))
P°={ ((0.0,0.6,0.3); (0.7,0.2,0.5)) ((0.5,0.3,0.8);(0.4,0.5,0.9)) ((0.2,0.5,1.0);(0.0,0.4,0.5))
((0.2,0.9,0.9); (0.0,0.4,0.5))  ((0.1,0.8,0.7); (0.0,0.5,0.6))  ((0.3,0.8,0.8); (0.5,0.8,0.3))

Definition 16 (Score Function) Let P = [P;j]be the NHSRM of order m x n where
[P;j] = [(TP v FP> (TP Ir FP)] then the score function is defined as

ij m‘ ij R
P 7P PP P pP
STy ==+ |[2+ ty T Lyt SR
"3 2 2 2
Proposition 1
Let P = [Pj] and Q = [Qs] be two NHSRMs of same order, where [P;;] =
[(IP,IP,EP> (TZIJD,IZI;,FP)} and [Qi;] = {(IQ,IQ,EQ> (T?,Ig,FQﬂ for two scalars
ij i ij ij i g

a, B € [0,1], then

(i) a(P+Q) =aP +aQ
(ii) a(6P) = (aB)P

Proof

(i) a(P+Q)

=a<[<IP,lP,EP> (Tfij;',FP)} <IQ,1Q,EQ) (T?,Ig,FQ))
T [\ i

= |(aT?, aI? aF" (aTZP,OJZP,aFP> aT®, al®, oF@ (aTQ,aIlQ,aFQ)
i ij i J J ) ij g ij N /

—a (TP 17 B ) i (T5. 15, B ) | +a | (1919, F2 ) 5 (12,12, FS)
i ij o ij I N\ i i g 7 ]

=aP+«a

(i)a(BP

/3TP, pI”, 6FP> ; (BT;;? ,BI;, BE )]

iJ ij ()
oo () )
= («
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3.1. Operations on NHSRM

In this section, we discuss various operators such as union, intersection, arithmetic mean,
weighted arithmetic mean, geometric mean, weighted geometric mean, harmonic mean and

weighted harmonic mean on NHSRM.

Let P = [Pj] and Q = [Qs] be two NHSRMs of same order, where [P;;] =
[(TP P F?) (TZIJD,IZI;,FP)} and [Q;] = [(ﬁ,[?,g?) (Tg,lg,FQ)] Then
iy g 1] /] )
(i) Union
PUQ = [(rR,zR,ER) (Tg,fg,FR)} ,
ij ij i

where

Q
TR = max(Tg, T;5),

P

R.:LJFIU
1] 2 ?

FR = mln(FlIJD, FQ)

(ii) Intersection
PNQ= [(TF’:,I??,FR> (T 12 FR)} ,

ij  iJ %] AR
where
R _ P Q
T - mm(ng ,Tz] )
P
r_ L + 1
i 9 ’

Fl = max(Ff F?)

(iii) Arithmetic Mean
POAMQ = KI?"%J?,E?) (T;j,fg,FR)] ,

iy i
where P 0
TR — 1y 15
1] 2 ’
P Q
r_ Lt 1
P
R _ Fij + Fij
9T

(iv) Weighted Arithmetic Mean
PoOwanQ = [(TR I FR> (TR I% FR)} ;

27?7170
iy ij i I
where 0
P
B:wlTij+w2Tz’j
*J w1 + w2
I wll-l;—{—wQI
Y w 4wy
P
g W Ff +wsF
ij:—,0<w1+w2<1
w1 + W2

(v) Geometric Mean
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PoanQ = KI{"%J%E?) (Tfj,fg,FR)} 7
ij i ij
where

_ ./ Q
1111]% - TP T‘z] ’

_ Q
I =\/1] .15,

_ Q
Fj =\ F.F;

(vi) Weighted Geometric Mean
Poweu@ = [(TR " FR) (E?,Ig,FRﬂ ,

ij ij g
where

w1 wa
T = e (1) (1)

R w1 Q w2
"= 1*%(@) (19",
Fj= wl+w§/<F5) (FQ)% 0 <w+wr <1
(vii) Harmonic Mean
PoGuQ = KT?J%F?) (Tfj,lg,FR)} :

ooty i
where
2TFTY
=
ijP 0 ij
1) Q’
I+ IUQ
P
R _ 2F; Fij

Y FL+F]
(viii) Weighted Harmonic Mean

PownuQ = {(T?,IF&,F?) (7,18 FR)} :

ij g ij AN
where
TZIJ{ _ w1 + wo .
(o) + ()
R _ w1 + w2
Tij = P Q\’
(wl/Iij) + (wQ/Iij>
FR— Wi+ W2 L0 <wp+ws <1

i) )

3.2. Algebraic properties of NHSRM

In this section, we present the algebraic properties of NHSRM, which are transpose property,
commutative property, associative property and distributive property.
Theorem 1 Let P = [P;;] and Q = [Q;;]be two NHSRMs with same order, where [P;;] =

[(r,f’ AP T ) (T8, 1% FP)} and Q] = [(I?,I,Q,,E?) (75,13 FQ)} then

b M M b
i i g A i 4j R
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il

ruQ)T
Pn)”
PoanvQ)T

(i

PoauQ)”
(vi
(vii

) (
i) (
iii) (
iv) (
(v) (
i) (
) (
) (

(viii
Proof
i) PUQ)T

max (

T, 1¢

) )

TP 19

Jv.ogt

PogmQ)T
Powpm@)" = PTowruQT

),
)

= PTo QT

PoOwan@Q)"

= PTowanQt

= PToan@Q"

PoweuQ)T

= PTowenQ?

= PTGHMPT

IP+IQ
Ji gt

,mm(

)

max(
(P 1P pP (
L\ i i i
<TP P FP> (

79 19 FQ

P 7P P
TP IP FE 219,

gistgis Jz TQ IQ FQ) (

<TQ 9 FQ) (

)
ik

T 19 F9

PPP
TL 1L FL 2,17,

ij o Tigo

iy iy i

Similarly the result (ii) can be proved.

(iu) P@AMQ
TQ 1P+1Q FP 4 F¢
_ i i g | .

2 7 2 ’

TP+TQ IP~|—IQ FP 4+ FQ
7t 7t 7t

o|(r
o

TP+TQ IP+IQ FP+FQ
2 2

:
¢

T+ 17 IP+IQ FP+FQ

)
)
ol

2 2 2 ' 2
- TP 1P FP (TP P FP) TR Q. FQ TQ 9 FQ
i _jl7_]z7 _]Z ’L? ]Z’ _]Z7 _JZ7 _JZ 17 ]Z?
r T
L ij iy i iy iy 1
T

w T + sz(j’? wiIP +woI? wi FP + weF9
i i 1] 1) %) )
w1 + wa w1y + woy w1 + W

'UJITZ'I; + UJQTZ-? wa; + w2fg w1F£ + wQFZ'Q

{ )

w1 + w2 w1 + wo w1 + w2
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Wi TP +weT? wi I +woI? w1 FF + woFQ

— Jt Jt Jt Jt Jt Jt
wy +wy | wit+we | wp+ we
wlTP + ’UJQTQ w1[P + wQIQ wlFP + 'LUQFQ
wr+wy | witwy T w4 ws
K I ) (T 10 B )}@WAMKT‘%,I?,F?) (Tff,fff,FQ)}
JZ Jioojio gt
g Q 7Q pQ g
P 7P @P Q 1Q Q
K %- F) (75,15, 7 )} @WAMKTU,IU,FU) (78,18, 7§ )]

= PT@WAMQT

Similarly the results (v) — (viii) can be proved.

Theorem 2 Let P = [P;;] and Q = [Qjj]be two NHSRMs with same order, where

2l = (2007 ) (2505, 75) | nd Q] = | (79,19, (25, 18,72) | then
iy iy g vy Y

(i) (PUQ)*=P°NQ°
(ii) (PNQ)*=PUQ"
(ili) (POAMQ)® = P°OamQ°
(iv) (POwWaMQ)¢ = POwamQ°
(v) (POamQ) = P°OamQ°
(vi) (POWeMQ)® = P OwamQ°
(vil) (POrMQ)¢ = POnMmQ°
(viii) (POwaMP)¢ = P OwamQ°
Proof
(i) (PUQ)®
[ "+ 19 P+ 19 o
= | | max (IP,IQ> —— min (E”,EQ> \max (75,75, =1~ min (Ff, FS
i g 2 i i J 2 J
I 7+ 19
= | [ min (EP,EQ> 11— LY max (IP,:EQ> ;
ij i 2 ij i
Ir+ I3
P P
min (Flj ,FQ> Tw max (TZ] ,Tg)
FP1— 1P 7P -(FQ 1- I{Q,Tf’) n|(FP1-17, 1" (FQ 1—IQ,TQ)
ij zj ij S ij (VY] g
= (271" FP) (TG, 12.FS) | |70 17 7 )5 (12,12 FS)
ij i i I ij i i I
C

In similar manner, the result (ii) can be proved.

(iil) (POAMmQ)°
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ij ijo_ij i g ij
2 ’ 2 ’ 2

P Q P Q P Q _ _ _ _ _ _
2 ’ 2 ’ 2 ’

— tj j 1 _ v v ) v .

2 2 7 2 ’

FP 4+ F€@ P +19 TP 4719 _ _ L H - _
+ L S Sl o i (Fi?+Fi? _15+I§ 7}§+7}?>
2 ’ 2 ’ 2

_ (EP;L—IP,15> (FQ 1-19 TQ)}CMN{[<E? 1—IPtTP> (FQ'I—]Q TQ>]

L\ iy ij  ij Y’ li’ v i i ijo jirtji
= <TP IP_FP) Cnf,girFP)} @AAJ[(TQ IQ.FQ> Cﬂ?,@?rFQ)} = POAMQ°
(/Y Y (/Y]

Similarly the results (iv) — (viii) can be proved.
Theorem 3 Let P = [Pj;] and Q = [Q;j]be two NHSRMs with same order, where [Pj;] =

{(Tfﬁf?,F?> (7*’IPFP)}and[Qm]::[<T§;I§,F9) (75 IQFQ)}thml

’ 3 ) )
i ij ij LV ij VY]

(1PUQ QuUP
PANQ=QNP
PoOsMQ = QOamP
PoOwamQ = QOwamP
PoOeuQ = QOemP
Powen®@ = QOwaem P
PoOpMQ = QOumP

POwgmQ = QoOwnmP

S.

RS2 AN NN NG N N

(

(viii

Proof
(i) PuUQ

[ Ir+1¢ P4+ 19
= [ max (TP, 7°), 22— min (FF,F?) | ;| max (TlP,TQ) 9 "W in (FIP,FQ)
i i 2 ij T ij J? g 2 Jo g
I°+17 9+ 17
= | | max (T'Q',T?) ij 5 Y min (FQ, FP> ; (max (TQ TP> TU min (FQ FP))

17771 1777 1)
1] 1] ) )

_ (TQ IQ_FQ> (JﬁﬁfngQ>] [<JJ’IP_FP> (zgﬁlg,ﬁﬁj} —QUP
1 1] 1y Y 13
In similar manner, the results (ii) — (iv) can be proved.

(v) POcm@Q

- <\/TP °, \/IP 19, \/FP FQ> (\/TP 79.\/1h. IZ?,\/E?E?)
- (W o7 fiaf Jee FP) ( TZQTi,\/IQIZ’?v\/E?E?ﬂ

= (1919, F2) (T3, 12.FS) | ©ou rr1f Fr (T8 I5FE)| = QoguP
L\ i i i v i i Y
In similar manner, the results (vi) — (viii) can be proved.

Theorem 4 Let P = [P;;], Q = [Qijland R = [R;;] be three NHSRMs with same order,
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where [P;] = [<TP P FP) (TI;,IZI;',FP)} Qi) = [<I3’I2’5Q> (T?,ij,FQ)] nd

ij ij

[(TR " FR> (ﬂ?,]ﬁ,FRﬂ then

(i) (PUQ)UR=PU(QUR)
(i) (PNQ)NR=PN(QNR)
(iii) (POAMQ)OamR # POan(QOaMmR)
(iv) (P Ogy Q) Oy R # P Ogy (Q Ogyr R)
(V) (PO Q) Opy R# POy (Q Oy R)
Proof
(i) (PUQ)UR
i IP + IQ IP + IQ B B
= max IP,IQ Mmln EP,EQ ; max(TlP,TQ> gmin(ﬂP,FQ>
T 2 i i 7 2 45
U [(TR IR FR> (Zﬁ,lg,FR)}
ij iy i
I P+ 19 + IR
= max (TP TQ TR> L N ,min (FP,FQ,FR> ;
i i i 3 i i i
L -
(max (111{7)7 11?7 ﬂ?) %7 min (Fzéjv Fz?? E?)
19+ 1"
= |:<Tpa IP> FP> (1-;1337 IzI;v FP):| max <TQ TR) uv min <FQ7 FR)
ij i i ijij 2 ij i

19+ 11 0 =
max <TZQ,TZR) R ,min (FQ, FR)>
J J 2 i

=PU(QUR)
In similar manner, the result (ii) can be proved.

(iii) Consider LHS,

(POAMQ)OaMR = R R I R N

2 2

TP +19 1P +19 FP 4+ FQ
< 2 ’ 2 ’ 2

1t 1t

R 1R R R 7R R
Oam |:<T7[7F> (1—;])[1]7}7 ):|
ij g i

(TP+TQ> /2+ TR (IP+IQ> J2+ I (FP+FQ> /2+ F"
ij ij ij ij ij ij ij ij i,
2 ’ 2 ’ 2 ’

P, 70 R (7P, 70 n (PP, FQ -
(75 +78) 2+ T (T +13) 2+ 18 (FS+ED) )2+ Bf N
> ’ 2 ’ >
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Consider RHS of (iii)

T + TR @4 R pQ L FR

Po(@oan) = (17,1787 )i (0. I ) oo | ( g2 50,

7Q PR 7@ L JR FQ L F
2 o2 2

T + (TQ + TR> /2 1P + (IQ + IR> /2 FP + <FQ + FR> /2
_ i gy T “i iy i i ij i .
2 ’ 2 ’ 2 ’

TE + (T2 +T8) j2 Th + (I + IF) /2 FY + (B2 + FE) /2 o
2 ’ 2 ’ 2

From Equation (1) & Equation (2), (POAMQ)OamR # POAM(QOamR)
In similar manner, the results (iv) and (v) can be proved.

Theorem 5 Let P = [P;;] , @ = [Qijland R = [R;;] be three NHSRMs with same order,
where [P;] = KT?’,IP,F?) (75,15 FP)} Qi = KT?,I?,FQ> (75,18 FQ)] nd

ij i EA g i g R
[Ri] = [(le Ii Ff) (Tfj, 1%, FR)} then
(i) PU(QOamR) = (PUQ)oam(PUR)
(i) PN (QoamR) = (PNQ)®am(P NR)
(ili) (POAMQ)UR=(PUR)®AM(QUR)
(iv) (POAMQ)NR=(PNR)OAM(QNR)

Proof

(i) PU(QOAMR)
T4+ TR\ (19+1%\ (F?+F"

ol IR R e B e B e N K
1] (%) (%) 2 2 2
o i
TS+ TR\ (I +IR 9+ Ff
2 ’ 2
T oo I (124172 FQ+ FF
= L in | P94 :
max _Z‘j 9 s 2 , Imin _Z‘j’ B 5

7Q TR TP 7Q TR Q R
(max <T5> Tj5 + T} ) | <Il.j + (I +Iz-j)/2> min (F;”, Fy + Ff >>
2 2 i 2
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TP+T9 TU+T\ (17 +12)/2+ (7 +17)/2 EU+E? FU4ET
o i i i i i i i iJ . i i i iJ
= max 5 s 5 , 5 , 1IN 9 ) 9
Ty + T3 TE+TF\ (U + f-Q>/2 UG+ IR\ (FP+ ] OFY+ Ef
max min
2 ’ 2 ’ ’ 2 ’ 2
IP +IQ IP —I—IQ
= max | TF,T9 L W FP FQ max TP TQ> Y ‘min (FP FQ>
i i 2 j s ’ 2 RO
OAM max <I5,I§> ,%,min FP FR max Tg,TR) % min (F FR)>
P P P 7P 7P [P Q Q Q 7@ 7Q @
() () )
P P P P 7P P R 1R R 7R TR R
A ((TJ’L Ijz FJz) (Tﬂ’Iﬂ’F )> <<T I” g > T]Z’IJ“F )>]
= (PUQ)®am(PUR)

In similar manner, the results (ii) — (iv) can be proved.

4. NHSRM in Multi-attribute Decision-making using Score Function

In this section, we present the application of NHSRM in decision-making using score func-
tion. This proposed work involves evaluating alternatives based on multi-attribute decision-
making problem. The approach focuses on determining the most suitable alternative by ana-
lyzing and ranking them according to multiple attributes. This is achieved by integrating the
NHSRM framework with a score function to ensure a systematic and reliable decision-making
process.

Let us consider a multi-attribute decision-making problem with m alternatives
(Z1,Z2, ..., Zy) and n attribute (Ni, Na,....,Np,). The goal is to evaluate the best score of
m alternatives based on the performance of n attributes, using a structured decision-making
approach. Each alternatives Z;, i=1,2,...,m combined with each attribute IV}, j=1,2,...,n, forms
a relation represented by NHSRM. The corresponding to these NHSRM values are portrayed
in the order m x n. Further, the value matrix is calculated using one of three operators such as
weighted arithmetic mean, weighted geometric mean and weighted harmonic mean. The value
matrix is a real matrix that adheres to all the properties of NHSRM. The score matrix is then
derived from the value matrix using the score function. This function simplifies complex data,
such as those represented in neutrosophic sets, into a scalar value for straightforward com-
parison. By applying the score function within the NHSRM framework, the decision-making
process becomes more efficient and transparent. The function aggregates the values of the
attribute for each alternative, accounting for both the uncertainty and the partial truth-values
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inherent in neutrosophic sets. This enables a clearer comparison of alternatives, even when

the data is incomplete or imprecise.

4.1. Algorithm

(1) Construct NHSRMs as defined in section 3.
(2) Apply weighted arithmetic mean, weighted geometric mean and weighted harmonic
mean mentioned in section 3.2.
3) Calculate the value matrix V[P, Q] by using any one of the three operators in step 2.
4) Determine the score matrix with the help of the value matrix, by the definition 16.
)
)

m
5) Compute the aggregate scores matrix across criteria by using Stotal(Zm) = Y. S(Zi)
i=1

(
(
(
(6) Find the Rank alternative from the aggregate score.

Example 10

To illustrate the working of the decision-making problem, two physician P and Q needs to
select the best treatment plan (Z;, Zs, Z3) for an asthma patient, considering the patient’s
symptoms, response to past treatments, and uncertainty in diagnosis arising from the variable

factors like environmental triggers and patient adherence.

Alternatives (Treatment plan)

(1) Z;: Inhaled corticosteroids
(2) Z: Combination therapy (Inhaled corticosteroids+ long-acting beta agonists)

(3) Z3: Biologics for severe asthma
Attribute for decision-making

(1) Ni: Effectiveness — Symptom Control and Frequency of Exacerbations
(2) Na: Side effects — Short term and Long term
(3) N3: Cost — High and Low

The two physicians give their valuable opinion about the asthma patient in the form of NHSRM
as

N1 N2 N3

Zy | ((0.9,0.5,0.2);(0.8,0.3,0.1)) ((0.8,0.4,0.3);(0.6,0.2,0.1)) ((0.7,0.4,0.1);(0.6,0.3,0.2))
P= Z, | ((0.8,0.3,0.1);(0.7,0.1,0.1)) ((0.7,0.2,0.1);(0.8,0.3,0.1)) ((0.9,0.4,0.3);(0.6,0.3,0.1))
Zs | ((0.7,0.4,0.2);(0.8,0.2,0.1)) ((0.7,0.3,0.2);(0.9,0.4,0.2)) ((0.8,0.3,0.1);(0.7,0.3,0.1))

N1 N2 N3
Zy [{(0.5,0.2,0.1);(0.4,0.3,0.1))  ((0.8,0.6,0.2);(0.7,0.3,0.2)) ((0.7,0.6,0.3);(1.0,0.4,0.2))
Q= Z, |{(0.7,0.6,0.1);(0.8,0.9,0.3)) ((1.0,0.4,0.1);(0.9,0.2,0.3)) ((0.8,0.6,0.3);(0.7,0.5,0.1))
Zs ((0.4,0.3,0.2);(0.7,0.6,0.2)) ((0.7,0.5,0.2);(0.8,0.4,0.1)) ((0.9,0.3,0.2):(0.5,0.3,0.2))
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Weighted Arithmetic Mean

Using section 3.2 (iv), we obtained the value matrix

Ny Ny N3
2 [ < (0.7,0.35,0.1); > < (0.8,0.5,0.25); > < (0.7,0.5,0.05); > ]
(0.6,0.3,0.1) (0.65,0.25,0.15) (0.8,0.35,0.2)
VIP,Q] = 2 < (0.75,0.45,0.1); > < (0.85,0.3,0.1); > < (0.85,0.5,0.3); >
(0.75,0.5,0.2) (0.85,0.25,0.2) (0.65,0.4,0.1)
2 < (0.55,0.35,0.2); > < (0.7,0.4,0.2); > < (0.85,0.3,0.15); >
|\ (0.75,0.4,0.15) (0.85,0.4,0.15) (0.6,0.3,0.15) /|

By using Definition 16, the score matrix is derived from the above value matrix

N1 Ns Ns
A 0.74 0.72 0.73
S(Zm) = Zy 0.71 0.81 0.70
VA 0.70 0.73 0.76

Now compute the aggregate score matrix by adding the entires of the score matrix

2.19
Total Score = | 2.22

2.19

Weighted Geometric Mean

Using section 3.2 (vi), we obtained the value matrix

N Ny N;
2 [ < 0.82,0.56,0.38); > < (0.89,0.7,0.49); > < (0.84,0.7,0.42); > ]
(0.75,0.55,0.32) (0.81,0.49, 0.38) (0.88,0.59, 0.45)
VI[P, Q] 2 < (0.87,0.65, 0.32); > < (0.91,0.53,0.32); > < (0.92,0.7,0.55); >
(0.87,0.55,0.42) (0.92,0.49, 0.42) (0.81,0.62,0.32
2 < (0.73,0.59,0.45); > < (0.84,0.62,0.45); > < (0.92,0.55,0.38); >
|\ (0.87,0.59,0.38) (0.92,0.63,0.38) (0.77,0.55,0.38) / |

The score matrix is constructed from the above Value matrix, as per Definition 16,

Ny Ny Ns
VA 0.63 0.61 0.59
S(Zm) = Zy 0.63 0.68 0.59
Z3 0.60 0.61 0.64
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Now compute the aggregate score matrix by adding the entires of the score matrix

1.83
Total Score = | 1.90
1.85

Weighted Harmonic Mean

Using section 3.2 (viii), we obtained the value matrix

N2 N3
0.8,0.48,0.24); > < (0.7,0.48,0.15);

(0.64,0.29,0.13); 1
(0.53,0.3,0.1) 0.65,0.25,0.13) (0.75,0.34,0.2)
0.82,0.27,0.1); > < (0.85,0.48,0.3); >

virQl=- << (0.75,0.4,0.1); > < )
0.75,0.18,0.15) 0.85,0.24,0.15) (0.65,0.38,0.1)

(0.51,0.35,0.2); (0.7,0.38,0.2); (0.85,0.3,0.13);
< 0.75,0.3,0.13) > < (0.85,0.4,0.13) > < (0.58,0.3,0.13) > ]

By using Definition 16, the score matrix is obtained from the above value matrix

—

Z1

—~ —~

Z3

N, N, N

Z 0.73 0.73 0.71
S(Zm) = Zs 0.78 0.82 0.71
Zs 0.71 0.74 0.76

Now compute the aggregate score matrix by adding the entires of the score matrix

2.16
Total Score = | 2.30
2.21

5. Result and Comparative Analysis

We proposed an algorithm for real world problems and result are compared with those of
the algorithm using three operators (weighted arithmetic mean, weighted geometric mean and
weighted harmonic mean) on NHSRM. The comparative study of the graphical representation
of the ranking of the proposed algorithm for three operators are given in Figure 1. We accrued
the result Zy > Z3 > Z; and the maximum total score is obtained in the Combination therapy
(Z3), which is identified as the best treatment plan for the asthma patients, offering the highest
effectiveness, controllable side effects and reasonable cost.
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F1cURE 1. Comparison of score values between WAM, WGM & WHM

6. Conclusion and Future Work

In this study, a novel concept of NHSRM is introduced, incorporating the fundamental
operators such as union, intersection, arithmetic mean, geometric mean and harmonic mean
which are applied to explore various properties. Moreover, the concept of the score function
is proposed to enhance the effectiveness and applicability of the proposed work. The NHSRM
approach is also applied to multi-attribute decision-making problems, where the proposed
score matrix is derived using three different operators - weighted arithmetic mean, weighted
geometric mean, and weighted harmonic mean. Finally, the results were compared with out-
comes from a numerical study on decision-making problems to validate the performance and
robustness of the proposed NHSRM approach.

In the future, this framework can be extended and integrated with other advanced decision-
making techniques, such as grey system theory, which addresses uncertainty in complex sys-
tems, machine learning algorithms that can provide adaptive and data-driven insights, and
hybrid models that combine the strengths of multiple approaches. This integration could fur-
ther enhance the accuracy, flexibility, and applicability of the framework, allowing it to tackle

a wider range of real-world problems in dynamic and uncertain environments.
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