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Abstract 

Modern cybersecurity infrastructures rely heavily on Intrusion Detection Systems (IDS) to detect 

and prevent malicious activities and unauthorized access. Given the growing complexity of 

network topologies and the rising frequency of cyber threats, evaluating IDS solutions requires a 

systematic and unbiased approach. In this study, thirteen widely used IDS models are assessed 

using a multi-criteria evaluation framework across four key dimensions: detection accuracy, 

resource efficiency, scalability, and false positive rate. The goal is to support informed, data-

driven decision-making for stakeholders such as policymakers, IT administrators, and security 

analysts when selecting an appropriate IDS. The VIKOR method is employed to rank the IDS 

alternatives based on the assigned weights, while Fuzzy OffLogic is applied to integrate expert 

assessments expressed as intervals. The results reveal that modern AI-based IDS models 

demonstrate strong performance in scalability and resource utilization, and they outperform 

traditional systems in adaptability and detection accuracy. 

Keywords: Fuzzy OffLogic; Security; Cyber-Security; Attacks; Intrusion Detection System; MCDM 

Approach. 

______________________________________________________________________________ 

1. Introduction  

One popular cyber security technique is intrusion detection, which looks for hostile activity in 

host and/or network environments. Malicious activity detection allows for prompt action to, for 

instance, halt an ongoing attack. Numerous intrusion detection systems (IDS) have been devised 

and developed by the industrial and research communities due to the significance of intrusion 

detection[1], [2]. The creation of IDS evaluation approaches, techniques, and tools has emerged 

as a crucial area of research due to the growing diversity and complexity of IDSs. IDS assessment 

has several advantages. To implement an IDS that performs best in a particular environment and 

lowers the risks of a security breach, one could, for example, compare many IDS based on how 

well they identify attacks. Additionally, by altering its configuration parameters and examining 

their impact through assessment tests, one can fine-tune an IDS that has already been 

implemented[3], [4]. 
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A wide range of tasks pertaining to IDS evaluation have been carried out by the industrial and 

scientific groups. A structured classification is required to enhance the general comprehension of 

the subject and to give an overview of the present status of the field, given the substantial amount 

of existing theoretical and practical work pertaining to IDS evaluation. Finding and comparing 

the benefits and drawbacks of various IDS evaluation techniques and procedures would be made 

easier with the help of such an overview. Additionally, it would assist in determining the best 

practices and requirements for assessing present and future IDS[5], [6]. 

The workload component of the design space for IDS evaluation. We require both harmful and 

benign workloads to assess an IDS. These can be used independently to gauge an IDS's 

capabilities (for example, as workloads that are pure malicious or pure benign). Workloads that 

only contain attacks are known as pure malicious workloads, while workloads that do not contain 

any attacks are known as pure benign workloads. As an alternative, one can expose an IDS under 

test to realistic threats by using mixed workloads, which are workloads that combine pure benign 

and pure malicious workloads[7], [8]. 

Workloads for IDS assessment often take the form of an executable for live IDS testing or a trace 

form, which is created by recording a live workload execution for subsequent playback.  Tools 

made to analyze trace files are used to execute the trace replay; a popular combination is to utilize 

the utility TCP dump to record network traces for TCP replay to replay later. 

The main benefit of using executable workloads is that they closely mimic actual workloads that 

are monitored by an intrusion detection system while it is in operation. However, setting up a 

malicious workload in executable form necessitates a particular victim environment, which can 

be costly and time-consuming. On the other hand, replaying workload does not always 

necessitate such an environment.  

Furthermore, to guarantee the statistical significance of the observed system behavior, several 

evaluation runs are usually needed. Replicating assessment studies with executable malicious 

workloads is typically difficult, though, because the execution of assaults may cause the victim 

environment to crash or become unstable. Furthermore, the procedure to return the environment 

to its pre-attack form could take a long time[9]. 

2. Literature Review  

If a system possesses the qualities of confidentiality, integrity, and availability of its data and 

services, it is deemed secure. Attacks are intentional attempts to compromise the security features 

listed above. 

Kruegel et al. [10] categorize security measures that uphold the qualities using an attack-centric 

approach. The first class includes mechanisms that keep attackers from getting to the target and 

interacting with it, like access control; the second class includes mechanisms that change the data 

stored there so that an attacker cannot use it, like data encryption; and the third class includes 

mechanisms that identify ongoing attacks based on the presumption that an attacker can get to 
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the target and interact with it. Intrusion detection is a security mechanism that falls under this 

class. 

In terms of computer security regulations, proper usage policies, or typical safety procedures, 

detection of breaches is defined as "the process for tracking occurrences happening on a network 

or computer environment and analyzing them for signs for potential incidents, which are 

infractions or immediate dangers of violation." According to the definition given above, an IDS is 

software that automates the detection of an attack process [11]. 

One area of active research is the assessment of computer intrusion detection systems, or 

intrusion detection systems for short. Milenkoski et al. [12] examined and organized standard 

procedures in the field of evaluating such systems. To do this, they established a design space 

that is divided into three sections: measuring methods, metrics, and workload. By reviewing the 

evaluation techniques and approaches associated with each area of the design space, they then 

gave a summary of the standard procedures in the assessment of intrusion detection systems. 

Lastly, they have gone over unresolved problems and difficulties with an emphasis on assessment 

techniques for innovative intrusion detection systems. 

2.1 multi-criteria decision-making  

Multi-criteria decision-making (MCDM) is a sophisticated process that uses straightforward 

algorithms to provide suitable conclusions with the right ranking. MCDM methods work 

effectively for managing massive volumes of data as well. Numerous algorithms, including 

VIKOR, and the average method, modify the fundamentals of MCDM. The selection of the best 

alternative based on VIKOR, and so on are examples of applications that apply MCDM 

approaches in the context of IDS[13].  

2.2 Intrusion Detection Systems (IDS) 

Information systems protection is greatly aided by intrusion detection systems (IDSs). Numerous 

human or humanoid assailants frequently target cyber-physical systems. The obnoxious, 

dangerous network traffic must be protected from the vital parts and resources of the network 

architecture. IDS plays a very sensitive function in this situation, and its ability to handle various 

attack types from many sources is desperately needed[13], [14].  

IDS provides cyber protection against a range of threats and weaknesses found in Internet 

applications. Any networked environment is full of threats. IDS protects networks by keeping an 

eye on and blocking the entry of anonymous or questionable network traffic. These days, a lot of 

IDS models are created using machine learning techniques. Generally speaking, anomaly 

detection and signature-based prediction are the two approaches used to identify attack 

trends[15], [16].  

Since the majority of IDSs are used in heterogeneous, distributed environments, they must 

constantly process enormous amounts of data with redundant, superfluous features. IDSs 
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occasionally handle data with extraneous aspects as well. The model's training time will 

undoubtedly be slowed down in this scenario, resulting in decreased accuracy. The performance 

of the classifier model will deteriorate as a result. Another important consideration is that a model 

with fewer cum meaningful characteristics is less likely to make mistakes and thus require less 

training time[17], [18]. 

It is challenging to detect anomalies using network intrusion detection systems (NIDS) since 

vulnerable packets attempt to avoid the network and new attacks are created by different 

automated attack-triggering mechanisms.  

2.3 Real-World Deployment Challenges of IDS Models 

Although this study focuses on evaluating IDS performance using structured decision-making 

techniques, actual deployment of these systems in real-world environments comes with 

challenges that are often more complex than test conditions can reveal. 

Many IDS models require specific tuning and configuration based on the network in which they 

are deployed. In practice, setting the right parameters for detection thresholds, processing 

capacities, and alert handling can take significant time and effort. In cloud-based or hybrid 

environments, IDS solutions also face the challenge of integration with virtual infrastructure, 

where data packets may not follow consistent paths, and encryption can obscure inspection. 

Another challenge is related to maintenance. Some models, especially AI-based ones, need 

continuous retraining as attack patterns evolve. Without regular updates, these systems may 

become outdated quickly, losing their detection capabilities. This requires access to updated 

datasets and adequate computational resources, which may not always be available. 

Moreover, system administrators often struggle with balancing detection sensitivity and false 

alarm rates. If the IDS is too sensitive, it may flood the team with alerts. If it's too lenient, real 

threats might be missed. These trade-offs must be handled in living environments under 

pressure, which adds another layer of difficulty compared to controlled simulations. 

2.4 Comparative Summary of Classic vs. AI-based IDS 

The evaluation in this study includes both traditional IDS like Snort and Zeek and newer AI-

driven systems such as QRadar and Darktrace. While the numerical analysis shows differences 

in detection accuracy, resource efficiency, and scalability, a broader view helps explain why AI-

based systems often rank higher. 

Classic IDS models generally rely on pre-defined rules and signature databases. Their strength 

lies in predictability and low resource usage. They are open-source and flexible, often used by 

organizations with tight budgets or high customization needs. However, these models may 

struggle when faced with unknown or fast-changing threats. 
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In contrast, AI-based IDS solutions adapt more quickly to new patterns. They analyze behavior 

rather than signatures, which helps detect previously unseen attacks. These systems also scale 

more easily in distributed environments and can process high volumes of data in real time. 

However, AI-based models are not without drawbacks. They typically require more system 

resources and a complex initial setup. They may also act like “black boxes,” making it harder for 

teams to understand how decisions are made. Despite this, the overall analysis from this study 

suggests that their performance advantages in scalability and accuracy often outweigh these 

limitations. 

2.5. Evaluation of Trade-Offs in Multi-Criteria Decision-Making 

The study uses four criteria to evaluate IDS: detection accuracy, resource efficiency, scalability, 

and false positive rate. Each of these metrics reflects a different aspect of system performance, but 

choosing the right balance between them is not always straightforward. 

For instance, systems with high detection accuracy may also generate more false positives. This 

can lead to alert fatigue, where security teams begin ignoring warnings. On the other hand, 

reducing the false positive rate too much might result in more attacks slipping through 

undetected. Similarly, some models perform well in terms of accuracy and low false positives but 

consume significant computational resources, making them unsuitable for low-power 

environments like IoT or edge computing. 

The VIKOR method, supported by Fuzzy OffLogic, helps manage these trade-offs by assigning 

weights to each criterion. However, it’s important to recognize that these weights reflect expert 

opinions, which may differ between organizations based on their specific needs. A system chosen 

by one company as “best” may not be the top choice in another with different operational 

priorities. 

This trade-off analysis highlights the need for flexible evaluation models that can be adapted to 

various contexts, rather than promoting one-size-fits-all solutions. 

3. Fuzzy OffLogic 

In 2007, Smarandache extended the concept of the uncertain set to include three generalized 

forms: the uncertain OverSet, the uncertain UnderSet, and the uncertain OffSet [19], [20]. The 

OverSet accounts for cases in which some components have values greater than 1. For instance, 

an employee who works overtime may justifiably receive a degree of membership greater than 1, 

compared to a full-time employee whose degree is equal to 1. The UnderSet, on the other hand, 

applies when a component has a value less than 0. As an example, an employee who causes more 

harm than benefit to their organization may be assigned a membership degree less than zero, in 

contrast to a productive employee with a positive membership value. 

The OffSet is a more general case in which certain components lie outside the standard interval 

[0,1][0, 1][0,1], meaning some values are greater than 1 while others are less than 0. This allows 
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the model to represent more complex or extreme situations that cannot be captured using 

traditional fuzzy logic. 

Smarandache also extended other uncertain frameworks—such as logic, measure, probability, 

and statistics—into their corresponding Over-, Under-, and Off- variants. By "uncertain," he refers 

to all generalizations of fuzzy logic, including intuitionistic fuzzy sets, neutrosophic logic, 

spherical fuzzy models, and plithogenic sets [21], [22]. 

To illustrate this concept in a practical context, consider a student who earns an A+ grade. The 

Fuzzy OffTruth value associated with their performance may fall in a range such as [1.0,1.1][1.0, 

1.1][1.0,1.1], even though the overall evaluation scale spans from [−1.2,1.1][-1.2, 1.1][−1.2,1.1] [23]. 

This reflects performance that slightly exceeds the conventional maximum and demonstrates the 

flexibility of OffLogic in capturing overachievement. 

3.1 Illustrative Examples of Fuzzy OffLogic Calculations 

Consider the following examples that demonstrate how to compute the OffLogic value when 

evaluating outcomes that may extend beyond the conventional [0, 1] interval. 

Example 1 

Suppose a student receives a result represented by the interval [1.0,1.1], within a full range that 

spans from −1.2-  to 1.11  The Fuzzy OffLogic value can be calculated using the following 

expression: 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 1.0

1.1 − (−1.2)
=

0.1

2.3
= 0.043                                                                                                              (1) 

This small value indicates a slight overperformance relative to the upper bound of the standard 

fuzzy scale. 

Example 2 

In another scenario, if the outcome interval lies between [9.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 9.0

1.1 − (−1.2)
=

0.2

2.3
= 0.086                                                                                                              (2) 

This significantly negative value reflects a performance that extends far beyond the typical 

bounds and is interpreted as an extreme deviation from the expected range. 

Example 3 

Similarly, if another individual scores between [8.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 8.0

1.1 − (−1.2)
=

0.3

2.3
= 0.130                                                                                                              (5) 
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This also indicates a substantial departure from the neutral range, with the score falling well 

outside conventional expectations. 

Example 4 

if another individual scores between [7.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 7.0

1.1 − (−1.2)
=

0.4

2.3
= 0.1739                                                                                                            (6) 

Example 5 

if another individual scores between [6.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 6.0

1.1 − (−1.2)
=

0.5

2.3
= 0.217                                                                                                              (7) 

Example 6 

if another individual scores between [5.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 5.0

1.1 − (−1.2)
=

0.6

2.3
= 0.260                                                                                                              (8) 

Example 7 

if another individual scores between [4.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 4.0

1.1 − (−1.2)
=

0.7

2.3
= 0.304                                                                                                              (9) 

Example 8 

if another individual scores between [3.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 3.0

1.1 − (−1.2)
=

0.8

2.3
= 0.347                                                                                                            (10) 

Example 9 

if another individual scores between [2.0,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 2.0

1.1 − (−1.2)
=

0.9

2.3
= 0.391                                                                                                            (11) 

Example 10 

if another individual scores between [0.1,1.1] to the test out of [-1.2,1.1]. 

𝐹𝑂𝑓𝑓𝑙𝑜𝑔𝑖𝑐 =
1.1 − 0.1

1.1 − (−1.2)
=

1

2.3
= 0.434                                                                                                            (12) 
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These examples demonstrate how Fuzzy OffLogic flexibly handles values outside the standard 

fuzzy range. It allows for more expressive evaluations of performance, especially when 

considering overachievement or underperformance beyond the limits of traditional logic. 

3.2 Enhancing Fuzzy OffLogic Interpretability 

Fuzzy OffLogic was used in this study to convert expert opinions, expressed as intervals, into 

crisp values for ranking. While this approach improves flexibility and allows for uncertainty, 

understanding how these values are derived can be challenging for users unfamiliar with the 

logic behind it. 

The core idea of OffLogic is that decision scores can extend beyond the traditional [0,1] range 

allowing some values to be greater than 1 or less than 0. This helps model situations where an 

option is considered better than “perfect” or worse than “completely unacceptable.” For example, 

if one IDS detects attacks before they even reach the system, its value for accuracy might logically 

exceed 1 in a relative sense. 

However, such concepts can be difficult to interpret for practitioners who are used to 

conventional logic systems. One way to make this clearer is by providing visual aids or simple 

examples during decision-making. A dashboard that maps OffLogic scores to understandable 

categories like “very strong,” “satisfactory,” or “needs review” could help bridge the gap between 

complex calculations and practical decisions. 

Ultimately, Fuzzy OffLogic adds depth to the evaluation, but it also requires careful explanation 

if it's going to be adopted outside of academic or highly technical settings. 

3.3 Applying VIKOR under Fuzzy OffLogic for Multi-Criteria IDS Evaluation 

In this section, the VIKOR method is applied in combination with Fuzzy OffLogic to evaluate and 

rank intrusion detection systems (IDS) based on multiple performance criteria. The integration of 

these two techniques allows decision-makers to work with uncertain and imprecise input from 

experts while still producing reliable and consistent rankings. 

The process begins with experts constructing a decision matrix by evaluating each IDS alternative 

against the defined criteria. These evaluations are not expressed as fixed numbers but rather as 

intervals to reflect uncertainty or varying confidence levels. Fuzzy OffLogic is used to convert 

these intervals into crisp values. This method allows components to exceed traditional 

boundaries, meaning values may fall outside the standard range of [0, 1], depending on the 

strength or weakness of a given performance assessment. 

After obtaining crisp values, the average method is used to calculate the weights of the criteria. 

These weights reflect the relative importance of each criterion in the evaluation process and are 

critical for establishing a balanced decision model. 
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Once the decision matrix and weights are finalized, the VIKOR method is applied through a series 

of structured steps. The first step involves normalizing the decision matrix for both benefit and 

cost-type criteria using equations (13) and (14), as shown in Figure 1. This ensures that all values 

are comparable across different scales. Then, the weighted normalized decision matrix is 

calculated using equation (15), as illustrated in Figure 2. 

𝑌𝑖𝑗 =
max

𝑖
𝑥𝑖𝑗−𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗−min
𝑖

𝑥𝑖𝑗
                                                                                                                                                                 (13) 

𝑌𝑖𝑗 =
min

𝑖
𝑥𝑖𝑗−𝑥𝑖𝑗

min
𝑖

𝑥𝑖𝑗−max
𝑖

𝑥𝑖𝑗
                                                                                                                                                                 (14) 

𝑈𝑖𝑗 = 𝑤𝑗𝑌𝑖𝑗                                                                                                                                                                 (15) 

Next, two key indicators  S (representing the overall utility) and R (representing the individual 

regret)—are computed using equations (16) and (17). These indicators capture both the collective 

performance of each alternative and its weakest performance under any specific criterion. The 

values are shown in Figure 3. 

𝑆𝑖 =  ∑ 𝑈𝑖𝑗
𝑛
𝑗=1                                                                                                                                                                  (16) 

𝑅𝑖 =  max
𝑗

𝑈𝑖𝑗                                                                                                                                                                 (17) 

Using equation (18), the final index Pi   is computed for each alternative. This value combines both 

S and R, weighted by a parameter H, which was set to 0.5 in this study to reflect equal importance 

between group utility and individual regret. The final scores are presented in Figure 4. 

𝑃𝑖 =  𝐻 × (
𝑆𝑖−min

𝑖
𝑆𝑖

max
𝑖

𝑆𝑖−min
𝑖

𝑆𝑖
) + (1 − 𝐻) ∗ (

𝑅𝑖−min
𝑖

𝑅𝑖

max
𝑖

𝑅𝑖−min
𝑖

𝑅𝑖
)                                                                                                 (18) 

Finally, the alternatives are ranked based on their Pi  values in ascending order, where lower 

values indicate better overall performance. The resulting rankings are shown in Figure 5, 

providing a clear and structured assessment of which IDS solutions offer the best balance across 

all evaluation dimensions. 

By integrating Fuzzy OffLogic with the VIKOR method, this approach captures expert 

uncertainty while supporting precise decision-making. It offers a robust framework for 

evaluating complex systems like IDS in a flexible yet mathematically rigorous manner. 

4. Experimental Results  

This section presents a detailed evaluation of thirteen intrusion detection system (IDS) models 

using a structured decision-making framework. The aim is to assess each model based on its 

performance across four core criteria that reflect the essential capabilities of IDS in real-world 

cybersecurity environments. To ensure fairness and objectivity, the evaluation process was 

conducted in collaboration with three domain experts who contributed their judgments based on 

their experience. 
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The experts first defined the decision matrix by assigning values to each criterion for all 13 IDS 

models. Instead of using fixed values, they worked with performance intervals that reflect the 

uncertainty often present in subjective evaluations. These intervals were then processed using 

Fuzzy OffLogic, which translates imprecise values into crisp numbers. This method allows more 

flexible handling of expert input while maintaining mathematical consistency. 

The evaluation was based on the following four key criteria: 

1. C1: Detection Accuracy: This measures how well the IDS can identify and correctly 

classify malicious activities. A higher accuracy means the system can detect threats more 

reliably, reducing the chances of undetected intrusions. As expected, this criterion 

received the highest priority, as accurate detection is the primary goal of any IDS. 

2. C2: Resource Efficiency: This criterion evaluates the system's use of CPU, memory, and 

bandwidth. Efficient systems can operate without placing a heavy load on hardware 

resources, making them suitable for deployment in environments where computational 

capacity is limited. 

3. C3: Scalability: Scalability reflects the system's ability to manage increased traffic and 

expand across distributed network environments. This is particularly important for larger 

organizations or systems operating in dynamic and growing infrastructures. 

4. C4: False Positive Rate: A false positive occurs when legitimate activity is incorrectly 

flagged as a threat. While lower in priority compared to the other three, minimizing false 

positives is essential to avoid overwhelming system administrators with unnecessary 

alerts and to maintain trust in the system's outputs. 

The weights assigned to each criterion were calculated using the average method based on the 

experts’ input. The results of this weighting reflect the practical priorities in IDS performance: 

1) Detection Accuracy (C1) received a weight of 0.2611, confirming its status as the most 

crucial aspect. 

2) Resource Efficiency (C2) followed closely with 0.2500, indicating the high value placed on 

system performance and stability. 

3) Scalability (C3) was assigned 0.2476, showing that the ability to adapt to larger or evolving 

networks is nearly as important. 

4) False Positive Rate (C4) held a weight of 0.2412, still significant but slightly lower, 

recognizing its role in operational efficiency without overshadowing detection 

capabilities. 

By using the VIKOR method alongside Fuzzy OffLogic, the evaluation was able to produce 

refined, balanced, and interpretable scores for each IDS model. These scores reflect how each 

system performs across a combination of technical and operational requirements, providing a 

clear foundation for comparing alternatives in a structured, data-driven way. 

 

 



Neutrosophic Sets and Systems, Vol. 85, 2025                                                                                                                         353 

________________________________________________________________________________________________________ 

____________________________________________________________________________________________ 
Zhengrui Yang, Evaluation of Intrusion Detection Systems in Cyber Security using Fuzzy OffLogic and MCDM Approach 

Table 1. The values of the decision matrix. 
 C1 C2 C3 C4 

A1 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) 

A2 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A3 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A4 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A5 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A6 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A7 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A8 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) 

A9 ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A10 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A11 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A12 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A13 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

 C1 C2 C3 C4 

A1 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) 

A2 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A3 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A4 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A5 ([0.40, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A6 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) 

A7 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A8 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A9 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A10 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A11 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A12 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A13 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

 C1 C2 C3 C4 

A1 ([0.40, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) 

A2 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) 

A3 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) 

A4 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A5 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A6 ([0.40, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) 

A7 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A8 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) 

A9 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A10 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A11 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A12 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A13 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

 C1 C2 C3 C4 

A1 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) 

A2 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A3 ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A4 ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A5 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) 

A6 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) 

A7 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A8 ([0.30, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) 

A9 ([0.20, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) 

A10 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.90, 1.1] ,[-1.2, 1.1]) ([0.80, 1.1] ,[-1.2, 1.1]) ([0.70, 1.1] ,[-1.2, 1.1]) 

A11 ([0.70, 1.1] ,[-1.2, 1.1]) ([0.40, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A12 ([0.90, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) 

A13 ([0.10, 1.1] ,[-1.2, 1.1]) ([0.20, 1.1] ,[-1.2, 1.1]) ([0.30, 1.1] ,[-1.2, 1.1]) ([0.10, 1.1] ,[-1.2, 1.1]) 
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To proceed with the evaluation, the normalized decision matrix was computed for both positive 

and negative criteria using equations (13) and (14). This normalization step ensured that all 

criteria, regardless of their nature or units, could be compared on the same scale. The process 

allowed for a fair transformation of values across different metrics, whether they were to be 

maximized or minimized. The resulting normalized matrix is illustrated in Figure 1. 

Once the criteria were normalized, the next step was to apply the previously determined weights 

to each criterion. Using equation (15), the weighted decision matrix was calculated, capturing the 

relative importance of each criterion as defined by the expert inputs. This step helped align the 

raw evaluation data with the practical priorities of the decision context. The final weighted values 

are displayed in Figure 2. 

Following the construction of the weighted matrix, the VIKOR method was employed to calculate 

two performance indices, S and R, for each alternative. These values were computed using 

equations (16) and (17), as shown in Figure 3. The S index reflects the overall group utility, while 

the R index focuses on the regret measure, representing the worst-case performance relative to 

any specific criterion. 

After obtaining the S and R values, the final score for each alternative was computed using 

equation (18). This equation integrates both S and R into a single measure, denoted as Pi, to 

determine the overall compromise solution. For this analysis, the value of H was set to 0.5 to give 

equal importance to both group utility and individual regret. The final calculated scores are 

presented in Figure 4.  Based on the values of Pi, the alternatives were ranked from best to worst, 

where a lower Pi, value indicated a better overall performance. This final ranking, which reflects 

a balanced view of the alternatives across all criteria, is summarized in Figure 5. 

 

 
Fig 1. The normalized decision matrix. 
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Fig 2. The weighted decision matrix. 

 
Fig 3. The values of S and R. 

 
Fig 4. The values of 𝑃𝑖. 
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Fig 5. The ranks of alternatives. 

5. Sensitivity Testing and Ranking Stability 

This section aims to vary the parameter H in the VIKOR method between 0 and 1 and to rank the 

alternatives based on the resulting values to assess the stability of the rankings. Figure 6 illustrates 

the different Pi values obtained across the range of H, while Figure 7 presents the corresponding 

ranks of the alternatives under these varying conditions. The results indicate that the rankings 

remain stable across different values of H, demonstrating the robustness of the proposed 

evaluation approach. 

 
Fig 6. The new values of 𝑃𝑖 . 

 
Fig 7. The new values rank. 
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As part of the final evaluation using the VIKOR method, the ranking of the thirteen IDS 

alternatives was analyzed across different values of the parameter H, which represents the 

balance between group utility and individual regret. This analysis provides deeper insight into 

how each system responds to changes in the decision-makers' preference for compromise versus 

strict performance consistency. 

IDS1 showed a notable improvement in ranking as H increased. Although it began in ninth place 

when H was set to zero, it quickly rose and stabilized at the fourth position from H = 0.2 onward. 

This shift reflects the model’s ability to deliver more balanced and reliable results when 

preferences are considered, indicating a solid performance across multiple criteria without major 

weaknesses. 

In contrast, IDS2 remained consistently near the bottom, occupying either the eleventh or twelfth 

position across all H values. This suggests that its performance did not improve even when 

criteria weights were adjusted, indicating a general lack of adaptability or deficiency in key areas 

such as detection accuracy or resource efficiency. 

IDS3 started strong with a second-place ranking but gradually settled in fifth place, where it 

remained steady. This pattern implies that while IDS3 performs very well in raw, unweighted 

conditions, it does not gain further advantage when additional preference intensity is introduced, 

perhaps due to limited flexibility in handling varied priorities. 

IDS4 demonstrated the most consistent and high-ranking performance in the study. It started at 

fourth position and quickly rose to the top, maintaining first place from H = 0.1 to H = 1.0. Such 

stability at the top of the ranking indicates that IDS4 excels in all evaluated criteria and adapts 

effectively to shifts in decision-making emphasis, making it a strong candidate for deployment. 

IDS5 maintained a position between third and fifth across all values of H, reflecting consistent 

and reliable performance. Although it did not reach the top rank at any point, its steady results 

indicate that it handles all criteria reasonably well, with only minor limitations preventing it from 

outperforming the leading systems. 

IDS6 remained in last place across all evaluations, consistently ranking thirteenth. This points to 

a lack of strength in every evaluated area and suggests that the model struggles to meet the 

minimum expectations for a reliable IDS under varying weight distributions. 

IDS7 showed no significant movement in its ranking, holding eighth place through the entire 

range of H values. This reflects a system with average performance that is steady but lacks 

competitiveness to challenge higher-performing alternatives. 

IDS8 remained in the lower tier, shifting slightly between the tenth and twelfth positions. 

Although it showed a minor early improvement, it was not enough to escape the bottom ranks, 

indicating that the model does not align well with the criteria given the weightings used in this 

analysis. 
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IDS9 began in sixth place but quickly rose to second and stayed there from H = 0.1 onward. This 

jump suggests that IDS9 aligns strongly with the weighted preferences, demonstrating strength 

across the most important evaluation dimensions, and positioning it as one of the most capable 

systems in the group. 

IDS10 began with a promising third-place rank but gradually dropped to seventh, where it 

stabilized. This decline implies that while the system performs well under balanced criteria, it 

loses effectiveness as more weight is placed on specific performance aspects, indicating 

limitations in scalability or adaptability. 

IDS11 had an unusual pattern. It was ranked first when all criteria were treated equally at H = 0 

but fell to ninth place as H increased. This change indicates that the system initially appeared 

strong across general criteria, but its performance did not hold up under more focused 

weightings, suggesting a lack of depth in specific areas. 

IDS12 shifted between sixth and eighth place, showing modest capability but without any 

moment of breakthrough. Its performance was stable but lacked any standout feature that would 

push it into the top ranks. 

Finally, IDS13 began in tenth place and dropped further to twelfth, suggesting weak performance 

and poor adaptability across all weight conditions. Like IDS2 and IDS6, its position at the lower 

end of the ranking highlights consistent underperformance across the board. 

6. Conclusions and Future Studies 

This study provided a comprehensive framework for evaluating intrusion detection systems 

(IDS) based on four critical criteria. The comparison of thirteen IDS solutions demonstrated that 

while traditional models such as Snort and Zeek remain valuable due to their open-source nature 

and strong community support, AI-driven systems like Darktrace and IBM QRadar tend to 

perform better in terms of detection accuracy and scalability.  The findings emphasize the 

importance of a balanced selection process that aligns with an organization’s threat landscape, 

operational goals, and technical infrastructure. To manage multiple evaluation factors, a multi-

criteria decision-making (MCDM) approach was adopted. The VIKOR method was specifically 

applied to rank the IDS alternatives and identify the most suitable solution.  A sensitivity analysis 

was conducted by varying key parameters within the VIKOR method to observe their impact on 

system rankings. The results confirmed that the proposed evaluation approach is robust, with 

rankings remaining stable under different parameter settings. 

For future work, it is recommended to incorporate real-time adaptive learning capabilities into 

the evaluation criteria. Additionally, deeper integration with security information and event 

management (SIEM) platforms could enhance the practical relevance of IDS assessments and 

support more dynamic and intelligent threat response systems. 
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