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1. Introduction

In [15], Schein conducted a study on functions of the form (Σ, ◦, \), where Σ represents a

collection of systems that is closed under function composition ◦ (making (Σ, ◦) a function

semigroup) and set-theoretic subtraction \ (making (Σ, \) a subtraction algebra). Zelinka

conducted a study on Schein’s multiplication structure and successfully resolved a problem

related to atomic subtraction algebras, as documented in [18]. In subtraction algebras [8],

Jun et al. explored the notion of ideals by examining their characterization. Jun et al. [7]

investigated the ideals generated by a set and their corresponding consequences. Dheena et

al. [2] proposed the concepts of near-subtraction semigroups along with their strongly regular

variants. The authors discovered a strongly regular equivalent assertion for a near-subtraction

semigroup.

According to Zadeh [17], a fuzzy subset κ of a set L can be characterized as a function

assigning to each element of L a value within the range [0, 1]. Subsequently, this notion has

been efficiently employed in various domains, such as image manipulation, system regulation,
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engineering, robotics, industrial automation, and optimisation. Molodtsov’s soft set theory,

developed in 1999 as an extension of fuzzy set theory, has demonstrated its effectiveness in

various domains. The idea of fuzzy bi-ideals in near-subtraction semigroups was introduced

by Chinnadurai et al. in their paper [1]. The authors also provided several characterizations

of these fuzzy bi-ideals.

In response to the persistent uncertainty, Smarandache devised neutrosophic sets. Both

fuzzy sets and intuitionistic fuzzy sets exhibit an increased scope. The three attributes, namely

falsity (F), indeterminacy (I), and truth (T), can be employed to characterise neutrosophic

sets. In order to address problems arising from vague information, these collections can be

utilised in various manners. A neutrosophic set can be used to differentiate between absolute

and relative membership functions. Smarandache utilised these collections for unorthodox

analyses, including sports outcomes (loss, draw, and victory), decision-making theory, and

similar subjects. Khan et al. studied ϵ-neutrosophic κ-subsemigroup and a semigroup in

[9]. Elavarasan et al. [3] investigated the concept of neutrosophic κ-ideals in semigroups.

Elavarasan et al. analysed the properties of neutrosophic bi-filters and filters in semigroups [4].

In [12], Muhiuddin et al. defined and described neutrosophic κ-interior ideals and neutrosophic

κ-ideals in ordered semigroups, respectively. This area has been explored by several authors

(See [4–6,13,14,16]).

In [11], Muhiuddin et al. examined neutrosophic N−ideals and discovered several analogous

findings in near-subtraction semigroups. In addition, they showcased the idea of a neutrosophic

κ− intersection. Furthermore, the researchers explored the concept of a homomorphism in a

near-subtraction semigroup with a neutrosophic κ− structure. They derived several results

based on the preimage of a neutrosophic κ− left (or right) ideal in a homomorphic neutrosophic

κ− structure.

As an extension of these ideas, this paper introduces the idea of neutrosophic κ− bi-ideals

in near-subtraction semigroups and makes some statements that go with it. Here, we present

an example that illustrates the fact that not all neutrosophic κ− bi-ideals can be classified as

neutrosophic κ− ideals. Moreover, we establish the definition of the preimage of a neutrosophic

κ− bi-ideal in near-subtraction semigroups.

2. Preliminaries

We will provide some fundamental definitions of near-subtraction semigroups and hybrid

structures. The power set of a set J is represented by P(J).

Definition 2.1. [15] Subtraction algebra is defined as a set N( ̸= ∅) with the binary operation

“−” that satisfies the conditions:

(i) h1 − (w1 − h1) = h1,
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(ii) h1 − (h1 − w1) = w1 − (w1 − h1),

(iii) (h1 − w1)− s1 = (h1 − s1)− w1 ∀h1, w1, s1 ∈ N.

Definition 2.2. [2] A right (resp., left) near-subtraction semigroup refers to a non-empty set

N equipped with two binary operations, denoted by “−” and “·”, which satisfy the following

specific conditions:

(a) (N,−) is a subtraction algebra.

(b) (N, ·) is a semigroup.

(c) (j0 − j1)j2 = j0j2 − j1j2 (resp., j0(j1 − j2) = j0j1 − j0j2) ∀j0, j1, j2 ∈ N.

It is obvious that 0l0 = 0 ∀l0 ∈ N.
Unless otherwise specified, the term N refers to a right near-subtraction semigroup (briefly,

NSS).

Definition 2.3. [2] For a NSS N,
(i) N is called a zero-symmetric if k10 = 0 ∀k1 ∈ N.
(ii) J ⊆ N\{∅} is defined as a near-subtraction subsemigroup of N if y0 − y1, y0y1 ∈ J

whenever y0, y1 ∈ J.

Definition 2.4. [10] For C,D ∈ P(N), the product and ∗ product are described as below:

CD = {c1d1 | c1 ∈ C and d1 ∈ D}.

C ∗D = {c1d1 − c1(c
′
1 − d1) | c1, c′1 ∈ C and d1 ∈ D}.

Definition 2.5. [2] A subset J of a subtraction algebra N is considered a subalgebra of N if,

for any elements h0 and a1 in J , the difference h0 − a1 also belongs to J .

Definition 2.6. [2] F ∈ P(N)\{∅} is termed as

(i) a left ideal if F is a subalgebra of (N,−) & fs0 − f(v − s0) ∈ F ∀f, v ∈ N; s0 ∈ F .

(ii) a right ideal if F is a subalgebra of (N,−) & FN ⊆ F .

(iii) an ideal if F is both a left & a right ideal.

Definition 2.7. [10] A subalgebra W of N is termed as a bi-ideal if WNW ∩WN ∗W ⊆ W.

3. Basics of Neutrosophic κ- structures

This section introduces the fundamental concepts of neutrosophic κ-structures of N, which
are required for the sequel. For N(̸= ∅), F(N, I−) refers to the gathering of negative-valued

functions from N to I−, where I− = [−1, 0]. An element k1 ∈ F(N, I−) is called as a κ-function
on N, & κ-structure represents (N, k1) of N.”

Definition 3.1. [9] The neutrosophic κ-structure of a set K(̸= ∅) is described as follows:

KW := K
(TW ,IW ,FW ) =

{
r0

(TW (r0),IW (r0),FW (r0))
: r0 ∈ K

}
,
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where, in K, TW denotes the function corresponding to the degree of negative truth, IW

signifies the function associated with the degree of negative uncertainty, and FW indicates the

function that measures the extent of negative falsity.

Clearly KW satisfies the requirement: −3 ≤ TW(h1) + IW(h1) + FW(h1) ≤ 0 ∀h1 ∈ K.

Definition 3.2. [9] For K( ̸= ∅), let KN = K
(TN ,IN ,FN ) and θ, φ, γ ∈ I− with θ+φ+γ ∈ [−1, 0].

Consider the sets:

T θ
N = {a1 ∈ K | TN (a1) ≤ θ}, IφN = {a1 ∈ K | IN (a1) ≥ φ}, F γ

N = {a1 ∈ K|FN (a1) ≤ γ}.
Then KN (θ, φ, γ) = {a1 ∈ K|TN (a1) ≤ θ, IN (a1) ≥ φ, FN (a1) ≤ γ} is termed as a (θ, φ, γ)-level

set of KN . Clearly KN (θ, φ, γ) = T θ
N ∩ IφN ∩ F γ

N .

Definition 3.3. [9] For a NSS N(̸= ∅), let NJ := N
(TJ,IJ,FJ)

and NV := N
(TV ,IV ,FV ) ,

(i) NJ is referred as a neutrosophic κ-substructure of NV , denoted by NJ ⊆ NV , if it meets

the following conditions: ∀a0 ∈ N,

TJ(a0) ≥ TV (a0), IJ(a0) ≤ IV (a0), FJ(a0) ≥ FV (a0).

If NJ ⊆ NV & NV ⊆ NJ, then NJ = NV .

(ii) the intersection of NJ & NV is a neutrosophic κ-structure is termed as follows:

NJ ∩ NV = NJ∩V = (N;TJ∩V,IJ∩V,FJ∩V ), where, ∀ a0 ∈ N,
(TJ ∩ TV )(a0) =TJ∩V (a0) = TJ(a0) ∨ TV (a0),

(IJ ∩ IV )(a0) =IJ∩V (a0) = IJ(a0) ∧ IV (a0),

(FJ ∩ FV )(a0) =FJ∩V (a0) = FJ(a0) ∨ FV (a0).

(iii) the union of NJ & NV is a neutrosophic κ-structure is termed as follows:

NJ ∪ NV = NJ∪V = (N;TJ∪V,IJ∪V,FJ∪V ), where, ∀ a0 ∈ N,
(TJ ∪ TV )(a0) =TJ∪V (a0) = TJ(a0) ∧ TV (a0),

(IJ ∪ IV )(a0) =IJ∪V (a0) = IJ(a0) ∨ IV (a0),

(FJ ∪ FV )(a0) =FJ∪V (a0) = FJ(a0) ∧ FV (a0).

(iv) the subtraction of NJ & NV is a neutrosophic κ-structure is termed as follows:

NJ − NV = NJ−V = (N;TJ−V,IJ−V,FJ−V ), where, ∀ a0 ∈ N,

(TJ − TV )(a0) =TJ−V (a0) =


∧

a0=f0−c0

{TJ(f0) ∨ TV (c0)} if a0 = f0 − c0

0 otherwise,

,

(IJ − IV )(a0) =IJ−V (a0) =


∨

a0=f0−c0

{IJ(f0) ∧ IV (c0)} if a0 = f0 − c0

−1 otherwise,

,

(FJ − FV )(a0) =FJ−V (a0) =


∧

a0=f0−c0

{FJ(f0) ∨ FV (c0)} if a0 = f0 − c0

0 otherwise.

.
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(v) the product of NJ & NV is a neutrosophic κ-structure over N and is defined as follows:

NJNV = NJV = (N;TJV,IJV,FJV ), where, for any h0 ∈ N,

(TJTV )(h0) =TJV (h0) =


∧

h0=f0c0

{TJ(f0) ∨ TV (c0)} if h0 = f0c0

0 otherwise,

,

(IJIV )(h0) =IJV (h0) =


∨

h0=f0c0

{IJ(f0) ∧ IV (c0)} if h0 = f0c0

−1 otherwise,

,

(FJFV )(h0) =FJV (h0) =


∧

h0=f0c0

{FJ(f0) ∨ FV (c0)} if h0 = f0c0

0 otherwise.

.

(vi) the *-product of NJ & NV is a neutrosophic κ-structure over N and is defined as follows:

NJ ∗ NV = NJ∗V = (N;TJ∗V,IJ∗V,FJ∗V ), where, for any h0 ∈ N,

(TJ ∗ TV )(h0) =TJ∗V (h0) =


∧

h0=z0c0−z0(b0−c0)

{TJ(z0) ∨ TV (c0)} if h0 = z0c0 − z0(b0 − c0)

0 otherwise,

,

(IJ ∗ IV )(h0) =IJ∗V (h0) =


∨

h0=z0c0−z0(b0−c0)

{IJ(z0) ∧ IV (c0)} if h0 = z0c0 − z0(b0 − c0)

−1 otherwise,

,

(FJ ∗ FV )(h0) =FJ∗V (h0) =


∧

h0=z0c0−z0(b0−c0)

{FJ(z0) ∨ FV (c0)} if h0 = z0c0 − z0(b0 − c0)

0 otherwise.

.

Definition 3.4. For V0 ⊆ N ̸= ∅, the neutrosophic κ-structure

χV0(ND) =
N

(χV (T )D,χV (I)D,χV (F )D) ,

where

χV0(T )D : N → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

χV0(I)D : N → I−, j1 →

{
0 if j1 ∈ V0

−1 if j1 /∈ V0,

χV0(F )D : N → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

is the characteristic neutrosophic κ-structure of V0 over N.
If V0 = N, then we use that χN(ND) = B.

4. Properties of neutrosophic κ-bi-ideals

In this portion, we define the idea of neutrosophic κ-bi-ideals of near-subtraction semigroups

and build an example to show that every neutrosophic κ-bi-ideal need not be a hybrid ideal
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of near-subtraction semigroups. Within near-subtraction semigroups, we define neutrosophic

κ intersection and provide some results about neutrosophic κ-bi-ideals.

Definition 4.1. A neutrosophic κ-subalgebra NJ := N
(TJ ,IJ ,FJ )

of N is termed as a neutrosophic

κ-bi-ideal of N if (NJBNJ) ∩ (NJB ∗ NJ) ⊆ NJ .

Definition 4.2. A neutrosophic κ-structure NB = N
(TB ,IB ,FB) of N is termed as a neutrosophic

κ-ideal of N if it fulfils the assertions:

(i) (∀u1, g1 ∈ N)

 TB(g1 − u1) ≤ TB(g1) ∨ TB(u1)
IB(g1 − u1) ≥ IB(g1) ∧ IB(u1)
FB(g1 − u1) ≤ FB(g1) ∨ FB(u1)

 .

(ii) (∀c1, j1, u1 ∈ N)

 TB(c1u1 − c1(j1 − u1)) ≤ TB(u1)
IB(c1u1 − c1(j1 − u1)) ≥ IB(u1)
FB(c1u1 − c1(j1 − u1)) ≤ FB(u1)

.

(iii) (∀u1, q1 ∈ N)

 TB(u1q1) ≤ TB(u1)
IB(u1q1) ≥ IB(u1)
FB(u1q1) ≤ FB(u1)

.

A subset NB of N is termed a left hybrid ideal if conditions (i) and (ii) are satisfied. It is

called a right hybrid ideal when conditions (i) and (iii) are fulfilled.

Notation 1. For a near- subtraction semigroup N, we use the following notations.

(i) NL(N) (respectively NR(N)) represents the gathering of all neutrosophic κ-
left(respectively right) ideals of N.

(ii) NBI(N) represents the collection of all neutrosophic κ- bi-ideals of N.

Example 4.3. Let Q = {0, p, w, z} in which “−” and “·” are defined by:

- 0 p w z
0 0 0 0 0
p p 0 p p
w w w 0 w
z z z z 0

· 0 p w z
0 0 0 0 0
p p p p p
w 0 0 0 w
z 0 0 0 z

Then (Q,−, ·) is a NSS. Here

QP ; =

{
0

(−0.8,−0.1,−0.7) ,
p

(−0.6,−0.4,−0.6) ,
w

(−0.4,−0.6,−0.5) ,
z

(−0.2,−0.8,−0.4)

}
∈ NBI(N).

Clearly NL(N) ∩ NR(N) ⊆ NBI(N)(see Lemma 4.5). The following example demonstrates

that the reverse statement does not hold.

Example 4.4. Let N = {0, p, w, z} in which “−” and “·” are defined as in Example 4.3. Then

NP ; =

{
0

(−0.8,−0.1,−0.7) ,
p

(−0.6,−0.4,−0.6) ,
w

(−0.4,−0.6,−0.5) ,
z

(−0.6,−0.4,−0.6)

}
∈ NBI(N),

but NP of N is not a left neutrosophic κ- ideal, since TP(wz − w(0− z)) = TP(w) = −0.4 ≰
−0.6 = TP(z), IP(wz−w(0−z)) = IP(w) = −0.6 ≱ −0.4 = IP(z) and FP(wz−w(0−z)) =
FP(w) = −0.5 ≰ −0.6 = FP(z).
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Lemma 4.5. Let NL := N
(TL,IL,FL)

. If NL ∈ NL(N), then NL ∈ NBI(N).

Proof. Let a′ ∈ N be such that a′ = v0y0s0 = z0d0 − z0(q0 − d0), where v0, y0, s0, z0, q0, d0 ∈ N.
Then

((TLBTL) ∩ (TLB ∗ TL))(a′) = (TLBTL)(a
′) ∨ (TLB ∗ TL)(a′) ≥ (TLB ∗ TL)(a′)

=
∧

a′=z0d0−z0(q0−d0)

{(TLB)(z0) ∨ TL(d0)}

≥
∧

a′=z0d0−z0(q0−d0)

{B(z0) ∨ TL(z0d0 − z0(q0 − d0))}

=
∧

a′=z0d0−z0(q0−d0)

TL(z0d0 − z0(q0 − d0)) = TL(a
′),

((ILBIL) ∩ (ILB ∗ IL))(a′) = (ILBIL)(a
′) ∧ (ILB ∗ IL)(a′) ≤ (ILB ∗ IL)(a′)

=
∨

a′=z0d0−z0(q0−d0)

{(ILB)(z0) ∧ IL(d0)}

≤
∨

a′=z0d0−z0(q0−d0)

{(ILB)(z0) ∧ IL(d0)}

≤
∨

a′=z0d0−z0(q0−d0)

{B(z0) ∧ IL(z0d0 − z0(q0 − d0))}

=
∨

a′=z0d0−z0(q0−d0)

IL(z0d0 − z0(q0 − d0)) = IL(a
′),

((FLBFL) ∩ (FLB ∗ FL))(a
′) = (FLBFL)(a

′) ∩ (FLB ∗ FL)(a
′) ≥ (FLB ∗ FL)(a

′)

=
∧

a′=z0d0−z0(q0−d0)

{(FLB)(z0) ∨ FL(d0)}

≥
∧

a′=z0d0−z0(q0−d0)

{B(z0) ∨ FL(z0d0 − z0(q0 − d0))}

=
∧

a′=z0d0−z0(q0−d0)

FL(z0d0 − z0(q0 − d0)) = FL(a
′).

If a′ cannot be expressed as a′ = v0y0s0 = z0d0 − z0(q0 − d0), then ((TLBTL) ∩ (TLB ∗
TL))(a

′) = 0 ≥ TL(a
′); ((ILBIL)∩(ILB∗IL))(a′) = −1 ≤ IL(a

′), ((FLBFL)∩(FLB∗FL))(a
′) =

0 ≥ FL(a
′). Hence NJ ∈ NBI(N).

The proof of the following lemma follows a similar approach to that used in the proof of

Lemma 4.5. We present the proof for readers’ convenience.

Lemma 4.6. Let NL := N
(TL,IL,FL)

. If NL ∈ NR(N), then NL ∈ NBI(N).

Proof. Let x′ ∈ N : x′ = vy = xj − x(q − j), v = v1v2, where v, v1, v2, y, x, q, j ∈ N. Then
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((TLBTL) ∩ (TLB ∗ TL))(x′) = (TLBTL)(x
′) ∨ (TLB ∗ TL)(x′)

≥
∧

x′=vy

{(TLB)(v) ∨ TL(y)}

=

 ∧
x′=vy

{ ∧
v=v1v2

{TL(v1) ∨B(v2)}

}
∨ TL(y)


=

 ∧
x′=vy

{ ∧
v=v1v2

TL(v1)

}
∨ TL(y)


= TL(v1) ∨ TL(y) (since TL(vy) = TL(v1v2y) ≤ TL(v1))

≥ TL(vy) = TL(x
′),

((ILBIL) ∩ (ILB ∗ IL))(x′) = (ILBIL)(x
′) ∧ (ILB ∗ IL)(x′)

≤
∨

x′=vy

{(ILB)(v) ∧ IL(y)}

=

 ∨
x′=vy

{ ∨
v=v1v2

{IL(v1) ∧B(v2)}

}
∧ IL(y)


=

 ∨
x′=vy

{ ∨
v=v1v2

IL(v1)

}
∧ IL(y)


= IL(v1) ∧ IL(y) (since IL(vy) = IL(v1v2y) ≥ IL(v1))

≤ IL(vy) = IL(x
′),

((FLBFL) ∩ (FLB ∗ FL))(x
′) = (FLBFL)(x

′) ∨ (FLB ∗ FL)(x
′)

≥
∧

x′=vy

{(FLB)(v) ∨ FL(y)}

=

 ∧
x′=vy

{ ∧
v=v1v2

{FL(v1) ∨B(v2)}

}
∨ FL(y)


=

 ∧
x′=vy

{ ∧
v=v1v2

FL(v1)

}
∨ FL(y)


= FL(v1) ∨ FL(y) (since FL(vy) = FL(v1v2y) ≤ FL(v1))

≥ FL(vy) = FL(x
′).

If x′ cannot be expressed as x′ = vy = xj−x(q−j), then ((TLBTL)∩(TLB∗TL))(x′) = 0 ≥
TL(x

′); ((ILBIL) ∩ (ILB ∗ IL))(x′) = −1 ≤ IL(x
′), ((FLBFL) ∩ (FLB ∗ FL))(x

′) = 0 ≥ FL(x
′).

Hence NL ∈ NBI(N).

Theorem 4.7. Let NK := N
(TK,IK,FK)

and NL := N
(TL,IL,FL)

. If NK,NL ∈ NBI(N), then NK∩NL ∈
NBI(N).
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Proof. Let NK,NL ∈ NBI(N), and let z0, t0 ∈ N. Then

(TK ∩ TL)(z0 − t0) = TK(z0 − t0) ∨ TL(z0 − t0)

≤ (TK(z0) ∨ TK(t0)) ∨ (TL(z0) ∨ TL(t0))

= (TK(z0) ∨ TL(z0)) ∨ (TK(t0) ∨ TL(t0))

= (TK ∨ TL)(z0) ∨ (TK ∨ TL)(t0),

(IK ∩ IL)(z0 − t0) = IK(z0 − t0) ∧ IL(z0 − t0)

≥ (IK(z0) ∧ IK(t0)) ∧ (IL(z0) ∧ IL(t0))

= (IK(z0) ∧ IL(z0)) ∧ (IK(t0) ∧ IL(t0))

= (IK ∧ IL)(z0) ∧ (IK ∧ IL)(t0),

(FK ∩ FL)(z0 − t0) = FK(z0 − t0) ∨ FL(z0 − t0)

≤ (FK(z0) ∨ FK(t0)) ∨ (FL(z0) ∨ FL(t0))

= (FK(z0) ∨ FL(z0)) ∨ (FK(t0) ∨ FL(t0))

= (FK ∨ FL)(z0) ∨ (FK ∨ FL)(t0).

Let j′ ∈ N and choose h,w, s, j, t, a ∈ N be such that j′ = hws = ja− j(t− a). Since NK and

NL are neutrosophic κ- bi-ideals of N, we get

{ ∧
j′=hws

(TK(h) ∨ TK(s))

}
∨

 ∧
j′=ja−j(t−a)

(TK(j) ∨ TK(a))

 ≥ TK(j
′),

{ ∨
j′=hws

(IK(h) ∧ IK(s))

}
∧

 ∨
j′=ja−j(t−a)

(IK(j) ∧ IK(a))

 ≤ IK(j
′),

{ ∧
j′=hws

(FK(h) ∨ FK(s))

}
∨

 ∧
j′=ja−j(t−a)

(FK(j) ∨ FK(a))

 ≥ FK(j
′).

and

{ ∧
j′=hws

(TL(h) ∨ TL(s))

}
∨

 ∧
j′=ja−j(t−a)

(TL(j) ∨ TL(a))

 ≥ TL(j
′),

{ ∨
j′=hws

(IL(h) ∧ IL(s))

}
∧

 ∨
j′=ja−j(t−a)

(IL(j) ∧ IL(a))

 ≤ IL(j
′),

{ ∧
j′=hws

(FL(h) ∨ FL(s))

}
∨

 ∧
j′=ja−j(t−a)

(FL(j) ∨ FL(a))

 ≥ FL(j
′).
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Now, ((TK ∩ TL)B(TK ∩ TL))(j′) ∨ ((TK ∩ TL)B ∗ (TK ∩ TL))(j′)

=

{ ∧
j′=hws

((TK ∨ TL)(h) ∨ (TK ∨ TL)(s))

}
∨

 ∧
j′=ja−j(t−a)

((TK ∨ TL)(j) ∨ (TK ∨ TL)(a))


=

{ ∧
j′=hws

(TK(h) ∨ TL(h)) ∨ (TK(s) ∨ TL(s))

}
∨

 ∧
j′=ja−j(t−a)

(TK(j) ∨ TL(j)) ∨ (TK(a) ∨ TL(a))


=

 ∧
j′=hws

(TK(h) ∨ TK(s)) ∨
∧

j′=ja−j(t−a)

(TK(j) ∨ TK(a))


∨

 ∧
j′=hws

(TL(h) ∨ TL(s)) ∨
∧

j′=ja−j(t−a)

(TL(j) ∨ TL(a))


≥ TK(j

′) ∨ TL(j′) = (TK ∨ TL)(j′), ((IK ∩ IL)B(IK ∩ IL))(j′) ∧ ((IK ∩ IL)B ∗ (IK ∩ IL))(j′)

=

{ ∨
j′=hws

((IK ∧ IL)(h) ∧ (IK ∧ IL)(s))

}
∧

 ∨
j′=ja−j(t−a)

((IK ∧ IL)(j) ∧ (IK ∧ IL)(a))


=

{ ∨
j′=hws

(IK(h) ∧ IL(h)) ∧ (IK(s) ∧ IL(s))

}
∧

 ∨
j′=ja−j(t−a)

(IK(j) ∧ IL(j)) ∧ (IK(a) ∧ IL(a))


=

 ∨
j′=hws

(IK(h) ∧ IK(s)) ∧
∨

j′=ja−j(t−a)

(IK(j) ∧ IK(a))


∧

 ∨
j′=hws

(IL(h) ∧ IL(s)) ∧
∨

j′=ja−j(t−a)

(IL(j) ∧ IL(a))


≤ IK(j

′) ∧ IL(j′) = (IK ∧ IL)(j′),

((FK ∩ FL)B(FK ∩ FL))(j
′) ∨ ((FK ∩ FL)B ∗ (FK ∩ FL))(j

′)

=

{ ∧
j′=hws

((FK ∨ FL)(h) ∨ (FK ∨ FL)(s))

}
∨

 ∧
j′=ja−j(t−a)

((FK ∨ FL)(j) ∨ (FK ∨ FL)(a))


=

{ ∧
j′=hws

(FK(h) ∨ FL(h)) ∨ (FK(s) ∨ FL(s))

}
∨

 ∧
j′=ja−j(t−a)

(FK(j) ∨ FL(j)) ∨ (FK(a) ∨ FL(a))


=

 ∧
j′=hws

(FK(h) ∨ FK(s)) ∨
∧

j′=ja−j(t−a)

(FK(j) ∨ FK(a))


∨

 ∧
j′=hws

(FL(h) ∨ FL(s)) ∨
∧

j′=ja−j(t−a)

(FL(j) ∨ FL(a))


≥ FK(j

′) ∨ FL(j
′) = (FK ∨ FL)(j

′).

Hence NK ∩ NL ∈ NBI(N).
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Theorem 4.8. If NL := N
(TL,IL,FL)

∈ NBI(N), then the (ð, φ, ν)-level set NL(ð, φ, ν) of N is

a bi-ideal ∀ð, φ, ν ∈ I−.

Proof. For ð, φ, ν ∈ I− and m1, b1 ∈ NL(ð, φ, ν), TL(m1 − b1) ≤ TL(m1)∨TL(b1) ≤ ð, IL(m1 −
b1) ≥ IL(m1) ∧ IL(b1) ≥ φ, FL(m1 − b1) ≤ FL(m1) ∨ FL(b1) ≤ ν. It follows that m1 − b1 ∈
NL(ð, φ, ν).

Let z′ ∈ N and z′ ∈ NL(ð, φ, ν)BNL(ð, φ, ν) ∩ NL(ð, φ, ν)B ∗ NL(ð, φ, ν). If there exist

f1, q, u1, c ∈ NL(ð, φ, ν) and f2, f, u, u2, y ∈ N such that z′ = fq = uc− u(y− c), f = f1f2 and

u = u1u2, then

TL(z
′) ≤((TLBTL) ∨ (TLB ∗ TL))(z′)

=(TLBTL)(z
′) ∨ (TLB ∗ TL)(z′)

=

 ∧
z′=fq

{(TLB)(f) ∨ TL(q)}

 ∨

 ∧
z′=uc−u(y−c)

{(TLB)(u) ∨ TL(c)}


=

 ∧
z′=fq

 ∧
f=f1f2

(TL(f1) ∨B(f2))

 ∨ TL(q)


∨

 ∧
z′=uc−u(y−c)

( ∧
u=u1u2

(TL(u1) ∨B(u2))

)
∨ TL(c)


≤(TL(f1) ∨ TL(q) ∨ TL(u1) ∨ TL(c)) ≤ ð,

IL(z
′) ≥((ILBIL) ∧ (ILB ∗ IL))(z′)

=(ILBIL)(z
′) ∧ (ILB ∗ IL)(z′)

=

 ∨
z′=fq

{(ILB)(f) ∧ IL(q)}

 ∧

 ∨
z′=uc−u(y−c)

{(ILB)(u) ∧ IL(c)}


=

 ∨
z′=fq

 ∨
f=f1f2

(IL(f1) ∧B(f2))

 ∧ IL(q)


∧

 ∨
z′=uc−u(y−c)

( ∨
u=u1u2

(IL(u1) ∧B(u2))

)
∧ IL(c)


≥(IL(f1) ∧ IL(q) ∧ IL(u1) ∧ IL(c)) ≥ φ,

FL(z
′) ≤((FLBFL) ∨ (FLB ∗ FL))(z

′)

=(FLBFL)(z
′) ∨ (FLB ∗ FL)(z

′)

=

 ∧
z′=fq

{(FLB)(f) ∨ FL(q)}

 ∨

 ∧
z′=uc−u(y−c)

{(FLB)(u) ∨ FL(c)}


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=

 ∧
z′=fq

 ∧
f=f1f2

(FL(f1) ∨B(f2))

 ∨ FL(q)


∨

 ∧
z′=uc−u(y−c)

( ∧
u=u1u2

(FL(u1) ∨B(u2))

)
∨ FL(c)


≤(FL(f1) ∨ FL(q) ∨ FL(u1) ∨ FL(c)) ≤ ν.

This implies that z′ ∈ NL(ð, φ, ν). So NL(ð, φ, ν) of N is a bi-ideal.

Lemma 4.9. For any subsets K,V of N and NN := N
(TN ,IN ,FN ) , the following statements are

true:

(i) χK(NN ) ∩ χV (NN ) = χK∩V (NN ).

(ii) χK(NN ) ∪ χV (NN ) = χK∪V (NN ).

(iii) χK(NN )χV (NN ) = χKV (NN ).

(iv) χK(NN ) ∗ χV (NN ) = χK∗V (NN ).

(v) If K ⊆ V , then χK(NN ) ⊆ χV (NN ).

Proof. The proofs are obvious.

Lemma 4.10. For a subset K of N and NN := N
(TN ,IN ,FN ) , the below statements are equivalent:

(i) K of N is a bi-ideal,

(ii) χK(NN ) ∈ NBI(N).

Proof. (i) ⇒ (ii) For y1, c1 ∈ N, if y1, c1 ∈ K, then y1−c1 ∈ K which implies χK(TN )(y1−c1) =
−1 = χK(TN )(y1)∨χK(TN )(c1), χK(IN )(y1−c1) = 0 = χK(IN )(y1)∧χK(IN )(c1), χK(FN )(y1−
c1) = −1 = χK(FN )(y1)∨χK(FN )(c1). Otherwise y1 /∈ K or c1 /∈ K. Then χK(TN )(y1− c1) ≤
0 = χK(TN )(y1)∨χK(TN )(c1), χK(IN )(y1−c1) ≥ −1 = χK(IN )(y1)∧χK(IN )(c1), χK(FN )(y1−
c1) ≤ 0 = χK(FN )(y1) ∨ χK(FN )(c1). So χK(NN ) of N is a neutrosophic κ- subalgebra.

By Lemma 4.9, we have

χK(NN )BχK(NN ) ∩ χK(NN )B ∗ χK(NN ) = χKNK(NN ) ∩ χKN∗K(NN )

= χ(KNK∩(KN∗K))(NN ) ≪ χK(NN ).

So, χK(NN ) ∈ NBI(N).
(ii) ⇒ (i) Let u′ ∈ KNK ∩KN ∗K. Then u′ = hv = uq− u(z − q) and h = h1h2; u = u1u2

for some h1, v, q, u1 ∈ K and h2, u, z, u2 ∈ N. Now,

χK(TN )(u′) ≤(χKBχK ∩ χKB ∗ χK)(TN )(u′)

=(χKBχK)(TN )(u′) ∨ (χKB ∗ χK)(TN )(u′)

=
∧

u′=hv

{(χKB)(TN )(h) ∨ χK(TN )(v)} ∨
∧

u′=uq−u(z−q)

{(χKB)(TN )(u) ∨ χK(TN )(q)}
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=

 ∧
u′=hv

 ∧
h=h1h2

χK(TN )(h1) ∨B(h2)

 ∨ χK(TN )(v)


∨

 ∧
u′=uq−u(z−q)

( ∧
u=u1u2

χK(TN )(u1) ∨B(u2)

)
∨ χK(TN )(q)


≤ χK(TN )(h1) ∨ χK(TN )(v) ∨ χK(TN )(u1) ∨ χK(TN )(q) = −1,

χK(IN )(u′) ≥(χKBχK ∩ χKB ∗ χK)(IN )(u′)

=(χKBχK)(IN )(u′) ∧ (χKB ∗ χK)(IN )(u′)

=
∨

u′=hv

{(χKB)(IN )(h) ∧ χK(IN )(v)} ∧
∨

u′=uq−u(z−q)

{(χKB)(IN )(u) ∧ χK(IN )(q)}

=

 ∨
u′=hv

 ∨
h=h1h2

χK(IN )(h1) ∧B(h2)

 ∧ χK(IN )(v)


∧

 ∨
u′=uq−u(z−q)

( ∨
u=u1u2

χK(IN )(u1) ∧B(u2)

)
∧ χK(IN )(q)


≥χK(IN )(h1) ∧ χK(IN )(v) ∧ χK(IN )(u1) ∧ χK(IN )(q) = 0,

χK(FN )(u′) ≤(χKBχK ∩ χKB ∗ χK)(FN )(u′)

=(χKBχK)(FN )(u′) ∨ (χKB ∗ χK)(FN )(u′)

=
∧

u′=hv

{(χKB)(FN )(h) ∨ χK(FN )(v)} ∨
∧

u′=uq−u(z−q)

{(χKB)(FN )(u) ∨ χK(FN )(q)}

=

 ∧
u′=hv

 ∧
h=h1h2

χK(FN )(h1) ∨B(h2)

 ∨ χK(FN )(v)


∨

 ∧
u′=uq−u(z−q)

( ∧
u=u1u2

χK(FN )(u1) ∨B(u2)

)
∨ χK(FN )(q)


≤χK(FN )(h1) ∨ χK(FN )(v) ∨ χK(FN )(u1) ∨ χK(FN )(q) = −1.

Thus u′ ∈ K and hence KNK ∩KN ∗K ⊆ K.

Theorem 4.11. For a neutrosophic κ- subalgebra NN := N
(TN ,IN ,FN ) of N, if NNBNN ⊆ NN ,

then NN ∈ NBI(N).

Proof. Assume NNBNN ⊆ NN and let y1 ∈ N. Then

((TNBTN ) ∩ (TNB ∗ TN ))(y1) = (TNBTN )(y1) ∨ (TNB ∗ TN )(y1) ≥ (TNBTN )(y1) ≥ TN (y1),

((INBIN ) ∩ (INB ∗ IN ))(y1) = (INBIN )(y1) ∧ (INB ∗ IN )(y1) ≤ (INBIN )(y1) ≤ IN (y1),

((FNBFN ) ∩ (FNB ∗ FN ))(y1) = (FNBFN )(y1) ∨ (FNB ∗ FN )(y1) ≥ (FNBFN )(y1) ≥ FN (y1).
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Thus NNBNN ∩ NNB ∗ NN ⊆ NN and so NN ∈ NBI(N).

Theorem 4.12. If N is a zero-symmetric NSS and NJ := N
(TJ ,IJ ,FJ )

∈ NBI(N), then

NJBNJ ⊆ NJ .

Proof. Let NJ ∈ NBI(N). Then NJBNJ ∩ NJB ∗ NJ ⊆ NJ . Clearly, NJ(0) ⊇ NJ(d) ∀d ∈ N.
Since N is zero-symmetric, NJBNJ ⊆ NJB ∗ NJ . So NJBNJ ∩ NJB ∗ NJ = NJBNJ ⊆ NJ .

Hence NJBNJ ⊆ NJ .

Theorem 4.13. If N is a zero-symmetric NSS and for a neutrosophic κ- subalgebra NN :=

N
(TN ,IN ,FN ) of N, the below statements are equivalent:

(a) NN ∈ NBI(N),
(b) NNBNN ⊆ NN .

Proof. By Theorem 4.11 and Theorem 4.12, the proof is obvious.

Theorem 4.14. If N is a zero-symmetric NSS and NN := N
(TN ,IN ,FN ) ∈ NBI(N), then

NN (q1j1c1) ⊇ NN (q1) ∩ NN (c1) ∀q1, j1, c1 ∈ N.

Proof. Suppose NN ∈ NBI(N) of a zero-symmetric NSS. By Theorem 4.12, NNBNN ⊆ NN .

Let q1, j1, c1 ∈ N. Then

TN (q1j1c1) ≤ (TNBTN )(q1j1c1) =
∧

q1j1c1=d1m1

{(TNB)(d1) ∨ TN (m1)}

≤ (TNB)(q1j1) ∨ TN (c1)

≤ TN (q1) ∨B(j1) ∨ TN (c1)

= TN (q1) ∨ TN (c1),

IN (q1j1c1) ≥ (INBIN )(q1j1c1) =
∨

q1j1c1=d1m1

{(INB)(d1) ∧ IN (m1)}

≥ (INB)(q1j1) ∧ IN (c1)

≥ IN (q1) ∧B(j1) ∧ IN (c1)

= IN (q1) ∧ IN (c1),

FN (q1j1c1) ≤ (FNBFN )(q1j1c1) =
∧

q1j1c1=d1m1

{(FNB)(d1) ∨ FN (m1)}

≤ (FNB)(q1j1) ∨ FN (c1) ≤ FN (q1) ∨B(j1) ∨ FN (c1)

= FN (q1) ∨ FN (c1).

Hence NN (q1j1c1) ⊇ NN (q1) ∩ NN (c1).
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Theorem 4.15. If N is a zero-symmetric NSS & NN := N
(TN ,IN ,FN ) ∈ NBI(N), the below

assertions are equivalent:

(i) NN (qjc) ⊇ NN (q) ∩ NN (c) ∀q, j, c ∈ N,
(ii) NNBNN ⊆ NN .

Proof. (i) ⇒ (ii) Let v′ ∈ N. If ∃ d,m, d1, d2 ∈ N such that v′ = dm and d = d1d2.

Then by hypothesis, TN (d1d2m) ≤ TN (d1) ∨ TN (m), IN (d1d2m) ≥ IN (d1) ∧
IN (m), FN (d1d2m) ≤ FN (d1) ∨ FN (m) .

Now,

(TNBTN )(v′) =
∧

v′=dm

(TNB)(d) ∨ TN (m)

=
∧

v′=dm

 ∧
d=d1d2

{TN (d1) ∨B(d2)}

 ∨ TN (m)

=
∧

v′=dm

 ∧
d=d1d2

{TN (d1) ∨ −1}

 ∨ TN (m)

=
∧

v′=d1d2m

{TN (d1) ∨ TN (m)} ≥
∧

v′=d1d2m

TN (d1d2m) = TN (v′),

(INBIN )(v′) =
∨

v′=dm

(INB)(d) ∧ IN (m)

=
∨

v′=dm

 ∨
d=d1d2

{IN (d1) ∧B(d2)}

 ∧ IN (m)

=
∨

v′=dm

 ∨
d=d1d2

{IN (d1) ∧ 0}

 ∧ IN (m)

=
∨

v′=d1d2m

{IN (d1) ∧ IN (m)} ≤
∨

v′=d1d2m

IN (d1d2m) = IN (v′),

(FNBFN )(v′) =
∧

v′=dm

(FNB)(d) ∨ FN (m)

=
∧

v′=dm

 ∧
d=d1d2

{FN (d1) ∨B(d2)}

 ∨ FN (m)

=
∧

v′=dm

 ∧
d=d1d2

{FN (d1) ∨ −1}

 ∨ FN (m)

=
∧

v′=d1d2m

(FN (d1) ∨ FN (m)) ≥
∧

v′=d1d2m

FN (d1d2m) = FN (v′).

Hence NNBNN ⊆ NN .

(ii) ⇒ (i) Suppose that NNBNN ⊆ NN and let d,m, g, v′ ∈ N be such that v′ = dmg. Then
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TN (dmg) = TN (v′) ≤ (TNBTN )(v′) =
∧

v′=fy

{(TNB)(f) ∨ TN (y)}

=
∧

v′=fy

 ∧
f=f1f2

{TN (f1) ∨B(f2)}

 ∨ TN (y)

≤ TN (d) ∨B(m) ∨ TN (g)

= TN (d) ∨ TN (g),

IN (dmg) = IN (v′) ≥ (INBIN )(v′) =
∨

v′=fy

(INB)(f) ∧ IN (y)

=
∨

v′=fy

 ∨
f=f1f2

IN (f1) ∧B(f2)

 ∧ IN (y)

≥ IN (d) ∧B(m) ∧ IN (g)

= IN (d) ∧ IN (g),

FN (dmg) = FN (v′) ≤ (FNBFN )(v′) =
∧

v′=fy

{(FNB)(f) ∨ FN (y)}

=
∧

v′=fy

 ∧
f=f1f2

{FN (f1) ∨B(f2)}

 ∨ FN (y)

≤ FN (d) ∨B(m) ∨ FN (g) = FN (d) ∨ FN (g),

Hence NN (qjc) ⊇ NN (q) ∩ NN (c) ∀q, j, c ∈ N.

Theorem 4.16. For a neutrosophic κ- subalgebra NN := N
(TN ,IN ,FN ) of a zero-symmetric

NSS, the below assertions are equivalent:

(i) NN ∈ NBI(N),
(ii) NN (qjc) ⊇ NN (q) ∩ NN (c) ∀q, j, c ∈ N.
(iii) NNBNN ⊆ NN .

Proof. By Theorem 4.14 and Theorem 4.15, the proof is simple.

5. Homomorphism of a neutrosophic κ- structure

In this portion, we explore some characteristics of neutrosophic κ- structures that are ho-

momorphic to near-subtraction semigroups. Hereafter, N and N′
denote the zero-symmetric

near-subtraction semigroups.

Definition 5.1. Let ψ : N → N′
be a mapping.

(i) ψ is a homomorphism of N into N′
if ψ(m1 − v1) = ψ(m1) − ψ(v1) and ψ(m1v1) =

ψ(m1)ψ(v1) ∀m1, v1 ∈ N.
B. Elavarasan et al., Properties of Neutrosophic κ- bi-ideals in near-subtraction semigroups

Neutrosophic Sets and Systems, Vol. 85, 2025                                                                              467



(ii) For l̃ς ∈ H(N′
), the preimage of l̃ς under ψ, represented as ψ−1(l̃ς), is a neu-

trosophic κ- structure of N defined by ψ−1(l̃ς) := (ψ−1(l̃), ψ−1(ς)), where ψ−1(l̃)(r1) =

l̃(ψ(r1)) & ψ−1(ς)(r1) = ς(ψ(r1)) ∀r1 ∈ N.

Theorem 5.2. For a homomorphism ψ : N → N′
and N′

N := N′

(TN ,IN ,FN ) , if N
′
N ∈ NBI(N

′
),

then ψ−1(N′
N ) ∈ NBI(N).

Proof. Suppose N′
N ∈ NBI(N

′
) and let w0, d0 ∈ N. Then ψ−1(TN )(w0 − d0) = TN (ψ(w0 −

d0)) = TN (ψ(w0) − ψ(d0)) ≤ TN (ψ(w0)) ∨ TN (ψ(d0)) = ψ−1(TN )(w0) ∨ ψ−1(TN )(d0),

ψ−1(IN )(w0 − d0) = IN (ψ(w0 − d0)) = IN (ψ(w0) − ψ(d0)) ≥ IN (ψ(w0)) ∧ IN (ψ(d0)) =

ψ−1(IN )(w0) ∧ ψ−1(IN )(d0), ψ
−1(FN )(w0 − d0) = FN (ψ(w0 − d0)) = FN (ψ(w0) − ψ(d0)) ≤

FN (ψ(w0)) ∨ FN (ψ(d0)) = ψ−1(FN )(w0) ∨ ψ−1(FN )(d0).

By Theorem 4.16, assume that NNBNN ⊆ NN . Let w, g,m,w′ ∈ N be such that w′ = wgm.

Then

ψ−1(TN )(wgm) = TN (ψ(w′)) ≤ (TNBTN )(ψ(w′))

=
∧

w′=fy

{(TNB)(ψ(f)) ∨ TN (ψ(y))}

=
∧

w′=fy

 ∧
f=f1f2

{TN (ψ(f1)) ∨B(f2)}

 ∨ TN (ψ(y))

≤ TN (ψ(w)) ∨B(g) ∨ TN (ψ(m))

= TN (ψ(w)) ∨ TN (ψ(m)) = ψ−1(TN )(w) ∨ ψ−1(TN )(m),

ψ−1(IN )(wgm) = IN (ψ(w′)) ≥ (INBIN )(ψ(w′))

=
∨

w′=fy

{(INB)(ψ(f)) ∧ IN (ψ(y))}

=
∨

w′=fy

 ∨
f=f1f2

{IN (ψ(f1)) ∧B(f2)}

 ∧ IN (ψ(y))

≥ IN (ψ(w)) ∧B(g) ∧ IN (ψ(m))

= IN (ψ(w)) ∧ IN (ψ(m)) = ψ−1(IN )(w) ∧ ψ−1(IN )(m),

ψ−1(FN )(wgm) = FN (ψ(w′)) ≤ (FNBFN )(ψ(w′))

=
∧

w′=fy

{(FNB)(ψ(f)) ∨ FN (ψ(y))}

=
∧

w′=fy

 ∧
f=f1f2

{FN (ψ(f1)) ∨B(f2)}

 ∨ FN (ψ(y))

≤ FN (ψ(w)) ∨B(g) ∨ FN (ψ(m))

= FN (ψ(w)) ∨ FN (ψ(m)) = ψ−1(FN )(w) ∨ ψ−1(FN )(m).

So ψ−1(N′
N ) ∈ NBI(N).
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Theorem 5.3. For a onto homomorphism ψ : N → N′
& N′

N := N′

(TN ,IN ,FN ) , if ψ
−1(N′

N ) ∈
NBI(N), then N′

N ∈ NBI(N
′
).

Proof. Let ψ−1(N′
N ) ∈ NBI(N) & k′, z′ ∈ N′

. Then ∃ z, k ∈ N such that ψ(k) = k′ and

ψ(z) = z′. Now,

TN (k′ − z′) = TN (ψ(k)− ψ(z)) = TN (ψ(k− z))

= ψ−1(TN )(k− z)

≤ ψ−1(TN )(k) ∨ ψ−1(TN )(z)

= TN (ψ(k)) ∨ TN (ψ(z)) = TN (k′) ∨ TN (z′),

IN (k′ − z′) = IN (ψ(k)− ψ(z)) = IN (ψ(k− z))

= ψ−1(IN )(k− z)

≥ ψ−1(IN )(k) ∧ ψ−1(IN )(z)

= IN (ψ(k)) ∧ IN (ψ(z)) = IN (k′) ∧ IN (z′),

FN (k′ − z′) = FN (ψ(k)− ψ(z)) = FN (ψ(k− z))

= ψ−1(FN )(k− z)

≤ ψ−1(FN )(k) ∨ ψ−1(FN )(z)

= FN (ψ(k)) ∨ FN (ψ(z)) = FN (k′) ∨ FN (z′),

By Theorem 4.16, assume that l̃ςBl̃ς ≪ l̃ς . Let k′, r′,m′, g′ ∈ N′
. Then ∃ k, r,m ∈ N such

that ψ(k) = k′, ψ(r) = r′, ψ(m) = m′ and g′ = k′r′m′. Then

TN (k′r′m′) =TN (ψ(g′)) ≤ (TNBTN )(ψ(g′)) = ψ−1(TNBTN )(g′)

=
∧

g′=fy

ψ−1(TNB)(f) ∨ ψ−1(TN )(y)

=
∧

g′=fy

 ∧
f=f1f2

ψ−1(TN (f1) ∨B(f2))

 ∨ ψ−1(TN )(y)

≤ ψ−1(TN )(k) ∨B(r) ∨ ψ−1(TN )(m)

= ψ−1(TN )(k) ∨ ψ−1(TN )(m) = TN (ψ(k)) ∨ TN (ψ(m)) = TN (k′) ∨ TN (m′),

IN (k′r′m′) = IN (ψ(g′)) ≥ (INBIN )(ψ(g′)) = ψ−1(INBIN )(g′)

=
∨

g′=fy

ψ−1(INB)(f) ∧ ψ−1(IN )(y)

=
∨

g′=fy

 ∨
f=f1f2

ψ−1(IN (f1) ∧B(f2))

 ∧ ψ−1(IN )(y)
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≥ ψ−1(IN )(k) ∧B(r) ∧ ψ−1(IN )(m)

= ψ−1(IN )(k) ∧ ψ−1(IN )(m) = IN (ψ(k)) ∧ IN (ψ(m)) = IN (k′) ∧ IN (m′),

FN (k′r′m′) = FN (ψ(g′)) ≤ (FNBFN )(ψ(g′)) = ψ−1(FNBFN )(g′)

=
∧

g′=fy

ψ−1(FNB)(f) ∨ ψ−1(FN )(y)

=
∧

g′=fy

 ∧
f=f1f2

ψ−1(FN (f1) ∨B(f2))

 ∨ ψ−1(FN )(y)

≤ ψ−1(FN )(k) ∨B(r) ∨ ψ−1(FN )(m)

= ψ−1(FN )(k) ∨ ψ−1(FN )(m) = FN (ψ(k)) ∨ FN (ψ(m)) = FN (k′) ∨ FN (m′).

So N′
N ∈ NBI(N

′
).

6. Conclusions

This research examines the properties of neutrosophic κ-bi-ideals and develops correspond-

ing bi-ideals within the context of near-subtraction semigroups. Additionally, various aspects

of the neutrosophic κ-preimage of the neutrosophic κ-bi-ideal of a near-subtraction semigroup

are analyzed under homomorphism mapping. The findings presented in this paper aim to pave

the way for defining the concept of a neutrosophic κ-prime bi-ideal and exploring its related

properties in near-subtraction semigroups.
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