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Abstract. In this paper, we establish novel fixed point theorems in the framework of neutrosophic metric spaces

(NMS) by introducing the concept of neutrosophic (L, φ)-contractions. These contractions generalize classical

contractive conditions by incorporating a function L that bounds the interaction between displacement terms

and a control function φ that modulates the contraction intensity. Under specific hypothesis, we prove that

every neutrosophic (L, φ)-contraction on a complete NMS admits a unique fixed point. As applications, we

derive several corollaries by specifying the forms of L and φ, including cases where L is linear, additive, or

defined via maximum functions. Our results unify and extend existing fixed point theorems in neutrosophic

settings, while illustrative examples demonstrate their practical applicability.
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—————————————————————————————————————————-

1. Introduction

The Banach fixed-point theorem [1], commonly referred to as the contraction mapping

theorem, is a key principle in the theory of metric spaces. It asserts that within any complete

metric space, a contraction mapping defined as a function, that reduces the distance between

points, will possess a unique fixed point. This theorem is important as it offers a systematic

approach to identifying fixed points, which are defined as points that remain invariant under

a specific function. Furthermore, it ensures both the existence and uniqueness of such points

under certain conditions. The theorem finds extensive application across various disciplines,

including differential equations and numerical analysis, owing to its utility in establishing

the existence and uniqueness of solutions to equations and in iterative methods for solution
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approximation. First introduced by Banach in 1922 [1], this theorem has motivated numerous

mathematicians to investigate various extensions and generalizations across a wide range of

mathematical domains, as referenced in [2–4].

Recent advancements in fixed point theory have extended classical results to generalized

metric spaces, including neutrosophic and fuzzy frameworks. [7] established quasi-contraction

fixed point theorems in neutrosophic fuzzy metric spaces, while [8] explored nonlinear con-

tractions in the same setting. In complete neutrosophic metric spaces, [5] introduced ψ-quasi-

contractions. Auxiliary functions have played a key role in generalizations, as seen in b-metric

spaces [6] and generalized metric spaces [10]. Further contributions include Geraghty-type

contractions under ωt-distance [9] and integral-type contractions in neutrosophic spaces [11].

Additionally, [12] investigated fixed points for Geraghty mappings using equivalent distances,

highlighting the versatility of neutrosophic structures in unifying discontinuous and imprecise

data scenarios. [13] in their work establishing new fixed point theorems. This direction was

further advanced by [14], who investigated rational (α, β)φ-mω contractions within complete

quasi metric spaces, providing important extensions to existing theory. These contributions

collectively demonstrate the ongoing evolution of fixed point analysis through sophisticated

distance function modifications and contraction mappings. [15] established new fixed point the-

orems for NF-L contractions in complete neutrosophic fuzzy metric spaces, while [16] developed

parallel results for T-distance spaces in complete b-metric spaces. These works demonstrate

the ongoing expansion of fixed point theory into increasingly abstract distance structures.

Zadeh [17] has made a significant contribution to numerous scientific disciplines through

the introduction of fuzzy sets, which have extensive research and application potential, as

noted in [18–21] and related references. Although this setting is highly relevant to practical

applications, it is not always provided effective solutions to many challenges over the years.

Consequently, there has been a renewed emphasis on research aimed at addressing these issues.

In this regard, Atanassov [22] presented Intuitionistic Fuzzy Sets (IFSs) as a method to confront

these challenges.

Smarandache [23] developed the concept of the Neutrosophic Set (NS), serves as a sophis-

ticated extension of traditional set theory. This concept also exhibits a broad spectrum of

applications across different domains. For instance, The authors in [24] examined the scale

invariance characteristic of the stable Pareto distribution. They provided an overview of

Mathematica code, particularly highlighting the application of Neutrosophic logic in guiding

risk management principles. Additionally, The authors in [25] investigated the resolution of

first-order differential equations by employing trapezoidal neutrosophic numbers as initial con-

ditions. They analyzed different forms based on the relationships among truth, indeterminacy,
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and falsity. For a more thorough exploration of the applications of NS and its uses, the readers

should refer to [28–35] and the associated references therein.

Recent developments in neutrosophic mathematics have expanded decision-making frame-

works and algebraic structures. [36,37] introduced algorithmic approaches using similarity mea-

sures in interval-valued neutrosophic soft settings, while [38] developed novel Q-neutrosophic

soft interval matrices with practical applications. Earlier foundational work by [39, 40] es-

tablished soft expert on complex multi-fuzzy classes, and more recently, [41, 42] presented

significant generalizations of interval-valued Q-neutrosophic soft matrices with broad appli-

cability. These contributions collectively advance the theoretical foundations and practical

implementations of neutrosophic systems.

2. Preliminary

Triangular norms (TNs), introduced by Menger [43], extending the triangle inequality in

metric spaces. Triangular conorms (CNs), as duals of TNs, model the union of fuzzy sets.

Both TNs and CNs are essential in fuzzy logic, particularly for intersections and unions.

In this document, we define the sets as follows: R+ = [0,∞) and I = [0, 1].

Definition 2.1. Let • : I × I → I be an operation. Then, • is called as a continuous t-norm

(TNs) if it satisfies the following properties for all σ, σ′, s, s′ ∈ I.

(1) σ • 1 = σ,

(2) If σ ≤ σ′ and s ≤ s′, than σ • s ≤ σ′ • s′,
(3) • is continuous,

(4) • is commutative and associate.

Definition 2.2. Let � : I × I → I be an operation. Then, � is called to as a continuous

t-conorm (CNs) if it satisfies the following conditions for all elements σ, σ′, s, s′ ∈ I:

(1) σ � 0 = σ,

(2) If σ ≤ σ′ and s ≤ s′, than σ � s ≤ σ′ � s′,
(3) � is continuous,

(4) � is commutative and associate.

The notion of neutrosophic metric space (NMS) was initially presented by Kirisci and Sim-

sek. This framework has been utilized to investigate various fixed point theorems. The defini-

tion of neutrosophic metric spaces is outlined as follows.

Definition 2.3. [44] A 6-tuple (W,N ,U ,O, •, �) is defined as a Neutrosophic Metric Space

(NMS) when the set W is non-empty. In this setting, • represents a continuous t-norm, and

� denotes a continuous t-conorm. Moreover, the elements N ,U , and O are fuzzy sets defined
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onW2× (0,∞). These components must meet the following conditions for all ζ, %, c ∈ W, and

all τ, ρ > 0.

(1) 0 ≤ N (ζ, %, τ) ≤ 1, 0 ≤ U(ζ, %, τ) ≤ 1, 0 ≤ O(ζ, %, τ) ≤ 1,

(2) 0 ≤ N (ζ, %, τ) + U(ζ, %, τ) +O(ζ, %, τ) ≤ 3,

(3) N (ζ, %, τ) = 1, for τ > 0 iff ζ = %

(4) N (ζ, %, τ) = H(%, ζ, τ), for τ > 0

(5) N (ζ, %, τ) • N (%, c, ρ) ≤ N (ζ, c, τ + ρ)

(6) N (ζ, %, ·) : R+ → I is continuous

(7) lim
τ→∞

N (ζ, %, τ) = 1

(8) U(ζ, %, τ) = 0 iff ζ = %

(9) U(ζ, %, τ) = U(%, ζ, τ),

(10) U(ζ, %, τ) � U(%, c, ρ) ≥ U(ζ, c, τ + ρ),

(11) U(ζ, %, ·) : R+ → I is continuous

(12) lim
τ→∞

U(ζ, %, τ) = 0

(13) O(ζ, %, τ) = 0, for τ > 0 iff ζ = %

(14) O(ζ, %, τ) = O(%, ζ, τ),

(15) O(ζ, %, τ) � O(%, c, ρ) ≥ O(ζ, c, τ + ρ),

(16) O(ζ, %, ·) : R→ I is continuous

(17) lim
τ→∞

O(ζ, %, τ) = 0

(18) If τ ≤ 0, then N (ζ, %, τ) = 0, U(ζ, %, τ) = O(ζ, %, τ) = 1

The functions N (ζ, %, τ), U(ζ, %, τ), and O(ζ, %, τ) represent the degrees of nearness, neutral-

ness, and non-nearness between ζ and % in relation to the parameter τ , respectively.

The convergence, Cauchy-ness, completeness in NMS are given as follows.

Definition 2.4. [44] Let (ζn) be a sequence in a NMS (W,N ,U ,O, •, �). Then

(1) (ζn) converges to ζ ∈ W if for a given ε ∈ (0, 1), τ > 0 there is n0 ∈ N such that for

all n ≥ n0

N (ζn, ζ, τ) > 1− ε, U(ζn, ζ, τ) < ε, O(ζn, ζ, τ) < ε

i.e.,

lim
n→∞

N (ζn, ζ, τ) = 1, lim
n→∞

U(ζn, ζ, τ) = 0, lim
n→∞

O(ζn, ζ, τ) = 0

(2) (ζn) is called Cauchy if for a given ε ∈ (0, 1), τ > 0 there is n0 ∈ N such that for all

n,m ≥ n0

N (ζn, ζm, τ) > 1− ε, U(ζn, ζm, τ) < ε, O(ζn, ζm, τ) < ε
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i.e.,

lim
n.m→∞

N (ζn, ζm, τ) = 1, lim
n,m→∞

U(ζn, ζm, τ) = 0, lim
n,m→∞

O(ζn, ζm, τ) = 0

(3) (W,N ,U ,O, •, �) is said to be complete if every Cauchy sequence converges to an

element in W.

In the work of Simsek and Kirisci [45], NC-contractions were introduced within the context

of neutrosophic metric spaces, demonstrating that each NC-contraction possesses a unique

fixed point under specific conditions.

Definition 2.5. [45] Let (W,N ,U ,O, •, �) be a NMS. A mapping f : W → W is called

neutrosophic contraction if there is k ∈ (0, 1) such that for each ζ, % ∈ W and τ > 0, we have

1

N (fζ, f%, τ)
− 1 ≤ k

(
1

N (ζ, %, τ)
− 1

)
,

1

U(fζ, f%, τ)
− 1 ≥ k

(
1

U(ζ, %, τ)
− 1

)
,

and
1

O(fζ, f%, τ)
− 1 ≥ k

(
1

O(ζ, %, τ)
− 1

)
.

The following lemma presented by Bataihah and Hazaymeh [46]

Lemma 2.6. [46] Let (W,N ,U ,O, •, �) be a NMS. Then

(1) N (ζ, %, ·) : R→ R is non-decreasing

(2) U(ζ, %, ·) : R→ R is non-increasing

(3) O(ζ, %, ·) : R→ R is non-increasing

3. Main Result

In the subsequent sections, we will first introduce a fundamental lemmas that forms the

basis of our study. Following that, we will outline our contractions in the setting of complete

NMS, employing an auxiliary function. Then, we will establish that these contractions possess

a unique fixed point under specific conditions and investigate the significant results that arise

from our main discoveries.

We commence with the subsequent essential lemma that are required to derive our principal

result.

Lemma 3.1. Let V : D → B be a bounded real valued function, where D, B are subsets of R.

Then

(1) If V is non increasing, then there is c > 0 such that for all α ∈ D

V
(α

2

)
≤ c V(α)
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(2) If V is non decreasing, then there is τ > 0 such that for all α ∈ D

V
(α

2

)
≥ τ V(α)

Proof. (1)Let α ∈ D be arbitrary. Since α
2 < α and V is non increasing, then

V
(α

2

)
≥ V(α).

So, there is ξα ≥ 0 such that

V
(α

2

)
= V(α) + ξα.

Thus,

V
(α

2

)
≤ 2 max{V(α), ξα}.

Now,

V(α).ξα = cα =⇒ cα.V(α) = ξα.

So,

V
(α

2

)
≤ 2 max{V(α), cα.V(α)}

V
(α

2

)
≤ max{2, 2cα}V(α).

Let C = max{2,max
α∈D
{2cα}}. Then we get the result.

The proof of (2) is identical to that of (1).

Remark 3.2. According to Lemma 2.6, and Lemma 3.1, there are CN , CU , CO such that

N (ζ, %,
α

2
) ≥ CN N (ζ, %, α),

U(ζ, %,
α

2
) ≤ CU U(ζ, %, α),

O(ζ, %,
α

2
) ≤ CO O(ζ, %, α),

The following definition is due to Bataihah and Hazaymeh [46]

Definition 3.3. [46]

In this framework, we characterize a real-valued function of three variables defined on the

domain W2 × (0,∞), where W represents any non-empty set. We denote this function as H
and assert that it exhibits the property (UC) if, for any sequences (ζn) and (ωn) within W,

the subsequent equality is satisfied.

lim
τ→τ0

lim
n→∞

H(ζn, ωn, τ) = lim
n→∞

lim
τ→τ0

H(ζn, ωn, τ).

whenever the two limits are exist.

A. Bataihah, A. A Hazaymeh, On Fixed Point Results in Neutrosophic Metric Spaces Using
Auxiliary Functions

Neutrosophic Sets and Systems, Vol. 85, 2025                                                                               494



In the subsequent sections of this study, we will operate under the assumption that each of

the fuzzy sets N , U , O possesses the UC property.

Through this context we need the following class of functions:

Definition 3.4. Let L denote the collection of all functions L : R+ × R+ → R+ that satisfy

the condition

L(a, b) ≤ a+ b.

We will now present the definition of a neutrosophic (L, φ)-contraction.

Definition 3.5. Let (W,N ,U ,O, •, �) be a NMS. A mapping f : W → W is called neutro-

sophic (L, φ)-contraction if for each ζ, % ∈ W and each τ > 0, we have

1

N (fζ, f%, τ)
− 1 ≤ φ

[
1

N (ζ, %, τ)
− 1 + L

(
1

N (ζ, fζ, τ)
− 1,

1

N (%, f%, τ)
− 1

)]
,

U(fζ, f%, τ) ≤ φ [U(ζ, %, τ) + L (U(ζ, fζ, τ),U(%, f%, τ))] ,

and

O(fζ, f%, τ) ≤ φ [O(ζ, %, τ) + L (O(ζ, fζ, τ),O(%, f%, τ))] ,

where φ : R+ → R+ is continuous with φ(t) < 1
3 t, ∀t > 0.

Lemma 3.6. Let (W,N ,U ,O, •, �) be a complete NMS, Suppose that f :W →W is neutro-

sophic (L, φ)-contraction. Consequently, if f has a fixed point then it is unique.

Proof. Assume that µ, ν ∈ W such that fµ = µ and fν = ν. Then, Definition 3.5 implies

1

N (µ, ν, τ)
− 1 =

1

N (fµ, fν, τ)
− 1 ≤ φ

[
1

N (µ, ν, τ)
− 1 + L

(
1

N (µ, µ, τ)
− 1,

1

N (ν, ν, τ)
− 1

)]
,

U(µ, ν, τ) = U(fµ, fν, τ) ≤ φ [U(µ, ν, τ) + L (U(µ, µ, τ),U(ν, ν, τ))] ,

and

O(µ, ν, τ) = O(fµ, fν, τ) ≤ φ [O(µ, ν, τ) + L (O(µ, µ, τ),O(ν, ν, τ))] .

Hence, be using properties of φ and L, we get

1

N (µ, ν, τ)
− 1 ≤ 1

3

[
1

N (µ, ν, τ)
− 1

]
,

U(µ, ν, τ) ≤ 1

3
[U(µ, ν, τ)] ,

and

O(µ, ν, τ) ≤ 1

3
[O(µ, ν, τ)] .
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So, N (µ, ν, τ) = 1, U(µ, ν, τ) = 0, and O(µ, ν, τ) = 0, and hence µ = ν.

Lemma 3.7. Let (W,N ,B,U ,O, �, •) be a NFMS, and let (ζn) be a sequence such that for

τ > 0

N (ζp, ζq, τ) ≥ N (ζp−1, ζq−1, τ)

U(ζp, ζq, τ) ≤ U(ζp−1, ζq−1, τ)

O(ζp, ζq, τ) ≤ O(ζp−1, ζq−1, τ)

(1)

and

lim
n→∞

N (ζn, ζn+1, τ) = 1,

lim
n→∞

U(ζn, ζn+1, τ) = 0,

lim
n→∞

O(ζn, ζn+1, τ) = 0.
(2)

If (ζn) is not Cauchy, then there exist an 1 > ε > 0 and τ > 0 along with two subsequences

(ζnk
) and (ζmk

) derived from (ζn), where (mk) such that one at least of the following holds.

lim
k→∞

N (ζnk
, ζmk

, τ) = 1− ε,

lim
k→∞

U(ζnk
, ζmk

, τ) = ε,

lim
k→∞

O(ζnk
, ζmk

, τ) = ε.

Proof. If (ζn) is not Cauchy, then for each τ > 0

lim
n,m→∞

N (ζn, ζm, τ) 6= 1,

lim
n,m→∞

U(ζn, ζm, τ) 6= 0,

or

lim
n,m→∞

O(ζn, ζm, τ) 6= 0.

Case 1: If lim
n,m→∞

N (ζn, ζm, τ) 6= 1, then there are τ > 0, and ε > 0 along with two

subsequences (ζnk
) and (ζmk

) derived from (ζn), where (mk) is selected as the smallest index

satisfying the condition.

N (ζnk
, ζmk

, τ) ≤ 1− ε, mk > nk > k. (3)

This implies that

N (ζnk
, ζmk−1, τ) > 1− ε. (4)

chose δ > 0. Then
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N (ζnk
, ζmk

, τ + δ) ≥ N (ζnk
, ζmk−1, τ) � N (ζmk−1, ζmk

, δ)

> (1− ε) � N (ζmk−1, ζmk
, δ)

Using Equation 2, we get

lim inf
k→∞

N (ζnk
, ζmk

, τ + δ) ≥ (1− ε).

Also,

(1− ε) ≤ lim
δ→0+

lim inf
k→∞

N (ζnk
, ζmk

, τ + δ)

= lim inf
k→∞

lim
δ→0+

N (ζnk
, ζmk

, τ + δ)

= lim inf
k→∞

N (ζnk
, ζmk

, τ).

Also, from 3, it follows

lim sup
k→∞

N (ζnk
, ζmk

, τ) ≤ (1− ε).

So, we get

lim
k→∞

N (ζnk
, ζmk

, τ) = (1− ε).

Again, we have

N (ζnk−1, ζmk−1, τ + δ) ≥ N (ζnk−1, ζnk
, δ) � N (ζnk

, ζmk−1, τ)

> N (ζnk−1, ζnk
, δ) � (1− ε).

Using Equation 2, we get lim inf
k→∞

N (ζnk−1, ζmk−1, τ + δ) ≥ (1− ε).
Also,

(1− ε) ≤ lim
δ→0+

lim inf
k→∞

N (ζnk−1, ζmk−1, τ + δ)

= lim inf
k→∞

lim
δ→0+

N (ζnk−1, ζmk−1, τ + δ)

= lim inf
k→∞

N (ζnk−1, ζmk−1, τ).

From Eq 3, we get

N (ζnk−1, ζmk−1, τ) ≤ N (ζnk
, ζmk

, τ) ≤ (1− ε).

So,

lim sup
k→∞

N (ζnk−1, ζmk−1, τ) ≤ (1− ε).
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Hence,

lim
k→∞

N (ζnk−1, ζmk−1, τ) = (1− ε).

The demonstration for the remaining cases is Similar to that of Case (1).

Our methodology combines neutrosophic set theory with fixed-point techniques through

three key innovations: first, we develop (L, φ)-contractions that simultaneously preserve the

neutrosophic structure of truth (N ), indeterminacy (U), and falsity (O) memberships; second,

we establish the critical bounding condition φ(t) < 1
3 t to ensure proper contraction across all

membership dimensions; and third, we introduce the constraint 1
3CO < 1 to control the falsity

component’s influence while maintaining mathematical tractability. This integrated approach

enables the extension of Banach-type fixed-point theory to neutrosophic metric spaces while

preserving their essential three-valued logic structure.

Theorem 3.8. Let (W,N ,U ,O, •, �) be a complete NMS, Suppose that f : W → W is neu-

trosophic (L, φ)-contraction where 1
3CO < 1. Therefore, the function f has exactly one fixed

point

Proof. Let ζ0 ∈ W represent an arbitrary point. We examine the Picard sequence (ζn) char-

acterized by the relation ζn+1 = f (ζ0) for all n ≥ 0. From Definition 3.5, we get for each

n ∈ N

1

N (ζn, ζn+1, τ)
− 1 ≤ φ

[
1

N (ζn−1, ζn, τ)
− 1 + L

(
1

N (ζn−1, ζn, τ)
− 1,

1

N (ζn, ζn+1, τ)
− 1

)]
,

(5)

U(ζn, ζn+1, τ) ≤ φ [U(ζn−1, ζn, τ) + L (U(ζn−1, ζn, τ),U(ζn, ζn+1, τ))] , (6)

and

O(ζn, ζn+1, τ) ≤ φ [O(ζn−1, ζn, τ) + L (O(ζn−1, ζn, τ),O(ζn, ζn+1, τ))] . (7)

From the definition of L, and φ we get

1

N (ζn, ζn+1, τ)
− 1 <

(
1

N (ζn−1, ζn, τ)
− 1

)
,

U(ζn, ζn+1, τ) < (U(ζn−1, ζn, τ)) ,

and

O(ζn, ζn+1, τ) < (O(ζn−1, ζn, τ)) .
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So, we get that the sequences

(
1

N (ζn, ζn+1, τ)
− 1 : n ∈ N),

(U(ζn, ζn+1, τ) : n ∈ N),

and

(O(ζn, ζn+1, τ) : n ∈ N)

are nonincreasing in [0,∞). Then, there are l1, l2, l3 ≥ 0 such that

1

N (ζn, ζn+1, τ)
− 1→ l1,

U(ζn, ζn+1, τ)→ l2,

and

O(ζn, ζn+1, τ)→ l3.

Assume to the contrary that one of l1, l2, l3 is greater than 0. By taking the limit in 5, 6,

and 7 and using the properties of L, φ, we get that

l1 < l1, l2 < l2, or l3 < l3. which is a contradiction in each case. Hence l1 = l2 = l3 = 0.

So, we have

lim
n→∞

N (ζn, ζn+1, τ) = 1,

lim
n→∞

U(ζn, ζn+1, τ) = 0,

lim
n→∞

O(ζn, ζn+1, τ) = 0.
(8)

Now, we calim that (ζn) is Cauchy sequence. Assume the contrary. Then, according to

Lemma 3.7, there exist an 1 > ε > 0 and τ > 0 along with two subsequences (ζnk
) and (ζmk

)

derived from (ζn), where (mk) such that one at least of the following holds.

lim
k→∞

N (ζnk
, ζmk

, τ) = 1− ε,

lim
k→∞

U(ζnk
, ζmk

, τ) = ε,

lim
k→∞

O(ζnk
, ζmk

, τ) = ε.

Definition 3.5 implies that

1

N (ζnk
, ζmk

, τ)
− 1 ≤ φ

[
1

N (ζnk−1, ζmk−1, τ)
− 1 + L

(
1

N (ζnk−1, ζnk
, τ)
− 1,

1

N (ζmk−1, ζmk
, τ)
− 1

)]
,

U(ζnk
, ζmk

, τ) ≤ φ [U(ζnk−1, ζmk−1, τ) + L (U(ζnk−1, ζnk
, τ),U(ζmk−1, ζmk

, τ))] ,
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and

O(ζnk
, ζmk

, τ) ≤ φ [O(ζnk−1, ζmk−1, τ) + L (O(ζnk−1, ζnk
, τ),O(ζmk−1, ζmk

, τ))] .

By taking the limit when k →∞, we get

ε

1− ε
<

ε

1− ε
,

ε < ε,

and

ε < ε.

Which is a contradiction. Hence (ζn) is a Cauchy sequence, thus, there is µ ∈ W such that

ζn → µ.

Assume that fµ 6= µ. From Definition 3.5, we have for each n ∈ N

O(fµ, ζn+1, τ) ≤ φ [O(µ, ζn, τ) + L (O(µ, fµ, τ),O(ζn, ζn+1, τ))]

≤ φ [O(µ, ζn, τ) +O(µ, fµ, τ) +O(ζn, ζn+1, τ)] .

By taking the limit, we obtain

lim
n→∞

O(fµ, ζn+1, τ) ≤ φ O(µ, fµ, τ) <
1

3
O(µ, fµ, τ). (9)

On the other hand, using Remark 3.2, we get

O(µ, fµ, τ) ≤ O(µ, ζn,
τ
2 ) • O(ζn, fµ,

τ
2 )

≤ O(µ, ζn,
τ
2 ) • CO O(ζn, fµ, τ).

So,

O(µ, fµ, τ) ≤ CO lim
n→∞

O(ζn, fµ, τ). (10)

From Eq 9, Eq 10, we get

lim
n→∞

O(ζn, fµ, τ) <
1

3
CO lim

n→∞
O(ζn, fµ, τ) < lim

n→∞
O(ζn, fµ, τ).

A contradiction. So, µ = fµ. The uniqueness follows from Lemma 3.6

Remark 3.9. The condition φ(t) < 1
3 t is crucial to ensure that the neutrosophic inequalities

contract sufficiently in all three components (N , U , O). Relaxing this to φ(t) < t may not

guarantee the result.

Example 3.10. Consider the complete neutrosophic metric space (W,N ,U ,O, •, �) where:

• W = [0, 1]

• The t-norm • and t-conorm � are defined as a • b = min{a, b} and a � b = max{a, b}
A. Bataihah, A. A Hazaymeh, On Fixed Point Results in Neutrosophic Metric Spaces Using
Auxiliary Functions

Neutrosophic Sets and Systems, Vol. 85, 2025                                                                               500



• The neutrosophic metrics are defined for τ > 0 as:

N (ζ, %, τ) =
τ

τ + |ζ − %|

U(ζ, %, τ) =
|ζ − %|

τ + |ζ − %|

O(ζ, %, τ) =
|ζ − %|

2τ + |ζ − %|

Define the mapping f : W → W by f(ζ) = ζ
4 . We will verify that f satisfies all conditions

of Theorem 3.8 with:

• L(a, b) = a+b
2 (which satisfies L(a, b) ≤ a+ b)

• φ(t) = t
4 (which is continuous and satisfies φ(t) < t

3 for all t > 0)

• CO = 1
2 (since O(ζ, %, τ) ≤ 1

2)

Proof. We check each condition of Definition 3.5:

1. For the truth membership N :

1

N (fζ, f%, τ)
− 1 =

|fζ − f%|
τ

=
| ζ4 −

%
4 |

τ
=
|ζ − %|

4τ

φ

[
1

N (ζ, %, τ)
− 1 + L

(
1

N (ζ, fζ, τ)
− 1,

1

N (%, f%, τ)
− 1

)]
=

1

4

[
|ζ − %|
τ

+
1

2

(
|ζ − ζ

4 |
τ

+
|%− %

4 |
τ

)]

=
1

4

[
|ζ − %|
τ

+
3

8

|ζ|+ |%|
τ

]
≥ |ζ − %|

4τ

2. For the indeterminacy membership U :

U(fζ, f%, τ) =
| ζ4 −

%
4 |

τ + | ζ4 −
%
4 |
≤ |ζ − %|

4τ

φ [U(ζ, %, τ) + L (U(ζ, fζ, τ),U(%, f%, τ))]

=
1

4

[
|ζ − %|

τ + |ζ − %|
+

1

2

(
3
4 |ζ|

τ + 3
4 |ζ|

+
3
4 |%|

τ + 3
4 |%|

)]
≥ |ζ − %|

4τ

3. For the falsity membership O:

O(fζ, f%, τ) =
| ζ4 −

%
4 |

2τ + | ζ4 −
%
4 |
≤ |ζ − %|

8τ

φ [O(ζ, %, τ) + L (O(ζ, fζ, τ),O(%, f%, τ))]

=
1

4

[
|ζ − %|

2τ + |ζ − %|
+

1

2

(
3
4 |ζ|

2τ + 3
4 |ζ|

+
3
4 |%|

2τ + 3
4 |%|

)]
≥ |ζ − %|

8τ

All conditions are satisfied, and 1
3CO = 1

6 < 1. Therefore, by Theorem 3.8, f has a unique

fixed point ζ∗ = 0.
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4. Consequences

Corollary 4.1. Let (W,N ,U ,O, •, �) be a complete NMS and f : W → W be a self map. If

there exists 0 < k < min
{

1
3 ,

1
CO

}
such that for all ζ, % ∈ W and τ > 0:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1 + λ

(
1

N (ζ, fζ, τ)
− 1

)
+ (1− λ)

(
1

N (%, f%, τ)
− 1

)]

U(fζ, f%, τ) ≤ k [U(ζ, %, τ) + λU(ζ, fζ, τ) + (1− λ)U(%, f%, τ)]

O(fζ, f%, τ) ≤ k [O(ζ, %, τ) + λO(ζ, fζ, τ) + (1− λ)O(%, f%, τ)] .

Then f has exactly one fixed point in W.

Proof. This follows from Theorem 3.8 by taking

• L(a, b) = λa+ (1− λ)b which satisfies L(a, b) ≤ a+ b

• φ(t) = kt with k < 1
3

The given inequalities exactly match the contraction conditions with this choice of L.

Corollary 4.2 (Maximum Function Case). Let (W,N ,U ,O, •, �) be a complete NMS and

f : W → W be a self map. Define L(a, b) = max{a, b}. If there exists 0 < k < min
{

1
3 ,

1
CO

}
such that for all ζ, % ∈ W and τ > 0:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1 + max

{
1

N (ζ, fζ, τ)
− 1,

1

N (%, f%, τ)
− 1

}]

U(fζ, f%, τ) ≤ k [U(ζ, %, τ) + max {U(ζ, fζ, τ),U(%, f%, τ)}]

O(fζ, f%, τ) ≤ k [O(ζ, %, τ) + max {O(ζ, fζ, τ),O(%, f%, τ)}] .

Then f has a unique fixed point in W.

Proof. This follows from Theorem 3.8 by taking

• L(a, b) = max{a, b} which satisfies L(a, b) ≤ a+ b

• φ(t) = kt with k < 1
3

The given inequalities exactly match the contraction conditions with this choice of L.
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Corollary 4.3. Let (W,N ,U ,O, •, �) be a complete NMS and f : W → W be a self map. If

there exists 0 < k < min
{

1
3 ,

1
CO

}
such that for all ζ, % ∈ W and τ > 0:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1 +

1

N (ζ, fζ, τ)
− 1 +

1

N (%, f%, τ)
− 1

]
,

U(fζ, f%, τ) ≤ k [U(ζ, %, τ) + U(ζ, fζ, τ) + U(%, f%, τ)] ,

O(fζ, f%, τ) ≤ k [O(ζ, %, τ) +O(ζ, fζ, τ) +O(%, f%, τ)] .

Then f possesses exactly one fixed point in W.

Proof. This follows from Theorem 3.8 by taking: L : R+ × R+ → R+ with the definition

L(a, b) = a+ b, and φ(t) = kt, k < 1
3 .

Corollary 4.4. Let (W,N ,U ,O, •, �) be a complete NMS and f : W → W be a self map.

Assume that there is 0 < k < min{13 ,
1
CO
} such that for each ζ, % ∈ W and each τ > 0, f

satisfies the following:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1

]
,

U(fζ, f%, τ) ≤ k [U(ζ, %, τ)] ,

and

O(fζ, f%, τ) ≤ k [O(ζ, %, τ)] .

Therefore, the function f has exactly one fixed point

Proof. This follows from Theorem 3.8 by taking: L : R+ × R+ → R+ with the definition

L(a, b) = 0, and φ(t) = kt, k < 1
3 .

Corollary 4.5. Let (W,N ,U ,O, •, �) be a complete NMS and f : W → W be a self map.

Assume that there is 0 < k < min{13 ,
1
CO
} such that for each ζ, % ∈ W and each τ > 0, f

satisfies the following:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1 +

∣∣∣∣ 1

N (ζ, fζ, τ)
− 1

N (%, f%, τ)

∣∣∣∣ ] ,
U(fζ, f%, τ) ≤ k [U(ζ, %, τ) + |U(ζ, fζ, τ)− U(%, f%, τ)| ] ,

and

O(fζ, f%, τ) ≤ k [O(ζ, %, τ) + |O(ζ, fζ, τ)−O(%, f%, τ)| ] .
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Therefore, the function f has exactly one fixed point

Proof. This follows from Theorem 3.8 by taking

• L(a, b) = |a− b| which satisfies L(a, b) ≤ a+ b

• φ(t) = kt with k < 1
3

The given inequalities exactly match the contraction conditions with this choice of L.

Corollary 4.6. Let (W,N ,U ,O, •, �) be a complete NMS and f : W → W be a self map.

Assume that there is 0 < k < min{13 ,
1
CO
} such that for each ζ, % ∈ W and each τ > 0, f

satisfies the following:

1

N (fζ, f%, τ)
− 1 ≤ k

[
1

N (ζ, %, τ)
− 1 + 2 min

{
1

N (ζ, fζ, τ)
− 1,

1

N (%, f%, τ)
− 1

}]
,

U(fζ, f%, τ) ≤ k [U(ζ, %, τ) + 2 min {U(ζ, fζ, τ),U(%, f%, τ)}] ,

and

O(fζ, f%, τ) ≤ k [O(ζ, %, τ) + 2 min {O(ζ, fζ, τ),O(%, f%, τ)}] .

Therefore, the function f has exactly one fixed point

Proof. This follows from Theorem 3.8 by taking

• L(a, b) = 2 min{a, b} which satisfies L(a, b) ≤ a+ b

• φ(t) = kt with k < 1
3

The given inequalities exactly match the contraction conditions with this choice of L.

Example 4.7 (Application of Corollary 4.5). Consider the NMS (R,N ,U ,O) with:

N (ζ, %, τ) =
τ

τ + |ζ − %|

U(ζ, %, τ) =
|ζ − %|

τ + |ζ − %|

O(ζ, %, τ) =
|ζ − %|

2τ + |ζ − %|

Let f(ζ) = ζ
5 . Taking k = 1

4 , we verify:

• CO = 1
2 (since O(ζ, %, τ) ≤ 1

2)

• k = 1
4 < min

{
1
3 , 2
}

= 1
3

All conditions of Corollary 4.5 are satisfied, with ζ∗ = 0 as the unique fixed point.

Problem. Does Theorem 3.8 hold if φ is only assumed to be upper semicontinuous (instead

of continuous) with φ(t) < 1
3 t?
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5. Conclusions

Our investigation has established fundamental fixed-point results for (L, φ)-contractions in

complete neutrosophic metric spaces. By introducing this new contraction class, we have

extended the classical Banach contraction principle to handle the three-dimensional nature of

neutrosophic logic - simultaneously addressing truth, indeterminacy, and falsity memberships.

The key condition φ(t) < 1
3 t ensures sufficient contraction across all membership dimensions,

while 1
3CO < 1 maintains proper control of the falsity component’s influence.

Several important research directions emerge from this work. First, extending these results

to more general spaces such as bipolar neutrosophic or partial neutrosophic metric spaces

could broaden the theory’s applicability. The development of multivalued versions of (L, φ)-

contractions would be particularly valuable for applications in optimization and control theory.

Second, computational aspects deserve attention. Developing efficient iterative algorithms

to approximate fixed points in neutrosophic spaces could bridge the gap between theory and

practical implementation. This would be especially relevant for machine learning applications

dealing with uncertain data.

Finally, applied mathematical directions offer rich possibilities. Exploring applications to

neutrosophic differential equations could provide new solution methods for problems with

inherent uncertainty. Similarly, investigating connections to image processing and pattern

recognition in ambiguous environments may yield practical benefits for computer vision sys-

tems.

These future directions would not only deepen our theoretical understanding but also expand

the practical utility of neutrosophic fixed-point methods across scientific disciplines. The

framework developed here provides a solid foundation for these subsequent investigations in

both pure and applied mathematics.
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