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Abstract. As software systems and their associated information become increasingly complex within DevOps en-

vironments, Machine Learning (ML) platforms are growing in importance for optimizing development and deploy-

ment processes. This article presents a comparative analysis of two leading ML platforms, Amazon Web Services 

(AWS) and Microsoft Azure, to evaluate their suitability for optimizing DevOps. A quantitative methodology based 

on an experimental comparative method was employed, applying the neutrosophic multi-criteria OWA-TOPSIS 

model to assess and select the best alternative based on specific criteria such as scalability, integration, performance, 

and cost-benefit. The results from the OWA-TOPSIS model, derived from controlled experimental assessments, 

indicate that Microsoft Azure offers greater advantages over AWS for DevOps optimization and software deploy-

ment in the studied use cases. However, it is acknowledged that the optimal platform choice may vary depending 

on the specific needs of each project and organization. 
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1. Introduction 

Software development is a common term in our daily lives due to technological advances; likewise, 

it is common to use software development methodologies because they help to efficiently carry out all 

the processes involved in software development; considering this, we have the DevOps methodology, 

by using this methodology it is possible to reduce the development life cycle, increasing the deployment 

frequency and releasing secure products that meet business requirements, thanks to the fact that the 

“ development ” and “operations” teams when using this methodology improve their communication 

and interact more frequently these two teams [1]. Machine learning platforms can be incorporated into 

this “DevOps” software development methodology to optimize DevOps processes since it allows the 

use of techniques to analyze data and logs generated during DevOps practices and automatically detect 

anomalies [2]. 

Since there is a wide variety of machine learning platforms applicable to DevOps, there is a need to 

determine the best platform that favors the DevOps methodology, taking into account processes such 

as the detection of anomalies in the data since DevOps is used, the information generated is deepened, 

becoming a great job to analyze the data and records generated by this practice [3]. 

Choosing a platform that optimizes DevOps is not something that can be taken lightly, given that 

the platform may not be accurate or effective enough when dealing with the data or logs; this is due to 

the quality and quantity of data that has been generated when using the DevOps methodology [4]. 
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Therefore, this research seeks to analyze machine learning platforms to optimize DevOps environments 

through a multi-criteria comparative analysis to efficiently improve software development and deploy-

ment processes. The specific objectives are to identify machine learning platforms applicable to DevOps 

environments, select the main platforms through a systematic literature review, and define the criteria 

of machine learning platforms for their applicability in optimizing DevOps environments using the 

OWA-TOPSIS model. Validate the results obtained to guarantee the efficiency of the software develop-

ment and deployment processes through an evaluation. 
 

2. Background 

In software development, we rely on development methodologies such as DevOps, which focuses 

on improving collaboration between development and operations teams; thanks to this, we can have 

shorter and more reliable software product release cycles, thus improving product quality and customer 

satisfaction [5]. 

When using DevOps, system information is deepened and new functions emerge, which makes the 

methodology complex when analyzing data or records, so machine learning becomes essential for the 

processes mentioned above to be carried out efficiently and effectively [3]. 

When using DevOps, aspects such as collaboration between development and operations teams to 

achieve common goals, automation of processes such as continuous integration and delivery (which 

allows new changes to be implemented quickly), automation testing that allows the software life cycle 

to be accelerated, and finally, monitoring and feedback, which allow the identification of areas for im-

provement, resolution of problems and optimization of development and operations processes, stand 

out [6]. The stages in which it intervenes range from software development to implementation and, 

finally, the maintenance stage within the software life cycle [7. 

An example of optimization is Jenkins, which is often used in Continuous Integration and Continu-

ous Delivery (CI/CD) workflows, facilitating the creation, testing, and debugging of software projects 

in an automated way, locally or in the cloud [8]. 

An example of the relationship between machine learning and DevOps is that with the help of ma-

chine learning, it is possible to automate repetitive tasks, thus reducing the workload of development 

and operations teams [3]. Furthermore, when detecting problems in software projects using DevOps 

with machine learning, these can be automatically tagged as a bug report, a working solution, or a ques-

tion [4]. 

Azure is a platform that has a Machine Learning (ML) section that allows us to create ML models 

with the information generated in software development using the DevOps methodology, transforming 

the information into a data set to train the model and predict possible errors in development and de-

ployment, and this is achieved because it allows us to generate a model endpoint by implementing it as 

a web service that receives input requests and returns the prediction in real-time [9]. 

On the other hand, we have the AWS (Amazon Web Service) platform, an Amazon cloud service that 

allows configuring servers and interacting with them to prevent companies from creating their own 

data centers [10]. Therefore, it allows the development of a machine learning model to optimize the 

processes of the DevOps methodology, carried out through Amazon Sagemaker , a service that works 

with machine learning. In this way, the services are configured to deploy the model and make data 

predictions [11]. Finally, an endpoint is generated in the AWS Sagemaker control panel where the re-

sponses to requests can be observed in real-time. 

In a comparative analysis of the two machine learning platforms, AWS, with its wide range of ser-

vices and market leadership, stands out for its robust infrastructure and flexibility. On the other hand, 

Azure stands out for its integration with Microsoft products and offers robust tools for business devel-

opment. Both platforms are successful in various sectors but differ in their approach and strengths, 

which influences users' choices based on their specific needs and integration preferences [12]. 
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3. Methodology 

 

This research was conducted using a quantitative approach using the experimental comparative 

method, whereby we worked with numerical values acquired through experimentation and then used 

them in a multi-criteria model to determine the best machine learning platform to optimize DevOps 

environments. 

Through a systematic literature review, criteria for machine learning platforms that optimize 

DevOps were selected, such as a wide range of tools, configuration flexibility, integration with other 

services, scalable pricing model [13], variety of machine learning and data analysis tasks, compatibility 

with Python frameworks, scalability, and distribution [14]. Therefore, the platforms chosen based on 

these criteria were Microsoft Azure and Amazon Web Service. 

Microsoft Azure is a multi-tool platform that enables the development of DevOps environments and 

machine learning models. In terms of scalability and deployment, it allows for quick and easy resource 

addition, meeting the demands of ever-evolving applications. Its pricing model is based on pay-per-

use, offering users the advantage of reducing costs and paying only for the resources used. Its configu-

ration flexibility allows users to modify the cloud infrastructure according to the specific needs of their 

application, which is crucial for efficient and productive deployment [15]. Various machine learning 

tasks can be performed, such as building, evaluating, and deploying predictive models and analyzing 

data to make predictions [16]. 

AWS (Amazon Web Service ) is a cloud services platform that offers a wide range of solutions, facil-

itating the development of DevOps-based models. This platform enables efficient data collection, anal-

ysis, and visualization, standing out for its real-time monitoring capabilities. Thanks to its advanced 

services, AWS maximizes the use of data storage and processing, as demonstrated by the automatic 

disaster alert system [17]. 

In terms of its pricing structure, AWS adapts to user consumption, offering a cost-effective and flex-

ible alternative to traditional physical data centers. Users benefit by paying only for the services used, 

which can translate into significant savings [12]. 

Furthermore, AWS demonstrates its ability to manage and process large volumes of CSV data effi-

ciently, highlighting its scalability and optimization [ 18 ]. Furthermore, AWS supports various machine 

learning models, including binary and multiclass classification, as well as regression models, underlin-

ing its strength in the field of predictive analytics [19]. 

The use of a machine learning platform in DevOps development environments can be evaluated 

using key metrics that demonstrate its effectiveness, importance, and economic viability. The first crite-

rion is Prediction Accuracy, which evaluates the accuracy of the predictive model in identifying error-

prone areas [20 ]. The second criterion was Ease of Use as a fundamental variable in choosing the ma-

chine learning platform that optimizes DevOps [21]. As a third criterion, the Operating Cost is taken 

into consideration, referring to the price to pay for the use of the platform [22 ]. One criterion to consider 

is Development Time, which refers to how long it takes to develop and integrate new functionalities, 

and Ease of Integration, based on how easy it is to integrate the ML model into the current work envi-

ronment.  These metrics comprehensively show how machine learning platforms can optimize pro-

cesses in DevOps environments. 

These metrics provide a basis for a comprehensive assessment. For the subsequent multi-criteria 

evaluation using the OWA-TOPSIS model, these metrics were operationalized within the four main cri-

teria (C1-C4) presented to the experts for the final evaluation. Specifically, the Performance criterion 

(C3) was assessed by considering results related to Prediction Accuracy and Development Time. The 

Integration criterion (C2) directly reflected the Ease of Integration with existing DevOps tools and work-

flows. The Cost-benefit criterion (C4) was primarily informed by the Operating Cost analysis of using 

the platform during the experiment. Finally, the Scalability criterion (C1) was evaluated based on the 
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platform's inherent features and capabilities related to adapting to different workloads, as perceived 

through its Ease of Use and configuration flexibility during the experimental setup. This framework 

allowed for a structured evaluation suitable for the OWA-TOPSIS model. 

Once the platforms were selected, we reviewed each one along with the documentation to perform 

controlled experimentation. To do this, we selected and trained a machine learning (ML) model. Mi-

crosoft Azure offers "Azure ML" and AWS, the " SageMaker " tool. A workspace was created on each 

platform. On Azure ML, the "STANDARD_DS3_V2" compute clusters were used to train the model, and 

on AWS, SageMaker, " ml.g 5.48xlarge". The model was trained on each platform with data from a real 

software project through a Flask project clone. Cyclomatic complexity, maintainability index, and the 

number of lines of source code were extracted using the Python tool " radon ", and each feature was 

tagged on GitHub based on its involvement in the project's issues. Once the prediction model was 

trained, we proceeded to deploy it. The chosen ML platforms allowed us to create endpoint APIs to 

integrate the model into a testing process in a DevOps environment, thereby anticipating potential bugs 

in new features in the code. Data was then collected based on the defined metrics, along with expert 

opinions to assess each of the established metrics. 

 

3.1 OWA-TOPSIS METHOD 

 

This section provides a brief overview of the fundamental principles related to SVNS and SVNLS, 

covering definitions, operating principles, and metrics for measuring distances. 

Definition 1 [23]. Let x be an element in a finite set, X. A single-valued neutrosophic set (SVNS), P, 

in X can be defined as in (1): 

𝑃 =  { 𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)|𝑥 ∈  𝑋},      (1) 

where the truth membership function, 𝑇𝑃(𝑥),the indeterminacy membership function 𝐼𝑃(𝑥), and the 

falsehood membership function 𝐹𝑃(𝑥)clearly adhere to condition (2): 

0 ≤  𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥) ≤  1;   0 ≤  𝑇𝑃(𝑥) +  𝐼𝑃(𝑥) +  𝐹𝑃(𝑥) ≤  3   (2) 

For a SVNS, P in X, we call the triplet ( 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)) its single-valued neutrosophic value 

(SVNV), denoted simply 𝑥 =  (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)for computational convenience. 

Definition 2 [23]. Let 𝑥 =  (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)yy  =  (𝑇𝑦, 𝐼𝑦, 𝐹𝑦)let there be two SVNV. Then 

1) 𝑥 ⊕  𝑦 =  (𝑇𝑥  +  𝑇𝑦  −  𝑇𝑥  ∗  𝑇𝑦, 𝐼𝑥  ∗  𝑇𝑦, 𝐹𝑥  ∗  𝐹𝑦);  

2) 𝜆 ∗ 𝑥  =  (1 −  (1 −  𝑇𝑥)𝜆 , (𝐼𝑥)𝜆 , (𝐹𝑥)𝜆 ), 𝜆 >  0;  

3) 𝑥𝜆  =  ((𝑇𝑥) 𝜆 , 1 −  (1 −  𝐼𝑥)𝜆 , 1 −  (1 −  𝐹𝑥)𝜆 ), 𝜆 >  0 

Let l be 𝑆 =  {𝑠𝛼|𝛼 =  1, … , 𝑙 }a finite, totally ordered discrete term with an odd value, where𝑠𝛼 de-

notes a possible value for a linguistic variable. For example, if 𝑙 =  7, then a set of linguistic terms S 

could be described as follows[24]: 

 𝑆 =  {𝑠1 , 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7} =

 {𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑝𝑜𝑜𝑟, 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟, 𝑓𝑎𝑖𝑟, 𝑔𝑜𝑜𝑑, 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑, 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑔𝑜𝑜𝑑}.   (3) 

Any linguistic variable, 𝑠𝑖 and  𝑠𝑗, in S must satisfy the following rules: 

1) 𝑁𝑒𝑔(𝑠𝑖) =  𝑠−𝑖; 

2) 𝑠𝑖 ≤  𝑠𝑗 ⇔  𝑖 ≤  𝑗; 

3) max(𝑠𝑖, 𝑠𝑗) =  𝑠𝑗, 𝑖𝑓 𝑖 ≤  𝑗; 

4) min(𝑠𝑖, 𝑠𝑗) =  𝑠𝑖 , 𝑖𝑓 𝑖 ≤  𝑗.  
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To avoid information loss during an aggregation process, the discrete set of terms S will be extended 

to a continuous set of terms. 𝑆 =  { 𝑠𝛼|𝛼 ∈  𝑅}.Any two linguistic variables 𝑠𝛼 , 𝑠𝛽 ∈  𝑆satisfy the follow-

ing operational laws [24] : 

1) 𝑠𝛼 ⊕ 𝑠𝛽 =  𝑠𝛼 + 𝛽; 

2) µ𝑠𝛼 =  𝑠µ𝛼 , µ ≥  0; 

3) 
𝑠𝛼

𝑠𝛽
= 𝑠𝛼

𝛽
     

Definition 3 [25] Given X, a finite set of universes, a SVNLS, P, in X can be defined as in (4): 

𝑃 =  {〈 𝑥, [𝑠𝜃(𝑥) , (𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥))]〉| 𝑥 ∈  𝑋}      (4) 

where 𝑠𝜃(𝑥) ∈  𝑆̅ , the truth membership function 𝑇𝑃(𝑥)  , the indeterminacy membership function, 

𝐼𝑃(𝑥)and the falsehood membership function 𝐹𝑃(𝑥)satisfy condition (5): 

 0 ≤  𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)  ≤  1, 0 ≤  𝑇𝑃(𝑥)  +  𝐼𝑃(𝑥)  +  𝐹𝑃(𝑥)  ≤  3.    (5) 

For an SVNLS, P, in X, the 4-tuple 〈𝑠𝜃(𝑥), (𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥))〉is known as the Single-Valued Neutro-

sophic Linguistic Number (SVNLN), conveniently denoted 𝑥 =   𝑠𝜃(𝑥) , (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)for computational pur-

poses. 

Definition 4 [25] . Let there be 𝑥𝑖 =  〈𝑠𝜃(𝑥𝑖 ), (𝑇𝑥𝑖, 𝐼𝑥𝑖 , 𝐹𝑥𝑖)〉 (𝑖 =  1, 2)two SVNLN. Then 

1) 𝑥1 ⊕  𝑥2 =  〈𝑠𝜃(𝑥1 ) + 𝜃𝑥2, (𝑇𝑥1 +  𝑇𝑥2 −  𝑇𝑥1 ∗ 𝑇𝑥2, 𝐼𝑥1 ∗  𝑇𝑥2, 𝐹𝑥1 ∗ 𝐹𝑥2)〉 

2) 𝜆𝑥1 =  〈𝑠𝜆𝜃(𝑥1 ), (1 −  (1 −  𝑇𝑥1)𝜆 , (𝐼𝑥1)𝜆, (𝐹𝑥1)𝜆)〉, 𝜆 >  0; 

3) 𝑥1
𝜆  =  〈𝑠𝜃𝜆(𝑥1) , ((𝑇𝑥1)𝜆 , 1 − (1 −  𝐼𝑥1)𝜆 , 1 −  (1 −  𝐹𝑥1)𝜆 )〉 , 𝜆 >  0.  

Definition 5 [25] . Let there be 𝑥𝑖 =  〈𝑠𝜃(𝑥𝑖) , (𝑇𝑥𝑖 , 𝐼𝑥𝑖 , 𝐹𝑥𝑖)〉  (𝑖 =  1, 2) two SVNLNs. Their distance 

measure is defined as in (6): 

𝑑(𝑥1, 𝑥2𝑣)  =  [|𝑠𝜃(𝑥1)𝑇𝑥1  −  𝑠𝜃(𝑥2)𝑇𝑥2 |µ  +  |𝑠𝜃(𝑥1 ) 𝐼𝑥1  − 𝑠𝜃(𝑥2) 𝐼𝑥2 |µ  +  |𝑠𝜃(𝑥1 )𝐹𝑥1  −  𝑠𝜃(𝑥2)𝐹𝑥2|
µ
] 

1

µ (6) 

In particular, equation (6) reduces the Hamming distance of SVNLS and the Euclidean distance of 

SVNLN when µ =  1and µ =  2, respectively. 

3.1.1. MADM Based on the SVNLOWAD-TOPSIS Method 

For a given multi-attribute decision-making problem in SVNL environments, 𝐴 =  {𝐴1, … , 𝐴𝑚} de-

notes a set of discrete feasible alternatives, 𝐶 =  {𝐶1, … , 𝐶𝑛} represents a set of attributes, and 𝐸 =

 {𝑒1, … , 𝑒𝑘}is a set of experts (or DMs) with weight vector 𝜔 =  {𝜔1, … , 𝜔𝑘}T such that  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 

0 ≤  𝜔𝑖 ≤  1 . Suppose that the attribute weight vector is 𝑠 𝑣 =  (𝑣1, … , 𝑣𝑛)𝑇 , which satisfies  ∑ 𝑣𝑖
𝑛
𝑖=1 =

1 and 𝑣𝑖 ∈  [0, 1]. The evaluation, 𝛼𝑖𝑗
(𝑘)

given by the expert, 𝑒𝑡(𝑡 = 1,…,𝑘)on the alternative, 𝐴𝑖(𝑖 = 1,…,𝑚),rela-

tive to the attribute, 𝐶𝑗(𝑗 = 1,…,𝑛)forms the individual decision matrix as shown in equation (7): 

           𝐶1 ⋯ 𝐶𝑛

𝐷𝑘 =
𝐴1

⋮
𝐴𝑛

(
𝛼11

(𝑘)
⋯ 𝛼1𝑛

(𝑘)

⋮ ⋱ ⋮

𝛼𝑚1
(𝑘)

⋯ 𝛼𝑚𝑛
(𝑘)

)
         (7) 

where 𝛼𝑖𝑗
𝑘 = 〈𝑠𝜃(𝛼𝑖𝑗)

𝑘 , (𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘 , 𝐹𝛼𝑖𝑗
𝑘 )〉 is represented by a SVNLN, which satisfies 𝑠𝜃(𝛼𝑖𝑗)

𝑘 ∈

𝑆̅, 𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘  , 𝐹𝛼𝑖𝑗
𝑘 ∈ [0,1]𝑎𝑛𝑑 0 ≤ 𝑇𝛼𝑖𝑗

𝑘 + 𝐼𝛼𝑖𝑗
𝑘 + 𝐹𝛼𝑖𝑗

𝑘 ≤ 3. 

Geng et al. [26] extended the TOPSIS method to fit the SVNLS scenario, and the procedures of the 

extended model can be summarized as follows (Figure 1.). 
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Figure 1. Flowchart of the Multi-Attribute Decision-Making Process with SVNLOWAD 
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Step 1. Normalize the individual decision matrices: 

In practical scenarios, MADM problems can encompass both benefit attributes and cost attrib-

utes. Let 𝐵 and 𝑆 the benefit attribute sets and cost attribute sets, respectively. Therefore, the con-

version rules specified in (8) apply: 

 

{
𝑟𝑖𝑗

(𝑘)
= 𝛼𝑖𝑗

(𝑘)
= 〈𝑠𝜃(𝛼𝑖𝑗)

𝑘 , (𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘 , 𝐹𝛼𝑖𝑗
𝑘 )〉, for 𝑗 ∈ 𝐵,

𝑟𝑖𝑗
(𝑘)

= 〈𝑠𝑙−𝜃(𝛼𝑖𝑗)
𝑘 , (𝑇𝛼𝑖𝑗

𝑘 , 𝐼𝛼𝑖𝑗
𝑘 , 𝐹𝛼𝑖𝑗

𝑘 )〉, for 𝑗 ∈ 𝑆.
     (8) 

Thus, the standardized decision information, 𝑅𝑘 = (𝑟𝑖𝑗
(𝑘)

)𝑚×𝑛, is set as in (9): 

𝑅𝑘 = (𝑟𝑖𝑗
(𝑘)

)𝑚×𝑛 = (
𝑟11

(𝑘)
⋯ 𝑟1𝑛

(𝑘)

⋮ ⋱ ⋮

𝑟𝑚1
(𝑘)

⋯ 𝑟𝑚𝑛
(𝑘)

)        (9) 

Step 2. Build the collective matrix : 

All individual DM reviews are aggregated into a group review: 

𝑅 = (𝑟𝑖𝑗)𝑚×𝑛 = (

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

)       (10) 

Where 𝑟𝑖𝑗 = ∑ 𝜔𝑘
𝑡
𝑘=1 𝑟𝑖𝑗

(𝑘)
. 

Step 3. Set the weighted SVNL decision information: 

The weighted SVNL decision matrix, 𝑌 , is formed as shown in (11), using the operational laws 

given in Definition 2 above: 

 

𝑌 = (𝑦𝑖𝑗)𝑚×𝑛 = (

𝑣1𝑟11 ⋯ 𝑣𝑛𝑟1𝑛

⋮ ⋱ ⋮
𝑣1𝑟𝑚1 ⋯ 𝑣𝑛𝑟𝑚𝑛

)      (11) 

The OWA operator is fundamental in aggregation techniques, widely studied by researchers [27] . 

Its main advantage lies in organizing arguments and facilitating the integration of experts' attitudes in 

decision making. Recent research has explored OWA in distance measurement, generating variations of 

OWAD [28] . Taking advantage of the benefits of OWA, the text proposes a SVNL OWA distance meas-

ure (SVNLOWAD). Given the desirable properties of the OWA operator, an SVNL OWA distance meas-

ure (SVNLOWAD) is proposed in the following text. 

Definition 6. Let 𝑥𝑗, 𝑥𝑗
´ (𝑗 = 1, . . . , 𝑛)the two collections be SVNLN. If 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷((𝑥1, 𝑥1
′ ), . . . , (𝑥𝑛 , 𝑥𝑛

′ )) = ∑ 𝑤𝑗𝑑(𝑥𝑗, 𝑥𝑗
′)

𝑛

𝑗=1
,    (12) 

Therefore, step 4 of this method can be considered as follows: 

Step 4. For each alternative, 𝐴𝑖the SVNLOWAD is calculated for the PIS, 𝐴+and the NIS 𝐴−, using 

equation (12): 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴+) = ∑ 𝑤𝑗
𝑛

𝑗=1
�̇�(𝑦𝑖𝑗, 𝑦𝑗

+), 𝑖 = 1, . . . , 𝑚    (13) 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴−) = ∑ 𝑤𝑗
𝑛

𝑗=1
�̇�(𝑦𝑖𝑗, 𝑦𝑗

−), 𝑖 = 1, . . . , 𝑚    (14) 

where �̇�(𝑦𝑖𝑗 , 𝑦𝑗
+)and �̇�(𝑦𝑖𝑗 , 𝑦𝑗

−)are the 𝑗 - largest values of �̇�(𝑦𝑖𝑗, 𝑦𝑗
+)and �̇�(𝑦𝑖𝑗 , 𝑦𝑗

−), respectively. 

Step 5. In the classic TOPSIS approach, the relative closeness coefficient, 𝐶𝑖 , is used to rank the 

alternatives. However, some researchers have highlighted cases where relative closeness fails to achieve 

the desired objective of simultaneously minimizing the distance from the PIS and maximizing the 
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distance from the NIS. Thus, following an idea proposed in references [30] , in equations (15)–(17), we 

introduce a modified relative closeness coefficient, 𝐶 ′( 𝐴𝑖 ), used to measure the degree to which the 

alternatives, 𝐴𝑖 ( ) = 1,..., 𝑚 =1,...,), are close to the PIS and also far from the NIS, congruently: 

𝐶′(𝐴𝑖) =
𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖,𝐴−)

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴𝑖,𝐴−)
−

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖,𝐴+)

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴𝑖,𝐴+)
,                    (15) 

where 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴𝑖, 𝐴−) = max
1≤𝑖≤𝑚

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴−),     (16) 

and 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴𝑖, 𝐴+) = min
1≤𝑖≤𝑚

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴+).     (17) 

It is clear that 𝐶′(𝐴𝑖) ≤ 0 (𝑖 = 1, … , 𝑚)the higher the value of 𝐶′(𝐴𝑖)and , the better 𝐴𝑖 the alternative. 

Furthermore, if an alternative 𝐴∗ satisfies the conditions 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴∗, 𝐴−) =

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴∗, 𝐴−)and 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴∗, 𝐴+) = 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴∗, 𝐴+), then 𝐶′(𝐴∗) = 0and the alter-

native 𝐴∗is the most suitable candidate, since it has the minimum distance to the PIS and the maximum 

distance to the NIS. 

Step 6. Rank and identify the most desirable alternatives based on the decreasing closeness coeffi-

cient 𝐶′(𝐴𝑖)obtained using Equation (15). 

4. Case Study: Comparative analysis of machine learning platforms to optimize DevOps. 
 

Given the increasing complexity of software systems developed using DevOps methodology and the 

consequent need to identify optimal machine learning platforms for their implementation, this study 

comparatively evaluates AWS (Amazon Web Services) and Microsoft Azure as the leading machine 

learning platforms for DevOps environments. For this multi-criteria evaluation, the neutrosophic OWA-

TOPSIS model was used. Three DevOps and machine learning experts participated, evaluating the plat-

forms according to specific criteria, applying the neutrosophic single-valued linguistic sets (SVNLS) 

approach to capture the uncertainty inherent in their evaluation3.3 Evaluation criteria. 

 

The criteria selected to evaluate the platforms were: 

• C1: Scalability (ability to adapt to different workloads) 

• C2: Integration with DevOps tools (ease of integration with CI/CD pipelines) 

• C3: Performance (speed and efficiency in data processing) 

• C4: Cost-benefit (relationship between investment and results obtained) 

The experts assigned the following weights to the criteria: 

• C1 (Scalability): 0.30 

• C2 (Integration with DevOps tools): 0.25 

• C3 (Performance): 0.25 

• C4 (Cost-benefit): 0.20 

 Alternatives evaluated: 

• A1: Amazon Web Services (AWS) 

• A2: Microsoft Azure 

The following set of linguistic terms was used: S = {s₁ = "extremely poor", s₂ = "very poor", s₃ = "poor", 

s₄ = "fair", s₅ = "good", s₆ = "very good", s₇ = "extremely good"} 

Below are the SVNL decision matrices provided by each expert (DM = Decision Maker ): 
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Table 1. Evaluation of alternatives according to Criterion 1 (Scalability) 

 

Alternatives DM1 DM2 DM3 

AWS (A1) S ₆( 0.7,0.1,0.2) S ₆( 0.8,0.1,0.1) S₅ ( 0.6,0.2,0.2) 

Azure (A2) S₅ ( 0.6,0.2,0.2) S₅ ( 0.5,0.3,0.2) S ₆( 0.7,0.1,0.2) 

 

Table 2. Evaluation of alternatives according to Criterion 2 (Integration with DevOps tools) 
 

Alternatives DM1 DM2 DM3 

AWS (A1) S₅ ( 0.6,0.2,0.2) S₄ ( 0.5,0.3,0.2) S₅ ( 0.7,0.1,0.2) 

Azure (A2) S ₆( 0.8,0.1,0.1) S ₆( 0.7, 0.2, 0.1) S ₆( 0.8,0.1,0.1) 

 

Table 3. Evaluation of alternatives according to Criterion 3 (Performance) 

 

Alternatives DM1 DM2 DM3 

AWS (A1) S ₆( 0.7, 0.2, 0.1) S ₆( 0.6,0.2,0.2) S₅ ( 0.6,0.3,0.1) 

Azure (A2) S₅ ( 0.6,0.2,0.2) S₅ ( 0.5,0.2,0.3) S ₆( 0.7,0.1,0.2) 

 
Table 4. Evaluation of alternatives according to Criterion 4 (Cost-benefit) 

 

Alternatives DM1 DM2 DM3 

AWS (A1) S₄ ( 0.5,0.3,0.2) S₄ ( 0.4,0.4,0.2) S₅ ( 0.6,0.2,0.2) 

Azure (A2) S₅ ( 0.7,0.2,0.1) S₅ ( 0.6,0.3,0.1) S ₆( 0.7,0.1,0.2) 

 

Applying the operations defined for SVNLS, the collective decision matrix was calculated consider-

ing an equal weight for each expert (ω₁ = ω₂ = ω₃ = 0.333). 

 
Table 5. SVNL Collective Decision Matrix 

 

Al-

ter-

nati-

ves 

C1 (Scalability) C2 (Integration) C3 (Performance) C4 (Cost-benefit) 

AWS 

(A1) 

S₅.67(0.704,0.129,0.16

2) 

S₄.67(0.610,0.191,0.20

0) 

S₅.67(0.636,0.232,0.13

2) 

S₄.33(0.507,0.294,0.20

0) 

Azur

e 

(A2) 

S₅.33(0.607,0.193,0.20

0) 

S₆.00(0.774,0.129,0.10

0) 

S₅.33(0.607,0.166,0.23

2) 

S₅.33(0.669,0.193,0.13

2) 

By applying the criteria weights to the collective decision matrix, the weighted matrix is obtained. 
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Table 6. Weighted collective SVNL decision matrix 

 

Al-

ter-

nati-

ves 

C1 (Scalability) C2 (Integration) C3 (Performance) C4 (Cost-benefit) 

AWS 

(A1) 

S₁.70(0.324,0.614,0.70

4) 

S₁.17(0.212,0.720,0.71

8) 

S₁.42(0.224,0.734,0.68

6) 

S₀.87(0.136,0.792,0.76

0) 

Azur

e 

(A2) 

S₁.60(0.275,0.675,0.72

1) 

S₁.50(0.297,0.614,0.66

8) 

S₁.33(0.210,0.719,0.75

5) 

S₁.07(0.197,0.675,0.68

6) 

 

In the context of the OWA-TOPSIS model, the PIS (Positive Ideal Point) and the NIS (Negative Ideal 

Point) were determined: 

• PIS (A⁺): (S₁.70(0.324,0.614,0.704), S₁.50(0.297,0.614,0.668), S₁.42(0.224,0.734,0.686), 

S₁.07(0.197,0.675,0.686)) 

• NIS (A⁻): (S₁.60(0.275,0.675,0.721), S₁.17(0.212,0.720,0.718), S₁.33(0.210,0.719,0.755), 

S₀.87(0.136,0.792,0.760)) 

 

The OWA weight vector used was W = (0.35, 0.30, 0.20, 0.15), reflecting the attitude of the decision-

makers. Applying equations (13) and (14), the SVNLOWAD measures between each alternative and the 

ideal points were obtained. 

 
Table 7. Relative distances between each alternative and the reference points 

 

Alternatives SVNLOWAD( A ᵢ ,A ⁺) SVNLOWAD( A ᵢ ,A ⁻) C' 

AWS (A1) 0.231 0.142 -2.89 

Azure (A2) 0.105 0.237 -0.78 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relative distances between each alternative and the reference points 
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4.  Results and Discussion 

The results of the analysis using the neutrosophic OWA-TOPSIS method show that: 

• Microsoft Azure (A2) has a higher C' value (-0.78) compared to AWS (-2.89) 

• Azure has a smaller distance from the positive ideal point (0.105 vs 0.231) 

• Azure shows a greater distance to the negative ideal point (0.237 vs 0.142) 

 

According to the OWA-TOPSIS methodology, the higher the C' value, the more desirable the alter-

native being evaluated. In this case, Microsoft Azure emerges as the most suitable platform for imple-

menting machine learning in DevOps environments. 

Detailed analysis by criteria reveals that: 

1. Scalability (C1): AWS scored slightly higher (S₅.67) than Azure (S₅.33), demonstrating a 

perceived greater ability to adapt to different workloads. 

2. Integration with DevOps tools (C2): Azure significantly outperformed AWS (S₆.00) over 

AWS (S₄.67), representing a considerable advantage in terms of ease of integration with 

CI/CD pipelines and other DevOps tools. 

3. Performance (C3): AWS was rated slightly better (S₅.67) than Azure (S₅.33) in terms of 

speed and efficiency in data processing. 

4. Cost-effectiveness (C4): Azure scored significantly higher (S₅.33) than AWS (S₄.33), sug-

gesting a better perception of the relationship between investment and results obtained. 

 

A comparative analysis of machine learning platforms for optimizing DevOps environments, using 

the neutrosophic OWA-TOPSIS model, has determined that Microsoft Azure represents the most suit-

able alternative for this purpose. This conclusion is based on a comprehensive evaluation of relevant 

criteria such as scalability, integration, performance, and cost-effectiveness. 

While AWS demonstrates strengths in scalability and performance, Azure significantly excels in crucial 

aspects for DevOps environments, particularly in integration with DevOps tools and cost-effectiveness. 

These factors were decisive in the final evaluation using the OWA-TOPSIS model. 

It is important to note that this analysis was conducted in a specific context and with specific criteria. 

The choice of the optimal platform may vary depending on the specific requirements of each organiza-

tion and project. Therefore, it is recommended that each implementation consider its specific needs be-

fore selecting the most appropriate platform. 

This study demonstrates the utility of the neutrosophic OWA-TOPSIS model for decision-making in 

multi-criteria contexts where there is uncertainty in the evaluations, such as the selection of technology 

platforms for DevOps environments. 

 

5. Conclusion 
 

Analysis using the neutrosophic OWA-TOPSIS model reveals that Microsoft Azure stands out as the 

most suitable platform for implementing machine learning in DevOps environments, outperforming 

AWS in the overall evaluation. This finding is based on Azure's closer distance from the positive ideal 

point and its greater separation from the negative ideal point, reflecting superior performance across 

key criteria. The methodology employed allowed for the integration of complex assessments, capturing 

nuances that conventional approaches might overlook. The practical relevance of these results is signif-

icant for organizations seeking to optimize their DevOps processes. Azure's advantage in integration 

with CI/CD tools and its favorable cost-benefit ratio offer clear guidance for practitioners and decision-

makers. These strengths can translate into more efficient workflows, shorter implementation times, and 

better resource allocation in machine learning projects. 

This study offers a notable innovation by introducing the neutrosophic OWA-TOPSIS model as a 
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robust tool for evaluating technological platforms in contexts of high uncertainty. By combining criteria 

such as scalability, performance, integration, and cost, the research not only enriches theoretical 

knowledge on multi-criteria decision-making but also provides a practical framework for selecting tech-

nological solutions tailored to specific needs. However, the study faces certain limitations that should 

be considered. The evaluation was based on a specific set of criteria and a particular context, which 

could restrict the applicability of the results to other scenarios. Furthermore, the inherent subjectivity of 

expert assessments introduces variability that could influence the generalizability of the conclusions. 

For future research, we suggest exploring complementary approaches, such as artificial intelligence 

techniques or fuzzy methods, which could further refine the accuracy of the assessments. Expanding 

the scope of the study to different organizational contexts and additional criteria would allow for the 

validation and strengthening of the findings. Furthermore, we recommend that organizations conduct 

customized assessments, considering their specific priorities and requirements, to ensure the selection 

of the most appropriate platform. 
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