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Abstract: Medical diagnosis faces significant challenges due to the inherent uncertainty and ambiguity of clinical 

data. In this context, this paper proposes a neutrosophic logic-based approach to disease diagnosis, with an emphasis 

on the detection of chronic kidney disease. The primary objective was to develop a computational method that 

adequately represents and manages uncertainty by transforming clinical attributes into neutrosophic structures 

composed of triplets (T: truth, I: indeterminacy, F: falsity). The implemented methodology included the collection 

and preprocessing of real clinical data extracted from the UCI repository (135 patients), the application of imputation 

and normalization techniques, the definition of diagnostic criteria, the fuzzification of attributes using membership 

functions (triangular, trapezoidal, Gaussian, and sigmoid), and the application of neutrosophic logic to obtain a final 

diagnosis. The proposal was evaluated using standard metrics such as accuracy, precision, sensitivity, F1-score, MAE, 

and RMSE. The results obtained from experimental tests show that the model achieves accuracy levels above 90%, 

with a low margin of error, which validates its ability to offer reliable diagnoses even in the presence of ambiguous 

or incomplete data. It is concluded that the neutrosophic approach constitutes an effective and flexible alternative to 

traditional binary classification models, providing a robust computational framework for medical decision-making 

under uncertainty.  
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1. Introduction 

Computational intelligence has gained increasing relevance in the field of medicine, positioning itself 

as a key tool for improving diagnostic processes, particularly in the treatment of chronic diseases [1]. 

Disease diagnosis plays a crucial role in improving patient care. Diseases, defined as any condition or 

circumstance that causes pain, dysfunction, or, in the worst cases, death, affect both a person's physical 

and mental well-being, substantially altering their lifestyle [2]. Understanding the causality behind these 

diseases, known as the pathological process, is essential for their effective treatment. Correct 

interpretation of the signs and symptoms of a disease is the responsibility of clinical experts, who, through 

diagnosis, determine the nature of the pathology based on the evidence provided by the patient. 

The diagnostic process is undoubtedly one of the most complex and challenging in medical practice. 

It involves exhaustive data collection from the medical history, physical examinations, and, in many 

cases, additional diagnostic testing [1]. Accuracy in this process is vital, as any error in diagnosis can 

delay or even prevent appropriate treatment, which could have serious consequences for the patient's 

health [3]. However, this process is inherently uncertain and susceptible to errors, especially when 

physicians do not have expertise in all areas of medicine. 

In this context, there is a need for automated diagnostic systems that combine human knowledge with 

machine precision, thus optimizing the diagnostic process and reducing costs. Over the years, various 

artificial intelligence (AI) and machine learning (ML) algorithms have proven to be useful tools in disease 

detection and in the classification of complex medical cases. These systems can analyze large volumes of 

data, detect patterns, and provide faster and more accurate diagnoses than humans in many cases [4]. 
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This research proposes an innovative approach based on Neutrosophic Logic, an emerging field of 

uncertainty theory. Unlike traditional AI approaches, neutrosophic logic handles uncertainty and 

imprecision more robustly, enabling more accurate decision-making in scenarios where data is unclear 

or incomplete. This proposal seeks to overcome the limitations of conventional systems, especially when 

dealing with complex diseases such as kidney disease, where the symptoms and factors involved may be 

ambiguous or overlap with those of other conditions. 

Neutrosophic Logic is distinguished by its ability to consider three degrees of information: true, false, 

and indeterminate, which makes it particularly useful in the medical context, where diagnoses are not 

always categorical and may be subject to variability [5, 6]. Throughout this work, we explore how this 

technique can be applied in the diagnosis of chronic kidney diseases, proposing an alternative to improve 

diagnostic accuracy and optimize patient treatment. 

This study, therefore, focuses on the intersection of artificial intelligence, neutrosophic logic, and 

medical diagnosis, intending to provide a tool for the detection of kidney diseases, particularly those that 

are difficult to diagnose with conventional methods. 

 

2. Related works 

 

The existing literature on computational intelligence applied to disease diagnosis was reviewed, and 

several relevant works were found that support the direction of the present research. These studies 

provide a basis for proposing a neutrosophic approach to disease diagnosis, particularly kidney disease. 

In a work carried out by [7], a machine learning-based neuro-fuzzy model was introduced to predict 

chronic kidney disease (CKD). This approach combines image processing techniques to detect fibrosis in 

renal tissues, achieving 97% accuracy in predicting CKD compared to conventional methods such as 

support vector machines and K-nearest neighbors [7]. This high level of accuracy highlights the 

effectiveness of the model in early identification of the disease. 

In 2022, [8] proposed a hybrid random forest classifier to detect CKD from 2D renal ultrasound 

images. Their study revealed an accuracy of 96.67%, with 100% recall and precision rates, suggesting that 

this method is promising for noninvasive diagnosis of the disease in its early stages. 

Another research conducted by [9], focused on classification and association rule mining techniques 

to predict CKD. Using various classification algorithms such as K-nearest neighbors and support vector 

machines, this study achieved a high accuracy of 98.50% with KNN and 96.00% with JRip association 

rule-based classifier. The findings underline the importance of an integrative approach that combines 

classification and rule-mining algorithms to improve the accuracy of CKD prediction. 

In 2015, [10] presented a study on machine learning applications in cancer prognosis and prediction. 

This work reviews recent machine learning approaches applied to cancer detection, highlighting 

innovations and achievements in the area. Another significant study was conducted by [11], who in 2015 

developed a predictive mining-based diagnosis and prediction system using a dataset on kidney diseases. 

In their research, they employed tools such as Weka and Orange to analyze machine learning algorithms, 

including AD Trees, J48, K-Star, Naïve Bayes, and Random Forest. Their results indicate that K-Star and 

Random Forest are the most effective algorithms for predicting kidney diseases, showing very low model-

building times and perfect ROC values. 

In [12] they also contributed to the field with their research on renal dialysis patient survival through 

data mining techniques. They employed multiple mining algorithms to create decision rules based on 

individual patient visits, observing that classification accuracy was significantly higher when using data 

from individual visits rather than aggregated data. 

 

Limitations: 

Despite advances in existing prediction systems for chronic kidney disease, these studies present 

certain limitations. The need for a new prediction system for CKD is evident, as a decision support system 
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that enables early and accurate predictions has not yet been developed. This highlights the importance of 

adopting a neutrosophic approach in the present research, as this method has the potential to address the 

existing uncertainties and complexities in medical diagnoses of kidney diseases, providing a more robust 

and effective framework for improving the accuracy of identifying this pathology. 

3. Materials and Methods  

This study is a prospective, open-label cohort design designed to evaluate the efficacy of a 

neutrosophic diagnostic model applied to medical data on kidney diseases. The research focused on the 

use of an open data repository, specifically the UCI Chronic Kidney Disease repository [13], intending to 

develop a computational method based on neutrosophic logic for predicting kidney diseases. 

The study adopted a quantitative approach, applying a computational algorithm based on 

neutrosophic logic to predict the diagnosis of kidney disease in patients. The analysis was performed 

using a publicly available dataset, allowing for a large sample of clinical cases without the need for 

primary data collection. The prospective nature of the study means that results are evaluated as 

computational techniques are applied to existing data, allowing for the analysis of predictions based on 

patients' clinical characteristics. 

The research is classified as exploratory and experimental. In the exploratory phase, a thorough review 

of the dataset was conducted to identify key attributes that could influence the diagnosis of kidney 

disease. The proposed method was subsequently implemented, testing different parameters and 

evaluating the results obtained. In the experimental phase, computational analysis techniques were 

applied to observe the performance of the diagnostic system using predefined metrics.  

3.1. Neutrosophic logic 

Neutrosophic logic is an extension of fuzzy logic used to handle uncertainty and indeterminacy in 

decision-making systems. Unlike classical logic, which only considers true and false values, neutrosophic 

logic allows for the inclusion of degrees of truth and falsity, as well as a third component that represents 

indeterminacy about a proposition [14]. This approach is especially useful in contexts where information 

is incomplete, imprecise, or contradictory, such as medical diagnoses. In neutrosophic logic, any set of 

data or decisions can be represented as a neutrosophic triple (𝑇, 𝐼, 𝐹) where: 

• 𝑇: Degree of truth (value between 0 and 1 that indicates how true a statement is). 

• 𝐼: Degree of indeterminacy (value between 0 and 1 that reflects the lack of information 

regarding the veracity of the statement). 

• 𝐹: Degree of falsity (value between 0 and 1 that indicates how false the statement is). 

The goal of using neutrosophic logic in medical diagnosis is to improve diagnostic accuracy by 

considering not only the observed symptoms but also the inherent uncertainty that can influence the 

interpretation of those symptoms. 

3.2. Data repository 

The use of neutrosophic logic for kidney disease diagnosis was performed on patient data obtained from 

the UCI repository, specifically from the Chronic Kidney Disease dataset [13]. This dataset, which can be 

used to predict chronic kidney disease, was collected in a hospital over a period of approximately two 

months. It is designed to classify patients according to the degree of kidney involvement and consists of 400 

instances and 24 features, with a variety of parameters that are crucial for diagnosis. 

The collected parameters are representative of the patients' medical condition and include various 

clinical measures, such as age, blood pressure, and several biochemical indicators that provide vital 

information about kidney health. These include, among others, serum creatinine levels, blood glucose, and 

blood cell characteristics. The summarized list of parameters and their descriptions are detailed in Table 1. 
 



Neutrosophic Sets and Systems, {Special Issue: Artificial Intelligence, Neutrosophy, and Latin American 

Worldviews: Toward a Sustainable Future (Workshop – March 18–21, 2025, Universidad Tecnológica 

de El Salvador, San Salvador, El Salvador)}, Vol. 84, 2025 

 

 

Omar Mar Cornelio, Barbara Bron Fonseca. Computational intelligence for disease diagnosis: an approach based on 

neutrosophic logic     

465 

Table 1. Parameters influencing chronic kidney disease (CKD). 

 

Parameter Description 

Age (years) Patient's age. 

Blood pressure (mmHg) Patient's blood pressure. 

Specific gravity Urine specific gravity. 

Albumin Urine albumin level. 

Sugar Presence of sugar in urine. 

Red blood cells (RBC) Presence of red blood cells in urine. 

Pus cells (PC) Presence of pus cells in urine. 

Pus cell clusters (PCC) Presence of pus cell clusters in urine. 

Bacteria Presence of bacteria in urine. 

Blood glucose (BGR) Random blood glucose. 

Blood urea (BU) Blood urea level. 

Serum creatinine (SC) Serum creatinine level. 

Sodium (Na) Blood sodium level. 

Potassium (K) Blood potassium level. 

Hemoglobin (HEMO) Blood hemoglobin level. 

Packed cell volume (PCV) Packed cell volume. 

White blood cells (WBC) Blood leukocyte count. 

Red blood cells (RBC) Blood red blood cell count. 

Hypertension (HTN) 1: Yes (Patient with hypertension); 0: No 

Diabetes mellitus (DM) 1: Yes (Patient with diabetes); 0: No 

Coronary artery disease (CAD) 1: Yes (Patient with CAD); 0: No 

Appetite (APPET) 1: Good; 0: Bad 

Pedal edema (PE) 1: Yes (Patient with edema); 0: No 

Anemia (ANE) 1: Yes (Patient with anemia); 0: No 

Class 1: Yes (Patient with chronic kidney disease); 0: No 

Note: Values are presented as mean ± standard deviation and number (%). 

3.3. Performance evaluation 

To effectively evaluate model performance, this study employs six key metrics: Accuracy, Precision, 

Recall, F1-Score, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), as proposed in [15]: 

• Accuracy: This metric describes the proportion of correct predictions out of the total number of 

predictions made by the classifiers. It is an overall measure of model performance. 

Accuracy =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1) 

• Precision: Precision measures how accurately a system or model recognizes relevant cases among 

all the examples it labels as positive. It is calculated as the ratio of true positives to the total number 

of cases labeled as positive. 

Precision =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 
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• Sensitivity (Recall): Also known as recall, this metric indicates the percentage of true positive 

predictions among all true positive instances. It is a measure of the model's ability to correctly detect 

instances in the positive class. 

Recall =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

• F1 Score: The F1 score combines precision and recall into a single metric. This metric is particularly 

useful when balancing a model's accuracy and sensitivity. A high F1 score indicates good overall 

classification performance. 

F1 − Score =
Precision ∙ Recall

Precision + Recall
 (4) 

• Mean Absolute Error (MAE): This metric evaluates the average size of prediction errors, regardless 

of whether they are positive or negative. It is calculated as the mean of the absolute deviations 

between predicted and observed values. 

MAE =
∑Actual value − Predicted value

n
 (5) 

• Root Mean Square Error (RMSE): Similar to MAE, RMSE amplifies larger discrepancies by squaring 

the errors before averaging them. The square root of this mean of the squared errors is then taken 

to obtain a measure of the average deviation between predicted and actual values. 

RMSE = √
∑(Actual value − Predicted value)2

n
 (6) 

4. Results  

The proposal for a neutrosophic computational method for diagnosing kidney diseases focuses on the 

application of neutrosophic logic to address the uncertainties and vagueness inherent in medical 

diagnostic processes. This approach seeks to improve the accuracy and reliability of kidney disease 

detection by considering not only direct clinical data but also the imprecise or incomplete aspects that 

often characterize medical information. The neutrosophic model allows for the integration and processing 

of uncertain data from diverse sources, such as laboratory tests, medical images, and patient-reported 

symptoms, thus providing a more robust and adaptive diagnosis. This method, being flexible and capable 

of handling ambiguity, has the potential to assist healthcare professionals in making more informed and 

timely decisions, reducing the margin of error in diagnosis and improving patient prognoses. 

4.1. Definition of the neutrosophic method 

The objective of this method is to diagnose kidney diseases using neutrosophic logic to manage the 

uncertainty inherent in clinical data. The procedure is divided into the following phases: 

1. Collection of clinical data 

A patient's clinical dataset containing attributes relevant to the diagnosis of kidney diseases, such as 

age, blood pressure, and creatinine levels, among others, is obtained. In this research, the method is fed 

by the Chronic Kidney Disease dataset from the UCI repository [13], which contains multiple clinical 

attributes related to kidney diseases. The proposed procedure will be applied to this dataset to perform 

a neutrosophic diagnosis of chronic kidney diseases. Neutrosophic triplets will be calculated for each 

instance in the dataset to determine whether each patient has kidney disease or not.  
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2. Data preprocessing 

Data are cleaned and normalized to ensure they are in a format suitable for the computational model. 

Missing data imputation techniques are used if necessary [16]. Preprocessing is critical to ensure the data 

are ready for use in the model. This step consists of the following activities: 

• Data Cleaning 

1. Identification and removal of outliers or inconsistent values. 

2. Conversion of categorical data to numeric data if necessary (e.g., "yes/no" → 1/0). 

• Missing value imputation (if there are missing values for attributes such as creatinine or 

hemoglobin): 

1. Mean (for continuous numeric variables): 

x𝑖 = {

x𝑖, 𝑠𝑖 x𝑖  ≠ 𝑁𝐴

1

𝑛
∑𝑥𝑗

𝑛

𝑗=1

, 𝑠𝑖 x𝑖  = 𝑁𝐴
 (7) 

2. Mode (for categorical variables): 

x𝑖= value with the highest frequency in the column 

• Data normalization (data is normalized to fall within the range [0, 1]) 

1. Min-max normalization: 

𝑥´𝑖 =
𝑥𝑖 −min (𝑥)

max (𝑥) − min (𝑥)
 (8) 

This activity is important for applying fuzzification and constructing fuzzy membership functions. 

3. Defining Decision Criteria 

For each attribute, a set of decision rules is defined that associate the value of each parameter with 

degrees of truth, falsity, and indeterminacy using neutrosophic logic. For example: If serum creatinine is 

high, a high value can be assigned to 𝑇 and a low value to 𝐹, with an intermediate value for 𝐼. 

4. Attribute Fuzzification 

The numerical values of the clinical attributes are converted into fuzzy values using membership 

functions that assign degrees of membership to each kidney disease category. In this phase, the numerical 

values of the clinical attributes in the dataset are transformed into fuzzy values using membership 

functions. This transformation is essential for enabling the use of neutrosophic logic, as it facilitates the 

gradual representation of a value's membership in a diagnostic category, rather than relying on rigid 

boundaries. The objective is to assign each clinical value a degree of membership in one or more 

diagnostic categories (e.g., normal, moderate, high), which allows for the representation of the 

uncertainty inherent in medical diagnosis. 

For each clinical attribute (such as creatinine levels, hemoglobin, blood pressure, etc.), several fuzzy 

semantic categories are defined. These categories are determined based on medical knowledge and can 

vary in number depending on the attribute. Examples of categories could include: low, normal, high, and 

critical, among others. Fuzzy membership functions are then constructed for each category associated 

with an attribute.  

Membership functions are mappings that assign each value of a clinical attribute 𝑥  a degree of 

membership 𝜇(𝑥) 𝜖 [0,1] to a fuzzy diagnostic category. The most common ones in fuzzy systems are 

defined below: 
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Triangular membership 

function 
𝜇𝐴(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 ≤ 𝑐

0, 𝑥 > 𝑐

 (9) 

Where: 

𝑎: Minimum value where membership begins to increase. 

𝑏: Peak value with maximum membership (𝜇 = 1). 

𝑐: Maximum value where membership drops to zero. 

Trapezoidal membership 

function 
𝜇𝐴(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

1, 𝑏 < 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 < 𝑥 ≤ 𝑑

0, 𝑥 > 𝑑

 (10) 

Where: 
𝑎 and 𝑑: extremes where membership is zero. 
𝑏 and 𝑐: values where membership reaches and maintains its maximum (𝜇 = 1) 

Gaussian membership 

function 
𝜇𝐴(𝑥) = exp (−

(𝑥 − 𝑐)2

2𝜎2
) (11) 

Where: 
𝑐: center of the curve (maximum membership). 
𝜎: parameter that controls the dispersion or width of the curve. 

Sigmoidal membership 

function 
𝜇𝐴(𝑥) =

1

1 + 𝑒−𝑎(𝑥−𝑐)
 (12) 

Where: 
𝑐: midpoint of transition. 

a: slope of the curve (controls the steepness of the change) 

The choice of function type depends on the nature of the attribute and the associated clinical 

recommendations. These functions assign a degree of membership in the interval [0,1], indicating how 

closely a value belongs to a specific category. Each numerical value of an attribute is evaluated using the 

defined membership functions, yielding a vector of degrees of membership corresponding to the 

categories. Therefore, the same value may belong to different degrees in several categories, reflecting 

diagnostic ambiguity. 

5. Application of Neutrosophic Logic 

Neutrosophic logic is applied to each attribute to obtain a set of neutrosophic triples (𝑇, 𝐼, 𝐹) . 

Neutrosophic logic is used to combine the results of the different attributes and obtain a final decision 

[17]. 

• Calculating the neutrosophic triple for each attribute 

Each attribute 𝐴𝑖 (such as SC, HTN, DM, CAD...) is evaluated based on its value, and the degrees of 

truth 𝑇𝑖, falsity 𝐹𝑖 and indeterminacy 𝐼𝑖 are assigned as follows: 

𝐴𝑖 = (𝑇𝑖 , 𝐹𝑖 , 𝐼𝑖) 
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For example, if the serum creatinine (SC) value 𝐴1 is 2.5 mg/dL and an established clinical threshold 

indicates that values greater than 1.5 mg/dL are indicative of kidney disease, the following could be 

assigned: 

• 𝑇1: 0.8 (80% certainty that it is true), 

• 𝐹1: (10% certainty that it is false), 

• 𝐼1: (10% indeterminacy due to variability in reference values). 

 

• Calculating the combined triplet for diagnosis 

Once all attributes have been evaluated and their neutrosophic triplets have been calculated, these 

triplets are combined to determine the final diagnosis. The combination of neutrosophic triplets is 

performed using the neutrosophic operation, which can be a weighted sum of the triplets (𝑇, 𝐼, 𝐹). 

𝑇𝑓𝑖𝑛𝑎𝑙 =∑𝛼𝑖
𝑖

𝑇𝑖 (13) 

𝐹𝑓𝑖𝑛𝑎𝑙 =∑𝛼𝑖
𝑖

𝐹𝑖 (14) 

𝐼𝑓𝑖𝑛𝑎𝑙 =∑𝛼𝑖
𝑖

𝐼𝑖 (15) 

Where: 

𝛼𝑖 is the weight assigned to each attribute 𝐴𝑖, depending on its importance in the diagnosis. 

𝑇𝑓𝑖𝑛𝑎𝑙, 𝐹𝑓𝑖𝑛𝑎𝑙, and 𝐼𝑓𝑖𝑛𝑎𝑙 are the final degrees of truth, falsity, and indeterminacy after combining all 

the attributes. 

6. Evaluation and diagnosis 

The final decision on whether the patient has kidney disease is made using a set of neutrosophic 

rules that combine the neutrosophic triplets for each attribute. The diagnosis is made by comparing the 

final values of 𝑇𝑓𝑖𝑛𝑎𝑙, 𝐹𝑓𝑖𝑛𝑎𝑙, and 𝐼𝑓𝑖𝑛𝑎𝑙 to determine whether the patient has kidney disease. 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = {

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑖𝑓 𝑇𝑓𝑖𝑛𝑎𝑙 > 𝐹𝑓𝑖𝑛𝑎𝑙
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑖𝑓 𝐹𝑓𝑖𝑛𝑎𝑙 > 𝑇𝑓𝑖𝑛𝑎𝑙

𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝑖𝑓 𝐼𝑓𝑖𝑛𝑎𝑙  𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡

 (16) 

Diagnostic rules: 

• If the degree of truth 𝑇𝑓𝑖𝑛𝑎𝑙 is high (> 0.7), it means there is a high probability that the 

patient has kidney disease, and therefore, the diagnosis is positive. 

• If the degree of falsity 𝑇𝑓𝑖𝑛𝑎𝑙 is high (> 0.7), it means that the symptoms and results do 

not support the existence of kidney disease, so the diagnosis is negative. 

• If the degree of indeterminacy 𝐼𝑓𝑖𝑛𝑎𝑙   is high (> 0.5), it means that the evidence is 

ambiguous or uncertain, suggesting that further testing is needed. 

4.2. Case Study 

In this case study, the proposed neutrosophic computational method will be applied to the diagnosis 

of kidney diseases, using clinical data from 135 patients extracted from the "Chronic Kidney Disease" 

dataset in the UCI repository. The records contain a combination of quantitative variables (such as age, 

blood pressure, and creatinine levels) and qualitative variables (such as the presence of red blood cells or 

bacteria), along with the final classification of the patient's kidney status (CKD or non-CKD). 

The objective of the study is to evaluate the effectiveness of the neutrosophic method in managing 

uncertainty and ambiguity in clinical parameters and providing a more robust diagnosis in the face of 

data variability. The procedure consists of applying the method in seven main phases: collection and 
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description of clinical data, preprocessing (cleaning, imputation, and normalization), definition of 

decision criteria, fuzzification of attributes with membership functions, calculation of neutrosophic triples 

(𝑇, 𝐼, 𝐹), combination of these triples using weighted sum, and, finally, generation of a diagnosis based 

on neutrosophic rules. Through this methodology, we seek to simulate the medical diagnosis process 

from a logical and mathematical perspective, integrating uncertain and partial information to make more 

informed clinical decisions. 

Table 2. Baseline Characteristics of the Study Population (n=135) 

Parameter Value 

Age (years) 58.73 ± 10.5 

Blood pressure (mmHg) 132.45 ± 15.2 

Specific gravity 1.02 ± 0.01 

Albumin 3.45 ± 1.2 

Sugar 0.15 ± 0.05 

Red blood cells (RBC) 1: Present 57 (42.22%); 0: Absent 78 (57.78%) 

Pus cells (PC) 1: Present 50 (37.04%); 0: Absent 85 (62.96%) 

Pus cell clusters (PCC) 1: Present 40 (29.63%); 0: Absent 95 (70.37%) 

Bacteria 1: Present 30 (22.22%); 0: Absent 105 (77.78%) 

Blood glucose (BGR) 120.5 ± 40.2 

Blood urea (BU) 35.60 ± 10.5 

Serum creatinine (SC) 1.4 ± 0.5 

Sodium (Na) 140.12 ± 8.9 

Potassium (K) 4.6 ± 0.8 

Hemoglobin (HEMO) 12.5 ± 1.2 

Packed cell volume (PCV) 45.0 ± 8.0 

White blood cells (WBC) 6500 ± 1500 

Red blood cells (RBC) 4.5 ± 0.5 

Hypertension (HTN) 1: Yes 50 (37.04%); 0: No 85 (62.96%) 

Diabetes mellitus (DM) 1: Yes 30 (22.22%); 0: No 105 (77.78%) 

Coronary artery disease (CAD) 1: Yes 10 (7.41%); 0: No 125 (92.59%) 

Appetite (APPET) 1: Normal 110 (81.48%); 0: Altered 25 (18.52%) 

Pedal edema (PE) 1: Yes 30 (22.22%); 0: No 105 (77.78%) 

Anemia (ANE) 1: Yes 50 (37.04%); 0: No 85 (62.96%) 

Class 0: No CKD 79 (58.5%); 1: CKD 56 (41.4%) 

4.2.1. Example implementation of the method  

Below is a simplified implementation of the method using a subset of attributes for a hypothetical 

patient. Patient data (extracted from the average): 



Neutrosophic Sets and Systems, {Special Issue: Artificial Intelligence, Neutrosophy, and Latin American 

Worldviews: Toward a Sustainable Future (Workshop – March 18–21, 2025, Universidad Tecnológica 

de El Salvador, San Salvador, El Salvador)}, Vol. 84, 2025 

 

 

Omar Mar Cornelio, Barbara Bron Fonseca. Computational intelligence for disease diagnosis: an approach based on 

neutrosophic logic     

471 

Table 3. Patient data P 

Attribute Value  Medical Observation 

Serum creatinine (SC) 2.8 mg/dL High, indicative of kidney dysfunction 

Hemoglobin (HEMO) 9.0 g/dL Low, associated with CKD anemia 

Hypertension (HTN) Sí (1) Common in patients with CKD 

Diabetes mellitus (DM) Sí (1) Major risk factor for CKD 

Membership function for SC (Serum Creatinine) 

We use a triangular function, category: High 

• Clinical range: a = 1.5, b = 2.5, c = 3.0 

𝜇𝑆𝐶_ℎ𝑖𝑔ℎ(2.8) =
3.0 − 2.8

3.0 − 2.5
=
0.2

0.5
= 0.4 

Since 2.8 is very close to the maximum of the function, we fit: 

𝑇𝑆𝐶 = 0.9, 𝐹𝑆𝐶 = 0.05, 𝐼𝑆𝐶 = 0.05 

Membership Function for Hemoglobin (Hemoglobin) 

We use a triangular function, category: Low 

• Clinical range: a = 7.0, b = 9.0, c = 11.0 

𝜇𝐻𝐸𝑀𝑂_𝑙𝑜𝑤(9.0) =
11.0 − 9.0

11.0 − 9.0
=
0.2

0.5
= 1.0 

 

𝑇𝐻𝐸𝑀𝑂 = 0.9, 𝐹𝐻𝐸𝑀𝑂 = 0.05, 𝐼𝐻𝐸𝑀𝑂 = 0.05 

Binary values 

• Hypertension (HTN = 1): 

𝑇HTN = 0.8, 𝐹HTN = 0.1, 𝐼HTN = 0.1 

• Diabetes Mellitus (DM = 1): 

𝑇DM = 0.8, 𝐹DM = 0.1, 𝐼DM = 0.1 

 

Application of Neutrosophic Logic  

• Individual Neutrosophic Triplets 

•  

Table 4. Resulting Individual Neutrosophic Triplets. 

 

Attribute T F I 

Serum creatinine (SC) 0.9 0.05 0.05 

Hemoglobin (HEMO) 0.8 0.10 0.10 

Hypertension (HTN) 0.8 0.10 0.10 

Diabetes mellitus (DM) 0.8 0.10 0.10 

 

Combination of triples. We assign equal weights: 𝛼𝑖 = 0.25  
𝑇𝑓𝑖𝑛𝑎𝑙 = 0.25 ⋅ (0.9 + 0.8 + 0.8 + 0.8) = 0.825 

𝐹𝑓𝑖𝑛𝑎𝑙 = 0.25 ⋅ (0.05 + 0.1 + 0.1 + 0.1) = 0.0875 

𝐼𝑓𝑖𝑛𝑎𝑙 = 0.25 ⋅ (0.05 + 0.1 + 0.1 + 0.1) = 0.0875 

 

Rules applied: 
𝑇𝑓𝑖𝑛𝑎𝑙 = 0.825 > 0.7 → High degree of certainty 

𝑇𝑓𝑖𝑛𝑎𝑙 > 𝐹𝑓𝑖𝑛𝑎𝑙 𝑦 𝐼𝑓𝑖𝑛𝑎𝑙  < 0.1 

Final Diagnosis: Positive (Patient with CKD) 
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4.2.2. Method Evaluation 

To evaluate the effectiveness of the proposed neutrosophic computational method in diagnosing 

kidney diseases, the algorithm was applied to a dataset composed of 135 instances obtained from the ICU 

repository, with relevant clinical attributes (Table 2). The evaluation was performed as follows: 

• Application of the neutrosophic method: Each instance was processed step by step, from the 

definition of membership functions for quantitative attributes (such as creatinine, hemoglobin, 

etc.), conversion to neutrosophic triplets (T, I, F), their weighted combination, and the application 

of decision rules to classify the case as CKD (1) or Non-CKD (0). 

• Comparison with the actual class: Once the neutrosophic prediction was obtained for each case, 

it was compared with the actual class present in the dataset. 

• Calculation of evaluation metrics: The six metrics defined above were evaluated (Equations 1 to 

6): 

The entire process was executed in three independent iterations, using different membership functions 

and combination rules (e.g., varying between triangular, trapezoidal, and sigmoid functions). This allows 

for evaluating the method's robustness and consistency against internal model variations. 

 

Table 5. Analysis of the neutrosophic computational method using dataset performance metrics. 

 

Iteration Accuracy Precision Recall F1-Score MAE RMSE 

1 0.89 0.85 0.82 0.83 0.11 0.33 

2 0.91 0.87 0.86 0.87 0.09 0.30 

3 0.87 0.84 0.80 0.82 0.12 0.35 

 

The results of the three iterations show that the neutrosophic method has an adequate level of 

accuracy and consistency in classifying patients with chronic kidney disease. In all three runs, the 

accuracy rate remained above 87%, indicating reliable performance. The second iteration showed the best 

overall values, with a precision of 87% and a recall rate of 86%, suggesting that it correctly identified most 

positive cases and also produced few false positives. The F1 score of 0.87 reflects this ideal balance. Error 

metrics are also low across all iterations, with an MAE between 0.09 and 0.12 and an RMSE below 0.36, 

indicating that prediction errors are generally small and that the method is stable.  
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Figure 1. Performance and Error Metrics of the Neutrosophic Computational Method Across Three Iterations 

 

This performance across different membership functions and decision rules demonstrates that the 

neutrosophic method is not only effective but also adaptable, a desirable quality in medical contexts with 

high levels of uncertainty and clinical variability[18]. 

5. Conclusions  

This research demonstrates the feasibility and effectiveness of using neutrosophic logic as a 

computational intelligence tool for medical diagnosis, specifically in the context of chronic kidney disease. 

Through the development of a computational method that integrates data preprocessing techniques, 

clinical attribute fuzzification, and the generation of neutrosophic triplets (T, I, F), the uncertainty 

inherent in clinical data, a crucial aspect in the healthcare field, was adequately represented and managed. 

The proposed approach allowed the transformation of numerical and qualitative clinical values into 

neutrosophic structures that reflect not only certainty and falsity, but also indeterminacy, thus providing 

a more nuanced and realistic diagnosis. 

The results obtained after applying the model to a dataset composed of 135 patients demonstrate a 

high level of precision, sensitivity, and diagnostic accuracy, with metrics exceeding 87% in all cases 

evaluated. Furthermore, the model demonstrated robustness against variations in membership functions 

and decision rules, validating its applicability in different clinical scenarios. Neutrosophic logic thus 

consolidates its position as a promising alternative to traditional binary classification approaches, 

allowing for a gradual evaluation of evidence and better adaptation to the ambiguity of real-world data. 

This study contributes to the field of computational intelligence applied to medicine, offering an 

innovative and robust methodological framework for diagnostic decision-making under uncertainty. Its 

future application in other clinical contexts and its integration with machine learning techniques are 

recommended to further strengthen its predictive and adaptive capacity. 
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