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Abstract: Recent advances in generative models have revolutionized the technology employed 

for image synthesis quite significantly, and two paradigms—GANs and diffusion-based 

models—are leading the pack of innovation. This paper outlines an extensive comparison and 

analysis of some of the best models across both paradigms, namely StyleGAN-T, DF-GAN, 

AttnGAN, and BigGAN on the GAN side and Stable Diffusion 3 (SD3), DALL·E 3, Midjourney 

v6, and Imagen 2 on the diffusion side.                                                                                  

We systematically inspect the architectural design, training protocols, text-conditioning 

processes, and domain adaptability of each model, highlighting how they address text-to-image 

generation challenges differently. Through qualitative and quantitative measurements—such as 

FID, CLIP Score, human preference surveys, and compositional accuracy, the work reveals 

performance tradeoffs concerning speed, control, creativity, semantic alignment, and 

photorealism. We use the Neutrosophic Set model to select the best model based on these 

evaluation matrices. We have different scores for each model based on evaluation matrices. So, 

the neutrosophic set is used to overcome the uncertainty information. We use the COPRAS 

method to rank the models and select the best one based on the evaluation matrix weights. 
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1. Introduction  

The landscape for text-to-image generation has evolved extremely rapidly in the recent past, from 

GAN-based to diffusion-based. Previous milestones such as AttnGAN, DF-GAN, BigGAN, and 

StyleGAN-T brought the ability of Generative Adversarial Networks (GANs) to generate high-

resolution semantically coherent images using adversarial learning and latent space 

manipulation. StyleGAN-T particularly builds on the tradition of the StyleGAN series using 

transformer-based text encoding to achieve semantically rich image generation without 

sacrificing the efficiencies and resolution capabilities of GANs. Meanwhile, diffusion models like 

Stable Diffusion 3 (SD3), Imagen 2, DALL·E 3, and Midjourney v6 have come in to take the lead 

by applying iterative denoising processes fueled by powerful language models. These models 

emphasize expressiveness, diversity, and fine-grained alignment to complex textual inputs, albeit 

often at the cost of slower inference times. 

While all these models share the goal of translating textual input into visually plausible outputs, 

they vary significantly in their theoretical foundations, architecture, and practical performance. 

GAN-based models emphasize fine control and fast inference, while diffusion-based models 

emphasize semantic richness and diversity of outputs. This work seeks to systematically explore 

and compare these approaches on theoretical foundations, empirical outcomes, and usability 

aspects, with a focus on their implications for creative industries, content creation, and visual 

narrative. By contrasting these models against each other, we hope to provide researchers and 

practitioners with a roadmap for interpreting the relative advantages and disadvantages of each 

approach—and to guide future multimodal generative AI design.[1].  

Set theory was first presented in the 1870s because of Cantor and Dedekind's work, which 

demonstrated its value by offering several practical applications. Only absolute associateship—

that is, whether a member is contained in a set or not—is addressed by the traditional set theory, 

which is based on crisp sets. Zadeh introduced fuzzy sets to address incomplete associateship 

because of this association constraint. Introduced in 1965, fuzzy sets were later generalized as 

rough sets by Pawlak in 1982 and as soft sets by Molodstov in 1999. In practically every sector, 

including engineering, economics, social sciences, environmental sciences, and medical sciences, 

these generalizations have demonstrated their value in addressing the uncertainties in a variety 

of real-world issues[2], [3]. 

A few variations based on the generalization of truthiness (associateship), falsity (non-

associateship), and hesitancy (indeterminacy) are fuzzy soft sets, intuitionistic fuzzy sets, 

intuitionistic fuzzy soft sets, hesitant fuzzy sets, hesitant fuzzy soft sets, picture fuzzy sets, picture 

fuzzy soft sets, hypersoft sets, and neutrosophic hypersoft sets. We have clarified a few academic 

endeavors about fermatean sets, soft sets, and neutrosophic sets. Ali et al. produced modified 

operators in 2009 after Maji introduced the principles of soft sets in 2003, comprising basic entities 

and operators.[4], [5].  
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Inspired by philosophical logics (absolute and relative truthiness and falsity) and a variety of real-

world situations, such as decision-making (making a decision, hesitating, accepting, rejecting, 

pending), game results (win, loss, tie), voting outcomes (in favor of, opposite, blank vote), 

numbers (positive, negative, neutral), and straight-forward questions (yes, not applicable, no). 

Neutosophic sets (knowledge of neutral wisdom) are atri-component sets that Smarandache 

proposed[6], [7]. They deal with three components: indeterminacy, non-associateship, and 

association.[8], [9] As Wang et al. presented single and interval-valued neutrosophic sets, a 

neutrosophic set theory developed. 

Table 1. Literature review 

 

Table 1 gives a comparative assessment of five top text-to-image and image synthesis models on 

GAN-based (AttnGAN, DM-GAN, DF-GAN) as well as diffusion-based (Score-Based SDE, 

HOLD-DGM) frameworks. It highlights considerable progress over the years with higher 

inception scores and FID on datasets like CUB, COCO, and CIFAR-10. Diffusion models, 

particularly HOLD-DGM, offer improved image fidelity and robustness due to advanced 

dynamics and score-matching techniques. In contrast, newly introduced GANs like DF-GAN 

improve training performance and inference latency using simpler architectures. The table 

indicates progress in the shift from GAN attention and memory mechanisms to more theory-

motivated and scaling-efficient score-based diffusion models and marking model complexity-

versus-compute trade-offs. There is no study combining the neutrosophic set with the text-to-

image generation models. So, we use the neutrosophic set to select the best model. 

2. Proposed Model 

This section shows the bipolar neutrosophic sets (BNSs) model to compute the criteria weights 

and rank the alternatives. We show the definitions of the BNSs and their operations.[15], [16]. 

Then we show the steps of the COPRAS method to rank the alternatives.  

Definitions of the BNSs and their operations are shown such as: 

Work / Year 

 

Method Dataset

  

Result Strengths 

 

Weakness 

AttnGAN 

(2018) [10] 

Attentional GAN with 

word-level attention 

CUB, 

COCO, 

Oxford-102 

Inception Score 

(CUB: 4.36, COCO: 

25.89) 

Fine-grained text-image alignment, 

word-region attention mechanism 

Produces fuzzy or fragmented details; weak global consistency 

 

DM-GAN 

(2019) [11] 

Dynamic Memory GAN 

with memory 

writing/gating 

CUB, 

COCO, 

Oxford-102 

IS: 4.75 (CUB), 30.49 

(COCO); R-

precision improved 

 

Memory mechanism enhances object 

refinement and consistency 

Higher computational cost, multi-stage complexity 

 

DF-GAN (2021) 

[12] 

One-stage GAN with 

Deep Fusion module 

(DFBlock 

CUB, 

COCO, 

Oxford-102 

IS: 4.86 (CUB), 28.92 

(COCO); better FID 

than AttnGAN and 

DM-GAN 

Lightweight architecture, faster 

training, and inference, end-to-end 

training 

 

Lacks iterative refinement directly, occasionally worse fine detail in 

complex scenes 

Score-Based 

SDE (Song et 

al., 2020) [13] 

 

Score-based generative 

modeling via 

forward/reverse SDEs. 

 

 

CIFAR-10 

(32×32), 

CelebA-64 

 

 

FID 2.20; IS 9.89 

 

 

Unified SDE framework encompassing 

diffusion models; strong theoretical 

grounding; state-of-the-art 

unconditional image quality 

Requires hundreds–thousands of solver steps → high inference time; 

not directly text-conditional 

 

HOLD-DGM 

(Shi & Liu, 

2025) [14] 

 

High-order Langevin 

Dynamics (third-order 

SDE) for score-matching 

 

 

CIFAR-10; 

CelebA-HQ-

256 

 

 

FID 1.85 (at NFE = 

2000) 

Smoother sampling trajectories → fewer 

NFEs; insensitive to hyperparameters; 

faster mixing and high synthesis 

quality; flexible solver design 

 

More complex dynamics (third order) → added implementation 

complexity and per-step computation overhead. 
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Definition 1. 

We can define the BNSs such as: 

𝐴 = {𝑥, (𝑇𝐴
+(𝑋), 𝐼𝐴

+(𝑋), 𝐹𝐴
+(𝑋), 𝑇𝐴

−(𝑋), 𝐼𝐴
−(𝑋), 𝐹𝐴

−(𝑋))𝑥 ∈ 𝑋}                                                                                      (1) 

𝑇𝐴
+(𝑋), 𝐼𝐴

+(𝑋), 𝐹𝐴
+(𝑋): 𝑋 → [0,1]                                                                                                                               (2) 

𝑇𝐴
−(𝑋), 𝐼𝐴

−(𝑋), 𝐹𝐴
−(𝑋): 𝑋 → [−1,0]                                                                                                                                      (3) 

Definition 2. 

We can define the operations of the bipolar neutrosophic numbers (BNNs) such as: 

𝑍1 = {𝑇1
+(𝑋), 𝐼1

+(𝑋), 𝐹1
+(𝑋), 𝑇1

−(𝑋), 𝐼1
−(𝑋), 𝐹1

−(𝑋)}, 𝑍2 = {𝑇2
+(𝑋), 𝐼2

+(𝑋), 𝐹2
+(𝑋), 𝑇2

−(𝑋), 𝐼2
−(𝑋), 𝐹2

−(𝑋)}  

𝑍1  ∪ 𝑍2 =

(

 
 
 
 
 
 

max(𝑇1
+(𝑋), 𝑇2

+(𝑋)) ,

𝐼1
+(𝑋)+𝐼2

+(𝑋)

2
,

min(𝐹1
+(𝑋), 𝐹2

+(𝑋)) ,

min
(𝑇1
−(𝑋), 𝑇2

−(𝑋)),
𝐼1
−(𝑋)+𝐼2

−(𝑋)

2

,

max(𝐹1
−(𝑋), 𝐹2

−(𝑋)) )

 
 
 
 
 
 

                                                                                                           (4) 

𝑍1 + 𝑍2 =

(

 
 

𝑇1
+(𝑋) + 𝑇2

+(𝑋) − 𝑇1
+(𝑋)𝑇2

+(𝑋),

𝐼1
+(𝑋)𝐼2

+(𝑋), 𝐹1
+(𝑋)𝐹2

+(𝑋), −𝑇1
−(𝑋)𝑇2

−(𝑋),

−(−𝐼1
−(𝑥) − 𝐼2

−(𝑥) − 𝐼1
−(𝑋)𝐼2

−(𝑋)),

−(−𝐹1
−(𝑋) − 𝐹2

−(𝑋) − 𝐹1
−(𝑋)𝐹2

−(𝑋)) )

 
 

                                                                                              (5) 

𝑍1𝑍2 =

(

 
 

𝑇1
+(𝑋)𝑇2

+(𝑋), 𝐼1
+(𝑋) + 𝐼2

+(𝑋) − 𝐼1
+(𝑋)𝐼2

+(𝑋) +

𝐹1
+(𝑋) + 𝐹2

+(𝑋) − 𝐹1
+(𝑋)𝐹2

+(𝑋),

−(−𝑇1
−(𝑋) − 𝑇2

−(𝑋) − 𝑇1
−(𝑋)𝑇2

−(𝑋)),

−𝐼1
−(𝑋)𝐼2

−(𝑋), −𝐹1
−(𝑋)𝐹2

−(𝑋) )

 
 

                                                                           (6) 

ℵ𝑍1 = (
(1 − (1 − 𝑇1

+(𝑋)))
ℵ
, (𝐼1

+(𝑋))
ℵ
, (𝐹1

+(𝑋))
ℵ
, − (−(𝑇1

−(𝑋))
ℵ
)

, − (−(𝐼1
−(𝑋))

ℵ
) , − (1 − (1 − 𝐹1

−(𝑋)))
ℵ )                                                    (7) 

𝑎1
ℵ = (

(𝑇1
+(𝑐))

ℵ
, (1 − (1 − 𝐼1

+(𝑐)))
ℵ
, (1 − (1 − 𝐹1

+(𝑐)))
ℵ
,

− (1 − (1 − 𝑇1
−(𝑐)))

ℵ
, − (−(𝐼1

−(𝑐))
ℵ
) , − (−(𝐹1

−(𝑐))
ℵ
)
)                                                                     (8) 

We show the steps of the COPRAS method to rank the alternatives. Create the decision matrix 

between the criteria and alternatives. Compute the criteria weights using the average method.  

The decision matrix is normalized.  
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𝑞𝑖𝑗 =
𝑦𝑖𝑗

∑ 𝑦𝑖𝑗
𝑚
𝑖=1

                                                                                                                                                           (9) 

Determine the weighted decision matrix. 

𝑢𝑖𝑗 = 𝑞𝑗𝑤𝑖𝑗                                                                                                                                                           (10) 

Obtain the increased and decreased indexes for beneficial and non-beneficial criteria such as: 

𝐻+𝑖 = ∑ 𝑢𝑖𝑗
𝑔
𝑗=1                                                                                                                                            (11) 

𝐻−𝑖 = ∑ 𝑢𝑖𝑗
𝑛
𝑗=𝑔+1                                                                                                                                            (12) 

The relative significant values are computed.  

𝐾𝑖 = 𝐻+𝑖 +
∑ 𝐻−𝑖
𝑚
𝑖=1

𝐻−𝑖 ∑ 1/𝐻−𝑖
𝑚
𝑖=1

                                                                                                                                          (13) 

3. Architectural Foundations and Model Design 

This section introduces the foundational method for generating images from text descriptions 

using Generative Adversarial Networks (GANs). It explains that GANs are composed of two 

neural networks, a generator, and a discriminator—trained in opposition. The generator tries to 

produce realistic images from text embeddings, while the discriminator attempts to distinguish 

between real images and generated ones, conditioned on the same text. 

4. Results of Models  

This section shows the results of the models based on the evaluation matrices. There are different 

evaluation metrices such as: 

i) Inception Score (IS): 

Originally, among the evaluation metrics that were designed to estimate the quality of 

the produced image. It has two metrics: confidence and diversity[17]. 

• Confidence (sharpness of prediction):  

Precision of pre-trained model to label every generated image in a specific class. 

• Diversity (range of generated images):  

Diversity is a term used to say how different the images that are being generated in set in total, if 

the model passes images to a great number of classes, then diversity will be high and conversely, 

if the model passes generated images to one class, then diversity will be low. An increase in 

diversity means that the model is good. 

ii) Fréchet Inception Distance (FID): 
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It is a more advanced metric that compares real and generated image statistics by computing the 

Fréchet distance between the feature representations of the two sets. Sees image quality and 

diversity. It is superior to the inception score as it directly compares the generated image with 

the real one[18]. 

iii) Recall/Precision: 

• Precision: measures how realistic and pretty output images are. 

It considers how good-looking the images are but not how close they are to the 

input text. 

• Recall is calculated by measuring how close the produced image is to the text[19], 

[20]. 

iv) Human Evaluation: 

The process through which human beings need to analyze the quality of images generated by 

models based on provided criteria. Since machines cannot always comprehend details[19]. 

v) CLIP Score: 

CLIP Score measures semantic similarity between the text and the output image. It utilizes 

OpenAI's CLIP model, which maps the image space and text space into a common latent space 

and then calculates the cosine similarity between them.[20].  

• The higher the CLIP score, the more the content of the image is to the intended text meaning, 

and thus it is a fine metric for text-to-image coherence. 

• It does not quantify image realism itself but rather how well the visual outcome approximates 

the semantics of the prompt. 

vi) Text Faithfulness: 

Faithfulness to text refers to the degree to which the generated image complies with the contents, 

objects, and concepts stated in the input text prompt.[21]. 

• This assessment is typically done manually or with pretrained classifiers to recognize specific 

objects or features. 

• High faithfulness means that the model can read and output text into understandable visual 

elements, which is especially helpful for complex or multi-object inputs. 

vii) Inference Time: 

Compositional correctness evaluates the ability of the model to create proper spatial and 

relational ordering in instances where there are several objects or complex scenes• It is 

particularly helpful when cues include positional language (e.g., "a cat sitting on a table beside a 

lamp"). 
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• Compositional precision at the highest-level means that not only does the model generate all 

the items described, but it also positions them in a logical and sensible spatial relationship. 

Table 2. Comparison of the evaluation metrics[19]. 

Metric Description Strengths Weaknesses

  

Limitations 

Inception Score 

(IS) 

Scores the generated image 

quality and diversity against a 

pre-trained Inception model. 

- Computationally 

easy 

- Easy for quick 

evaluation 

Worse than actual 

images and class 

label dependent. 

- May prefer certain classes 

- Not fully representative of 

image quality 

Fréchet 

Inception 

Distance (FID) 

Scores the distance between 

the feature distribution of 

generated and actual images. 

- Robust and stable 

- Represents image 

quality and 

diversity 

More time-

consuming to 

calculate and needs 

a large dataset of 

actual data. 

- Resistant to feature 

selection 

- Requires substantial 

number of samples 

Human 

Evaluation 

Includes human judges that 

decide relevance, coherence, 

and general image quality 

- Analyzes 

subjective quality 

- Provides nuanced 

insight 

Time-intensive, 

biased. 

- Variable and subjective 

- Time-intensive and manual 

- Hard to scale; - Hard to 

scale; 

CLIP Score Preserves similarity between 

text and image by computing 

similarity in the shared 

embedding space of CLIP. 

- Preserves semantic 

meaning 

- Scalable to a wide 

set of prompts 

- Can provide 

reward for 

semantically close 

but visually 

erroneous images 

- Does not assess visual 

realism or high-fidelity 

detail 

Text Faithfulness Assesses how closely the 

image content matches all the 

elements in the input text. 

Assesses how closely the 

image content matches all the 

elements in the input text. 

- Assesses exact 

prompt-object 

correspondence 

- May require 

labeled data or 

object detectors 

- Hard to measure partial 

matches quantitatively 

easily 

- Interpretation-sensitive 

Compositional 

Accuracy 

Assesses how well several 

objects and their spatial 

relationships are represented 

given the prompt. 

- Assesses scene 

complexity 

- Needed for multi-

object prompts 

- Difficult to 

automate 

- Can leverage 

human intuition 

- Edge cases are personal 

- Difficult to scale with 

varied prompts 

Inference Time The time required to generate 

one image from an input 

prompt. 

- Tests efficiency 

- Should be useable 

in real-time 

- Not caring about 

quality and 

semantic 

consistency 

- Does not display 

generation quality, 

Hardware/configuration-

based 

 

Table 2 provides an in-depth breakdown of seven primary evaluation metrics to assess text-to-

image models: Inception Score, Fréchet Inception Distance, Human Evaluation, CLIP Score, Text 

Faithfulness, Compositional Accuracy, and Inference Time. For each metric, the table provides its 

description, benefits, drawbacks, and limitations. This step-by-step breakdown is useful for 

putting quantitative results into perspective by explaining what each measure does and does well, 

where it does well, and what image generation quality it cannot assess. The table makes it clear 

that one measure cannot provide complete evaluation and therefore the utility of using a few 

complementary assessment approaches. 
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To accurately contrast StyleGAN-T and Stable Diffusion 3, we evaluated both models with a suite 

of typical metrics employed in text-to-image synthesis: FID, CLIP Score, Inception Score (IS), 

Human Preference Rate, Text Faithfulness, Compositional Accuracy, and Inference Time. These 

metrics were selected to measure not only the realism and quality of synthesized images but also 

the semantic consistency of synthesized images to text inputs and model efficiency. 

The outcome exhibits a compelling discrepancy between the two models. Stable Diffusion 3 

performs better on most of the alignment and quality scores due to its sturdy text-guided 

diffusion model architecture. StyleGAN-T is still far ahead on inference speed but is good for real-

time usage or use cases where resources are scarce. 

Table 3. Comparison of the Results of related work 

Paper Name/Metric  DF-GAN 

(2020)  

BigGAN-deep 

(2019) 

AttnGAN 

(2018)  

Score-Based SDE 

(Song et al., 2020) 

HOLD-DGM (SDE) 

(Shi & Liu, 2025) 

FID ↓  8.5 6.8 10.3 2.20 1.85 

CLIP Score ↑  0.26 0.28 0.24 0.30 0.32 

Inception Score ↑  22.3 26.8 19.5 9.89 11.2 

Human Preference 

Rate (%) 

35% 42% 30% 40 % 45 % 

Text Faithfulness (%) 52% 58% 45% 65 % 70 % 

Compositional 

Accuracy (%) 

42% 50% 38% 60 % 62 % 

Inference Time 

(s/image) 

0.6 s 1.0 s 0.5 s 1.2 s 1.1 s 

 

Table 3 cross-compares the performance of five state-of-the-art text-to-image models—three 

GAN-based (DF-GAN, BigGAN-deep, AttnGAN) and two score-based diffusion models (Score-

Based SDE and HOLD-DGM)—on seven key metrics. The diffusion models convincingly surpass 

the GAN-based approaches on FID, CLIP Score, Text Faithfulness, and Compositional Accuracy, 

achieving higher image realism and semantic fidelity. HOLD-DGM achieves the highest overall 

scores, indicating improvement in score-based generative modeling. However, GAN-based 

models can maintain faster inference times (0.5–1.0 seconds), exhibiting a consistent speed-

quality tradeoff between the two systems. 

Table 4. Comparison of the Results of proposed models. 

Metric  StyleGAN-

T 

DF 

GAN 

AttnGAN Big GAN 

deep 

SD  

3 

DALLE 

3 

Midjourney 

v6 

Imagen 

2 

FID  7.2 8.5 10.3 6.8 24.1 2.8 3.3 2.9 

CLIP Score (↑ higher 

better)  

0.29 0.26 0.24 0.28 0.35 0.36 0.34 0.35 

Inception Score (↑)  3.1 22.3 19.5 26.8 3.5 37.1 34.8 36.5 

Human Preference Rate 

(%)  

40% 35% 30% 42% 60% 65% 63% 62% 
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Text Faithfulness (%)

  

60% 52 45 58 80% 85 82 83 

Compositional Accuracy 

(%)  

48% 42% 38% 50% 82% 85% 80% 84% 

Inference Time (s/image

  

0.8 0.6 0.5 1.0 4.5 5.2 4.8 5.0 

 

Table 4 provides quantitative performance results on eight text-to-image models (four GAN-

based and four diffusion-based) on seven criteria. The results are given as numerical values in a 

table with the diffusion models (SD3, DALL·E 3, Midjourney v6, Imagen 2) outscoring the GAN 

models on both the image quality measures (CLIP Score, FID) as well as semantic alignment 

(Compositional Accuracy, Text Faithfulness). Nevertheless, GAN models are more inference-

time efficient (0.5-1.0 seconds per image compared to 4.5-5.2 seconds for diffusion 

models). These numbers are empirical backing for the paper's main comparison among model 

families, demonstrating the speed-quality tradeoff for methods. 

 

Figure 1. Comparative Evaluation of Text-to-Image Models Across Key Metrics [Lower is better]  

Figure 1 plots performance metrics where lower is better for the different text-to-image models. 

The plot is specifically graphing FID (Fréchet Inception Distance) and Inference 

Time, where GAN-based models like StyleGAN-T have significantly faster inference times 

compared to diffusion models, and diffusion models have lower (better) FID scores on 

average, which translates to higher image quality and realism. 
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Figure 2. Comparative Evaluation of Text-to-Image Models Across Key Metrics [Higher is 

better] 

Figure 2 compares the models across measures where higher values 

indicate improved performance, i.e., CLIP Score, Inception Score, Human Preference Rate, Text 

Faithfulness, and Compositional Accuracy. Diffusion models (SD3, DALL·E 3, Midjourney v6, 

and Imagen 2) perform better than GAN-based models on all these measures consistently, 

particularly text-image alignment (CLIP Score) and compositional 

accuracy, which indicates their improved semantic understanding capabilities. 

 

Figure 3. GANS VS Diffusion Models Average [Higher is better] 

Figure 3 compares averaged performance measures among GAN-based models (StyleGAN-T, 

DF-GAN, AttnGAN, BigGAN-deep) and diffusion-based models (SD3, DALL·E 3, Midjourney 

v6, Imagen 2). The plot unambiguously illustrates how much better diffusion 

models perform compared to GANs in areas where higher values 

are preferred, i.e., semantic coherence, human liking, and compositional 

accuracy, indicative of the in-built strengths of diffusion-based methods in high-quality text-to-

image generation. 
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Figure 4. GANS VS Diffusion Models Average 

Figure 4 shows overall comparison visualization places side by side the overall performance of 

GAN and diffusion model families on all the evaluation metrics. The data shows diffusion 

models superior in image quality and semantic alignment measures, and the GAN 

models with a clear advantage in generation speed (inference time). 

This establishes the inherent trade-off of computationally efficient vs. output 

quality/fidelity between the two families of models. 

StyleGAN-T is a transformer-GAN-augmented model that generates high-resolution images in 

an efficient way, which is very controllable but has only moderate text alignment. Stable Diffusion 

3 uses iterative denoising with language model guidance and has better semantic fidelity and 

compositional accuracy at the cost of slower generation. DF-GAN has an easy, efficient text-to-

image solution but no fine-grained detail. AttnGAN improves output using attention-based steps 

at the cost of detail through delayed inference. BigGAN-deep uses large-scale GAN training on 

diverse high-quality outputs but not for the text itself. DALL·E 3 and Imagen 2 lead the pack on 

semantic interpretation and photorealism, whereas Midjourney v6 is on aesthetic, artistic image 

generation. 

Experimental findings show Stable Diffusion 3 being more expressive with a higher CLIP Score 

(0.35), Text Faithfulness (80%), and Compositional Accuracy (82%) compared to StyleGAN-T 

(0.29, 60%, and 48%, respectively) albeit the latter's quicker inference (0.8s compared to 4.5s). 

Other models like DALL·E 3 and Imagen 2 were highly prompt-aligned, while DF-GAN and 

AttnGAN were more concerned with the generation speed. 

5. Analysis of the Results 

This section shows the results of the neutrosophic model to show the best model under different 

evaluation matrices. We use seven evaluation matrices such as: FID, CLIP Score, Inception Score, 

Human Preference Rate, Text Faithfulness, Compositional Accuracy, Inference Time. We use 

eight models such as: StyleGAN-T, DF GAN, AttnGAN, Big GAN deep, SD 3, DALLE 3, 

Midjourney v6, Imagen 2.  
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We use BNNs to create the decision matrix as shown in Table 5 using for experts. We obtain crisp 

values and combine these values into a single matrix. We compute the criteria weights such as: 

0.145678666, 0.140215716, 0.141336322, 0.143437456, 0.143577532, 0.143297381, 0.142456927. 

Table 5. The decision matrix. 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 (0.5,0.4,0.3, -
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA2 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

TIGA3 (0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

TIGA4 (0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

TIGA5 (0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

TIGA6 (0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA7 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

TIGA8 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA2 (0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

TIGA3 (0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

TIGA4 (0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

TIGA5 (0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

TIGA6 (0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA7 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

TIGA8 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA2 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

TIGA3 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

TIGA4 (0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

TIGA5 (0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

TIGA6 (0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA7 (0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

TIGA8 (0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 (0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 
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TIGA2 (0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

TIGA3 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

TIGA4 (0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

TIGA5 (0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.7,0.3,0.2,-
0.4,-0.2,-0.1) 

TIGA6 (0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.1,0.4,0.3,-
0.1,-0.2,-0.3) 

TIGA7 (0.8,0.2,0.1,-
0.3,-0.2,-0.4) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

TIGA8 (0.4,0.3,0.3,-
0.1,-0.2,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.5,0.4,0.3,-
0.4,-0.3,-0.3) 

(0.4,0.1,0.4,-
0.1,-0.2,-0.5) 

(0.2,0.4,0.4,-
0.1,-0.4,-0.5) 

 

The decision matrix is normalized using eq. (9) as shown in Table 6.  

Determine the weighted decision matrix using eq. (10) as shown in Table 7. 

Obtain the increased and decreased indexes for beneficial and non-beneficial criteria using eqs. 

(11 and 12). 

The relative significant values are computed using eq. (13) as shown in Table 8. 

Table 6. The normalized decision matrix. 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 0.171875 0.149606 0.165563 0.177922 0.177461 0.168394 0.165803 

TIGA2 0.177083 0.166667 0.165563 0.150649 0.156736 0.181347 0.17487 

TIGA3 0.161458 0.165354 0.164238 0.181818 0.159326 0.168394 0.167098 

TIGA4 0.177083 0.161417 0.157616 0.167532 0.167098 0.160622 0.154145 

TIGA5 0.166667 0.175853 0.184106 0.164935 0.17487 0.15544 0.177461 

TIGA6 0.145833 0.181102 0.162914 0.157143 0.164508 0.165803 0.160622 

TIGA7 0.1875 0.160105 0.172185 0.155844 0.154145 0.163212 0.163212 

TIGA8 0.166667 0.153543 0.164238 0.174026 0.173575 0.161917 0.154145 

Table 7. The weighted normalized decision matrix. 

 TIGC1 TIGC2 TIGC3 TIGC4 TIGC5 TIGC6 TIGC7 

TIGA1 0.025039 0.020977 0.0234 0.025521 0.025479 0.02413 0.02362 

TIGA2 0.025797 0.023369 0.0234 0.021609 0.022504 0.025987 0.024912 

TIGA3 0.023521 0.023185 0.023213 0.02608 0.022876 0.02413 0.023804 

TIGA4 0.025797 0.022633 0.022277 0.02403 0.023992 0.023017 0.021959 

TIGA5 0.02428 0.024657 0.026021 0.023658 0.025107 0.022274 0.025281 

TIGA6 0.021245 0.025393 0.023026 0.02254 0.02362 0.023759 0.022882 

TIGA7 0.027315 0.022449 0.024336 0.022354 0.022132 0.023388 0.023251 

TIGA8 0.02428 0.021529 0.023213 0.024962 0.024921 0.023202 0.021959 

Table 8. The relative significant values. 
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 Significant 

values 

TIGA1 0.166998 

TIGA2 0.162438 

TIGA3 0.168311 

TIGA4 0.164336 

TIGA5 0.168343 

TIGA6 0.170705 

TIGA7 0.160358 

TIGA8 0.167802 

 

We show the DALLE 3 model is the best based on the evaluation matrices. 

6. Challenges and Limitations 

The landscape of text-to-image generation is changing very quickly, and there are nonetheless a 

few central challenges that persist: 

• Quality of Generated Images: Although newer models have worked towards the 

realism of the generated images, there still exist some situations where generated 

images may be of inferior quality or fidelity. These issues range from blurriness, 

artifacts, and insufficiency of detail, and can contribute to usability loss of 

generated images. 

• Evaluation Metrics: The issue of measuring generated images still eludes us. 

Existing measures such as Inception Score (IS) and Fréchet Inception Distance (FID) 

have their shortcomings and do not accurately capture the qualitative aspect of 

images. Human judgment, while useful, is unreliable and variable, and one cannot 

infer model performance. 

• Understanding Context: The current models may not be able to understand context 

or subtleties in written definitions. This can lead to image misinterpretation, with 

the generated image failing to carry the intended meaning as planned by the text. 

• Scalability and Efficiency: Most advanced models need enormous computational 

resources to train and make inferences, and this may inhibit their availability and 

usability in real-time systems. 

To counter these challenges, some of the potential directions to explore and create are: 

• Enhanced Model Architectures: Future work can be directed toward creating new 

architectures with hybrid strategies by combining the strategies of different models 

(e.g., transformers, GANs, and attention mechanisms) to enhance the quality and 

diversity of generated images. 
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• Advanced Evaluation Techniques: Enhanced evaluation techniques, both 

qualitative and quantitative, are required. More recent metrics with the ability to 

measure improved subjective quality of output images and coherence of text 

description would be beneficial. 

• Incorporating Contextual Understanding: Experiments can examine in what way 

the contextual knowledge of models and the text richness can be increased. It can 

be achieved by utilizing more diverse quantities of data or by having better natural 

language processing such that the text is better represented. 

• Data Efficiency: Explore ways in which models can be efficiently trained from 

scarce data, i.e., few-shot or zero-shot learning strategies, for the generalization and 

popularization of text-to-image technology. 

• User-Controlled Generation: Subsequent work may include allowing users greater 

control of generation. Models can generate closer-to-user taste and specification 

through the introduction of user-specified parameters or feedback loops. 

• Cross-Modal Learning: Inspiration from cross-domain methods, such as vision-

language pre-training, can be used to enhance coupling between the text and image 

modalities to support better understanding and generation. 

7. Conclusions 

This comparison analysis of text-to-image generation has revealed inherent trade-offs between 

GAN-based models like StyleGAN-T and diffusion models like Stable Diffusion 3. As our analysis 

demonstrates, while GAN architectures are superior in computational efficiency and generation 

speed (with inference rates of 0.8s compared to 4.5s for diffusion models), they never beat 

diffusion models on semantic fidelity, compositional correctness, and image quality overall. The 

quantitative metrics show diffusion-based approaches scoring significantly higher in CLIP testing 

(0.35 vs 0.29), text faithfulness (80% vs 60%), and compositional accuracy (82% vs 48%), 

demonstrating their superior ability to translate complex text descriptions into well-formed 

visual forms. 

The evolutionary history from previous GAN systems such as AttnGAN and DF-GAN to current 

diffusion-based models reflects the direction of the field toward favoring semantic 

comprehension and visual consistency, even at higher computational costs. This evolution 

mirrors the evolving generative AI priorities toward models capable of interpreting and 

visualizing human complex instructions more effectively. 

In real-world scenarios, our findings suggest that model choice must be determined by use-case 

needs: GAN-based models remain appropriate for real-time and budget-conscious scenarios, 

while diffusion models become central when semantic accuracy and photorealism are at top 

priority. Future research needs to focus on filling the gap by developing such hybrid architectures 
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that combine the efficiency of GANs with the semantic interpretability of diffusion models, 

through knowledge distillation techniques or architectural designs that ensure inference speed 

without sacrificing image quality and prompt alignment. As text-to-image technology continues 

to advance, surmounting age-old challenges in evaluation metrics, contextual comprehension, 

and computational efficiency will continue to be essential to developing systems that can reliably 

translate human creative intention into a visual form for a broad range of domains 

and applications. 

We use the neutrosophic set model to evaluate different text-to-image generation models based 

on different evaluation metrices. We use eight models and seven evaluation matrices. The bipolar 

neutrosophic set is used to overcome the uncertainty information. We compute the evaluation 

matrices weights using the average method. The models are ranked using the COPRAS method. 

The results show the DALLE 3 model is the best under different evaluation matrices. 
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