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Abstract: This paper recalls the concept of a Neutrosophic Magnetic Field introduced by the author 

in 2016 [4], extending the traditional understanding of magnetic fields by incorporating principles 

from neutrosophy. Departing from a crisp binary distinction between the presence and absence of 

magnetic force, the Neutrosophic Magnetic Field proposes a tripartite structure: an inner-zone 

where the magnetic force acts completely, an outer-zone where it does not act at all, and a crucial 

neutro-zone—a buffer or indeterminate region where the magnetic force is vague and unclear. This 

neutro-zone acknowledges the inherent imprecision at the boundaries of physical phenomena and 

offers a more comprehensive framework for analysing magnetic interactions, particularly in 

complex or ill-defined environments. Proposed conceptual formulae are presented to illustrate the 

varying degrees of magnetic influence across these distinct zones, providing a foundation for 

further exploration of neutrosophic applications in electromagnetism. 
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1. Introduction 

The concept of a magnetic field is fundamental to physics and technology, describing the region 

around a magnetic material or a moving electric charge within which the force of magnetism acts. 

Classically, a magnetic field is often perceived as having clear boundaries, where the magnetic force 

either exists or does not.  

However, real-world phenomena often exhibit degrees of presence, absence, and indeterminacy, 

which are not fully captured by binary representations. This limitation becomes particularly apparent 

when considering the transitional regions surrounding magnetic sources, where the influence may 

not be definitively "on" or "off."    

Smarandache's neutrosophy, a philosophical and mathematical framework, offers a powerful 

lens through which to examine such indeterminate systems. Neutrosophy postulates that every idea 

or proposition A has a degree of truth T(A), a degree of indeterminacy I(A), and a degree of falsehood 

F(A), where T(A) + I(A) + F(A) is not necessarily 1. This framework is ideally suited for modelling 

situations where clarity is elusive and where a neutral or indeterminate state coexists with opposing 

states.    

This paper proposes the application of neutrosophic principles to the understanding of magnetic 

fields, introducing the notion of a "Neutrosophic Magnetic Field." We posit that the field of force 

surrounding a magnetic pole, or a current-carrying conductor, is not a simple binary system but 

rather a complex region characterized by three distinct zones: a fully active magnetic field, a 

completely inactive region, and crucially, a neutral or indeterminate zone. This neutro-zone 

represents a buffer where the magnetic force is vague and its influence is not clearly defined, offering 

a more nuanced and realistic portrayal of magnetic phenomena. 
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2. Neutrosophic Magnetic Field, an Introduction  

Let Ψ be a magnetic pole or a conductor throughout which a current flows. The field of force 

surrounding Ψ, where a magnetic flux exists, is actually a Neutrosophic Magnetic Field. This is 

because it is formed by three main zones, analogous to the neutrosophic components {⟨Ψ⟩, 

<indeterminateΨ>, and <nonΨ>}. 

 
Figure 1. Differences of Classical Magnetic Field and Neutrosophic Magnetic Field.  

Left Side: Classical Magnetic Field — Clean, solid lines going from the North (N) to the South (S) pole 

of a magnet. These lines represent the traditional idea of magnetic field lines: smooth, continuous, 

predictable. Every point around the magnet has a precisely known field direction and strength. 

There’s no fuzziness or uncertainty in the classical model — it’s sharp and exact. 

Right Side: Neutrosophic Magnetic Field — Dashed, scattered lines and coloured mist (fuzzy areas) 

around the magnet. These lines show that at each point, the magnetic field isn't purely known: dashed 

lines suggest uncertainty: the field might bend, fluctuate, or be weaker/stronger than expected; 

coloured mist (yellow-orange and blue-grey tones) visually represents indeterminacy — places where 

the field’s exact value is unclear. In this neutrosophic model, at each point near the magnet, the field 

has degrees of: 

o Truth (how much the expected field is present), 

o Indeterminacy (how much uncertainty there is), 

o Falsity (how much the field differs from what’s predicted). 

2.1. Magnetic Field Inner-Zone (Zinner) 

This is the zone where the magnetic force generated by Ψ acts completely. Within this region, 

the magnetic field is strong, well-defined, and exerts its full influence on susceptible materials or 

charges. This corresponds to the truth component ⟨Ψ⟩ in neutrosophy, representing the full presence 

of the magnetic force. 

2.2. Magnetic Field Neutro-Zone (Zneutro) 

This is a buffer zone between two opposites: the inner-zone and the outer-zone. In this region, 

the magnetic force generated by Ψ is vague, unclear, and indeterminate. It is neither fully present nor 

completely absent. This zone embodies the neutral or indeterminate component $ \langle 
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\text{indeterminate} \rangle $ in neutrosophy. It represents the transitional region where the 

magnetic influence diminishes, but not to zero, and its effects might be subtle, erratic, or dependent 

on additional factors. This is where the concept of a "fuzzy" boundary finds its mathematical 

representation within the neutrosophic framework. 

2.3. Magnetic Field Outer-Zone (Zouter) 

This is the zone where the magnetic force generated by Ψ does not act at all. Beyond this region, 

the magnetic influence of Ψ is negligible or non-existent, effectively representing the absence of the 

magnetic field. This corresponds to the falsehood component $ \langle \text{non-}\Psi \rangle $ in 

neutrosophy, signifying the complete lack of magnetic force from Ψ. 

 

It is crucial to understand that, in general, there is not a steady frontier between the magnetic 

field inner-zone and the magnetic field outer-zone. Instead, there is a buffer zone between these 

opposites, which is the neutro-zone. This continuous transition is a key characteristic of the 

Neutrosophic Magnetic Field, offering a more accurate representation of physical reality than a sharp, 

binary demarcation.  

3. Neutrosophic Magnetic Field Expression  

( , , ) ( , , ) ( , , )NB x y z B x y z T I F
→ →

=   
where 

NB
→

is the neutrosophic magnetic field vector at the (x, y, z) position; 

( , , )B x y z
→

is the classical magnetic field vector; 
3( , , ) [0,1]T I F  are the neutrosophic truth/indeterminacy/falsehood {or confidence in the field’s 

accuracy; level of unknown or conflicting; and confidence the field is not as reported} – components 

associates with the estimation of B
→

. 

4. Example of Neutrosophic Magnetic Field  

If 

 0.5 ( )B k T Tesla
→ 

=   
and: 

• T = 0.80T = 0.80 (80% true), 

• I = 0.15I  = 0.15 (15% indeterminate), 

• F = 0.05F = 0.05 (5% false), 

then: 

0.5 (0.80,0.15,0.05)NB k
→ 

= 
 

This indicates that the neutrosophic field has degrees of belief associated with its 

measurement, useful in uncertain or imprecise environments. 

5. Interpretation of the Neutrosophic Magnetic Field  

Each part of the neutrosophic field means: 

T B
→

 : the portion of the field we are confident in. 

I U
→

 : the uncertain part — possibly fluctuating or oscillating. 

F N
→

 : the contradictory or negated field, e.g., expected interference. 

6. Simulation Snippet (Pseudo-Code) of Neutrosophic Magnetic Field  
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python 

# Assume B is a 3D magnetic field array, U and N are uncertainty/negation vectors 

for each (x, y, z) in space: 

    B = get_magnetic_field(x, y, z) 

    T, I, F = get_neutrosophic_components(x, y, z) 

     

    B_T = T * B 

    B_I = I * uncertainty_vector(x, y, z) 

    B_F = F * negation_vector(x, y, z) 

     

    B_N = (B_T, B_I, B_F) 

    store(B_N) 

7. Proposed Formulae for Degrees of Neutrosophic Magnetic Influence  

To conceptually illustrate the varying degrees of magnetic influence within these zones, we can 

propose formulae based on the principles of neutrosophy. Let M(x) represent the degree of magnetic 

influence at a point x in space, relative to the source Ψ. This influence can be expressed as a 

neutrosophic triplet: 

M(x) = ⟨TM(x), IM(x), FM(x)⟩   

(1) 

where: 

TM(x) is the degree to which the magnetic force is present at point x. 

IM(x) is the degree to which the magnetic force is indeterminate or vague at point x. 

FM(x) is the degree to which the magnetic force is absent at point x. 

The sum TM(x) + IM(x) + FM(x) is not necessarily equal to 1, reflecting the open nature of 

neutrosophy. 

7.1. For the Magnetic Field Inner-Zone (Zinner) 

In this zone, the magnetic force is considered fully present. Therefore, we can approximate: 

(2)    

TM(x) ≈ 1, IM(x) ≈ 0, FM(x) ≈ 0                                                                                                           

Thus, for x ∈ Zinner:  

M(x) ≈ ⟨1, 0, 0⟩                                                                                                                                      

This indicates that at any point x within the inner-zone, the magnetic influence is considered to 

be at its maximum and fully effective. 

7.2. For the Magnetic Field Outer-Zone (Zouter) 

In this zone, the magnetic force is considered completely absent. Therefore, we can approximate: 

TM(x) ≈ 0,  IM(x) ≈ 0,  FM(x) ≈ 1 

Thus, for x ∈ Zouter: M(x) ≈ ⟨0, 0, 1⟩ 

This implies that at any point x within the outer-zone, the magnetic influence is considered to 

be non-existent. 

7.3. For the Magnetic Field Neutro-Zone (Zneutro) 

This is the most complex zone, where the magnetic force is vague and indeterminate. The values 

of TM(x), IM(x), and FM(x) will vary continuously within this zone. Let d be the distance from the 

magnetic source Ψ. We can propose conceptual relationships that illustrate the varying degrees: 

As d increases within Zneutro (moving from the inner-zone towards the outer-zone): 
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• TM(d) will generally decrease from values close to 1 towards 0. 

• IM(d) will initially increase from values close to 0, reach a peak in the middle of the 

neutro-zone, and then decrease towards 0. This peak represents the point of greatest 

indeterminacy. 

• FM(d) will generally increase from values close to 0 towards 1. 

Let dinner be the distance from Ψ to the approximate boundary of the inner-zone, and doubter 

be the distance from Ψ to the approximate boundary of the outer-zone.  

For d ∈ [dinner, douter], we can propose a conceptual model for the neutrosophic components. 

One possible approach for the relationships could be: 

TM(d) = cos(2πd_outer−d_innerd−d_inner) FM(d) = sin(2πd_outer−d_innerd−d_inner) IM(d) = 

sin(πd_outer−d_innerd−d_inner) 

Here, as d goes from d_inner to d_outer: 

• TM(d) goes from cos(0) = 1 to cos(π/2) = 0. 

• FM(d) goes from sin(0) = 0 to sin(π/2) = 1. 

• IM(d) goes from sin(0) = 0, peaks at sin(π/2) = 1 (when d is exactly in the middle of the 

neutro-zone), and then goes back to sin(π) = 0. 

Thus, for x ∈ Zneutro (represented by distance d from Ψ):  

M(x) = ⟨cos(2πd_outer−d_innerd−d_inner), sin(πd_outer−d_innerd−d_inner), sin(2πd_outer

−d_innerd−d_inner)⟩ 

These proposed formulae are illustrative and conceptual, designed to capture the continuous 

variation and the presence of indeterminacy within the neutro-zone. They emphasize that the 

boundaries of the inner and outer magnetic fields are not sharp lines but rather gradual transitions 

characterized by degrees of truth, indeterminacy, and falsehood regarding the magnetic influence. 

8. Neutrosophic Magnetic Field: Potential Implications and Applications  

The introduction of the Neutrosophic Magnetic Field, with its distinct inner-zone, neutro-zone, 

and outer-zone, offers a profound shift in how we conceptualize and model magnetic phenomena. 

This neutrosophic perspective moves beyond a rigid binary classification of "magnetic field present" 

or "magnetic field absent," providing a framework that inherently accounts for ambiguity, 

uncertainty, and gradual transitions. The key strength lies in its ability to represent situations where 

the magnetic influence is not perfectly defined, allowing for a more accurate portrayal of complex 

interactions in various physical systems. 

8.1. Potential Implications 

The neutrosophic approach has significant implications for modelling scenarios where: 

• Boundary Effects are Critical: Many physical interactions occur at interfaces where 

forces transition from one state to another. The neutro-zone provides a natural 

description for these often-unpredictable regions. 

• Weak or Transient Fields are Involved: In cases of very weak magnetic fields or rapidly 

changing fields, the distinction between presence and absence can become blurred. The 

neutrosophic framework can better capture the partial influence in such situations. 

• Quantum Mechanical Uncertainties Play a Role: At a fundamental level, quantum 

mechanics introduces inherent uncertainties. While the Neutrosophic Magnetic Field is 

a macroscopic concept, it can conceptually align with situations where the classical 

deterministic model falls short. 

• Complex Plasma and Fluid Dynamics: Phenomena involving charged particles and 

electromagnetic fields, particularly in plasmas, often exhibit complex, non-linear 

behaviours at their boundaries. 

We will now delve into specific applications of this concept. 

9. Modelling Kelvin-Helmholtz Electron Vortex Interaction with a Magnetic Field  
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The Kelvin-Helmholtz (KH) instability [1, 2, 3] is a fundamental process in fluid dynamics and 

plasma physics, occurring at the interface between two fluids (or plasmas) moving with different 

velocities. In magnetized plasmas, this instability can lead to the formation of electron vortices, which 

are coherent structures of swirling electrons. The interaction of these electron vortices with an 

ambient magnetic field is a complex phenomenon, often involving particle energization and 

transport. 

Classical models often treat the magnetic field as a uniform or smoothly varying entity, and the 

vortex as a distinct structure. However, at the boundaries of the electron vortex, or where the 

magnetic field lines are being perturbed and reconnected due to the vortex's motion, the interaction 

is unlikely to be a simple 'on' or 'off' effect. The magnetic field's influence on the vortex, and vice-

versa, will be indeterminate in these transitional regions. 

10. Neutrosophic Approach for Kelvin-Helmholtz Electron Vortex Interaction  

Within the Neutrosophic Magnetic Field framework, we can model the interaction at the 

interface between the electron vortex and the external magnetic field more realistically. 

Let's consider a region Rint where the electron vortex interacts with the magnetic field B. Instead 

of a sharp boundary, we define the magnetic field's influence on the vortex as a neutrosophic triplet: 

Mvortex(x) = ⟨ Tvortex(x), Ivortex(x), Fvortex(x) ⟩           (4) 

Here, x is a point within Rint: 

Tvortex(x): Degree to which the magnetic field strongly influences the electron vortex dynamics 

at x. 

Ivortex(x): Degree to which the magnetic field's influence on the electron vortex dynamics is 

indeterminate or vague at x. This captures effects like partial magnetic reconnection, localized field line 

perturbations, or the vortex's internal structure partially shielding parts of the field. 

Fvortex(x): Degree to which the magnetic field has no significant influence on the electron vortex 

dynamics at x. 

11. Proposed Conceptual Formulae for Interaction  

Let's consider a simplified scenario where the interaction strength is a function of a parameter 

ξ(x), which could be related to the local magnetic field strength, the vortex's rotational velocity, or 

the distance from the vortex centre. 

For the central region of the vortex where the magnetic field's influence is minimal or very 

specific to the vortex's internal dynamics (effectively "outer-zone" for the external field's direct 

influence):  

Tvortex(x) ≈ 0 (external field), Ivortex(x) ≈ 0, Fvortex(x) ≈ 1 (external field) 

For regions far from the vortex where the magnetic field dominates: 

Tvortex(x) ≈ 1 (external field), Ivortex(x) ≈ 0, Fvortex(x) ≈ 0 

11.1. For the Interface (Neutro-Zone) where Interaction is Complex 

Let's define an interaction parameter ξ(x) where ξ(x) = 0 corresponds to no external field 

influence, and ξ(x) = 1 corresponds to strong external field influence. This ξ(x) could be, for example, 

a normalized function of distance from the vortex core or the local magnetic shear. 

We could propose: 

Tvortex(x) = ξ(x)(1−Ithreshold), Fvortex(x) = (1−ξ(x))(1−Ithreshold),  

Ivortex(x) = Ithreshold + k⋅ξ(x)(1−ξ(x)) 

where: 

Ithreshold represents a baseline level of indeterminacy inherent in the system's complexity (e.g., 

due to quantum effects or highly turbulent conditions), with 0 ≤ Ithreshold < 1. 

k is a scaling factor controlling the peak indeterminacy due to the interaction, with 0 ≤ k < 

1−Ithreshold.  
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The term ξ(x)(1−ξ(x)) ensures Ivortex(x) peaks when ξ(x) is around 0.5, representing the most 

ambiguous interaction point. 

This model suggests that even when the external field influence is not perfectly clear (due to the 

Ithreshold term), the interaction itself adds to the indeterminacy, especially when the vortex and field 

are equally "competing" or influencing each other. This allows for modelling scenarios where the 

electron vortex is partially disrupted, reconnected, or its energy is transferred inefficiently due to the 

ambiguous nature of the magnetic field at its boundaries. 

12. Modelling Paramagnetic and Diamagnetic Magnetic Properties in Basic Physics of Magnets  

Paramagnetism and Diamagnetism describe how materials respond to an external magnetic 

field. 

• Diamagnetism: Materials that are weakly repelled by an external magnetic field. This 

arises from the orbital motion of electrons, which generate a magnetic moment opposing 

the applied field. 

• Paramagnetism: Materials that are weakly attracted to an external magnetic field. This 

arises from the presence of unpaired electrons, whose spin magnetic moments align 

with the applied field. 

In basic physics, these properties are often described by a magnetic susceptibility (χm), a single 

value that dictates the material's response. However, for very weak fields, or at the transition points 

where the field is barely strong enough to induce a measurable effect, the response might not be 

perfectly clear-cut. Furthermore, the bulk behaviour of a material is an aggregation of individual 

atomic or molecular responses, which might vary. 

13. Neutrosophic Approach for Paramagnetic and Diamagnetic Properties  

We can consider the "degree of magnetization" (Mmag) of a material in response to an external 

magnetic field Bext as a neutrosophic triplet: 

Mmag(Bext) = ⟨ Tmag(Bext), Imag(Bext), Fmag(Bext) ⟩         (5) 

where for a given material: 

• Tmag(Bext): Degree to which the material exhibits its characteristic magnetic response 

(paramagnetic attraction or diamagnetic repulsion) to Bext. 

• Imag(Bext): Degree to which the material's magnetic response to Bext is indeterminate or vague. 

This could be due to: 

o Very weak fields near the detection limit. 

o Temperature effects leading to thermal agitation overcoming weak alignments. 

o Microscopic inhomogeneities in the material. 

o Transition phases where the dominant magnetic behaviour is changing. 

• Fmag(Bext): Degree to which the material does not exhibit its characteristic magnetic response to 

Bext (i.e., the field is too weak to induce a noticeable effect, or competing effects cancel out). 

13.1. Note 

While the above formulae (5) introduces a neutrosophic triplet for "degree of magnetization" as  

Mmag(Bext) = ⟨ Tmag(Bext), Imag(Bext), Fmag(Bext) ⟩, 

it doesn't inherently present it in terms of differential calculus expressions. 

To describe this in terms of differential calculus, we would need to consider how these degrees 

of magnetization change with respect to the external magnetic field (Bext). This would involve taking 

derivatives of each component of the neutrosophic triplet. 

Here's how we can express the concept using differential calculus, assuming that Tmag, Imag, 

and Fmag are functions of Bext and are differentiable: 

The rate of change of the degree of magnetization with respect to the external magnetic field can 

be expressed by the derivatives of each component of the neutrosophic triplet: 

dBextdMmag = ⟨ dBextdTmag(Bext), dBextdImag(Bext), dBextdFmag(Bext) ⟩    (6) 
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where: 

• dBextdTmag(Bext) represents the rate of change of the degree of presence of magnetization 

as the external magnetic field changes. 

• dBextdImag(Bext) represents the rate of change of the degree of indeterminacy or vagueness 

of magnetization as the external magnetic field changes. 

• dBextdFmag(Bext) represents the rate of change of the degree of absence of magnetization as 

the external magnetic field changes. 

This differential form allows us to analyse how the certainty, uncertainty, and absence of 

magnetization evolve with variations in the applied magnetic field. For instance: 

• For paramagnetic materials, we might expect dBextdTmag to be positive, indicating an 

increase in magnetization with increasing external field, while dBextdImag and dBextdFmag 

might be relatively small or show specific patterns. 

• For diamagnetic materials, dBextdTmag might be negative, suggesting a decrease in 

magnetization (or an induced opposing field) with increasing external field. 

It's important to note that this is a conceptual application of differential calculus to a 

neutrosophic framework. The specific functional forms of Tmag(Bext), Imag(Bext), and Fmag(Bext) 

would need to be defined based on experimental data or a theoretical model of the material's 

neutrosophic magnetic response. 

14. Proposed Conceptual Formulae for Magnetic Response  

Let's define a normalized external field strength b = ∣Bext∣/Bmax, where Bmax is a saturation 

field or a field strong enough to elicit a clear response. 

14.1. For Paramagnetic Materials 

As b increases, Tmag should increase (alignment with field), Fmag should decrease (no 

alignment), and Imag should be highest at intermediate field strengths. 

Tmag(b) = bk ( for k ≥ 1, indicating non-linear response for some materials )  

Fmag(b) = (1−b)m ( for m ≥ 1 )  

Imag(b) = C⋅b(1−b) ( where C is a constant controlling maximum indeterminacy, possibly related 

to thermal energy ) 

A more refined model could involve a threshold field Bth below which the response is largely 

indeterminate: 

If ∣Bext∣ < Bth: Tmag(Bext) ≈ϵT (very small, near zero), Fmag(Bext) ≈ϵF (very small, near zero),  

Imag(Bext) ≈1−(ϵT + ϵF) (dominant indeterminacy) 

If ∣Bext∣ ≥ Bth:  

Let δ = (∣Bext∣−Bth)/(Bmax −Bth) for Bth ≤ ∣Bext∣ ≤ Bmax.         (7) 

Tmag(Bext) = δImag(Bext) = (1−δ)⋅exp(−αδ)           (8) 

(indeterminacy decreases as response becomes clearer)  

Fmag(Bext) = 0                  (9) 

(once above threshold, characteristic response is present)  

Here, α is a parameter controlling the rate of decrease of indeterminacy. 

14.1. For Diamagnetic Materials 

The response is largely independent of temperature and generally weaker than paramagnetism. 

The effect is usually present even at very weak fields, so the neutro-zone might be narrower. 

Tmag(b) = bFmag(b) = 1−bImag(b) = C⋅b(1−b) (similar to paramagnetic, but C might be smaller) 

The neutrosophic approach acknowledges that even for diamagnetic materials, there might be a 

very small field region where the induced opposing dipole is not perfectly formed or clearly 

measurable, leading to a degree of indeterminacy. 

5. Concluding Remark  
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The concept of a Neutrosophic Magnetic Field offers a more refined and realistic description of 

magnetic phenomena, particularly in regions where the magnetic force is not unequivocally present 

or absent. By acknowledging the existence of a neutro-zone, a region of vagueness and 

indeterminacy, this framework moves beyond traditional binary representations. The proposed 

conceptual formulae provide a mathematical means to quantify the degrees of magnetic influence 

across the inner, neutro, and outer zones, laying the groundwork for further theoretical and 

potentially experimental investigations into the subtle and complex nature of magnetic fields. This 

neutrosophic approach opens new avenues for understanding and modelling physical systems 

where uncertainty, confliction, incompleteness occur. 

Its application includes how to complex scenarios like Kelvin-Helmholtz electron vortex 

interaction allows for a more nuanced description of boundary effects and indeterminate influences, 

moving beyond classical all-or-nothing interactions. Similarly, for basic material properties like 

paramagnetism and diamagnetism, the neutrosophic model can describe the transition from no clear 

response to a full characteristic response, accounting for the vagueness at thresholds and in weak 

field regimes. While the proposed formulae are conceptual and illustrative, they demonstrate the 

potential for using neutrosophic triplets to quantify the degrees of truth, indeterminacy, and 

falsehood in various magnetic interactions, paving the way for more sophisticated and accurate 

models in areas ranging from plasma physics to condensed matter physics. 

Further experimental and theoretical work are needed to validate and refine these neutrosophic 

models, ultimately enhancing our understanding of the intricate world of magnetism.  
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