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Abstract: Currently, student-centered and outcome-based engineering education accreditation is 

being actively promoted in universities across China. Evaluation of the curriculum objectives 

achievement degree serves as an effective method after OBE-based courses teaching to assess the 

improvement of students' abilities, evaluate education quality, and facilitate self-reflection of 

teaching by instructors. The process of evaluating curriculum objectives involves a complex 

multiple-attribute decision-making (MADM) scenario, often accompanied by elements of 

vagueness, uncertainty, and inconsistency. The application of single-valued neutrosophic 

credibility numbers sets (SvNCNs) offers a robust approach to handle and represent uncertain 

information throughout this evaluation process. Therefore, to enhance the accuracy of course 

achievement evaluation, this paper proposes a MADM framework based on SvNCNs, integrated 

with improved Einstein aggregation operators, to the achievement degree of practice-based 

curriculum objectives evaluation. The method is applied to the practice-based curriculum and is 

further compared and analyzed with other classical methods to show the efficiency of the 

proposed method, which will assist decision-makers in making better decisions when dealing with 

similar MADM assessment problems. 

Keywords: single-valued neutrosophic credibility number; weighted averaging operator of 

Einstein; weighted geometric operator of Einstein; curriculum objectives achievement evaluation 

 

 

1. Introduction 

Multiple attribute decision-making (MADM) problems are inevitable aspect of daily life. Due 

to the inherent fuzziness and uncertainty in MADM, researchers have been actively exploring 

methods to achieve optimal decisions. Fuzzy theory [1] was first proposed by Zadeh, which was 

described by a membership function. Based on this theory, its applications have obtained a lot of 

advancements. In the domain of fuzzy decision-making (DM), Greco and Matarazzo combined 

rough sets and fuzzy sets in solving MADM problems [2]. Merigo et al. introduced generalized 

fuzzy aggregation operators [3] and applied them in multi-person decision-making scenarios. 

Kirisci proposed the Fermatean hesitant fuzzy set [4]. Ajay et al. introduced a Spherical Fuzzy 

Weighted Exponential Average (SFWEA) aggregation operator [5], which was applied in MADM 

for psychotherapy. Atanassov and Stoeva extended fuzzy sets by proposing the intuitionistic fuzzy 

set (IFS) model [6], which characterized membership in terms of support, opposition, and neutrality. 
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Based on IFS, scholars have proposed various aggregation operators and improved DM methods 

such as trapezoidal IFS [7-9], intuitionistic fuzzy rough sets [10-12], generalized Pythagorean fuzzy 

sets [13-15], optimized Aggregation operators of Einstein [16-17] and Dombi [18-19] for MADM.  

However, IFS is limited in that it cannot independently express truth, false, and uncertainty. This 

limitation was addressed by Smarandache’s introduction of neutrosophic sets (NSs) [20]，and 

further extend the application of this theory[21-22]. Building upon the theory of neutrosophic sets, 

Muniba K, et al. proposed a climate change prediction framework that integrates neutrosophic soft 

functions [23], significantly enhancing the accuracy of climate change prediction models. 

Additionally, the theory of neutrosophic topological spaces based on NSs has seen significant 

progress. A. A. Salama, et al. investigated the application of Non-Standard Topology Sets (NTS) in 

uncertainty modeling within the field of computer science [24]. Meanwhile, G. Vetrivel, et al., 

explored the forgotten topological index (ToI) and the edge forgetting index within the context of 

three-valued logic intelligence graphs, deriving important theoretical results and applications [25]. 

Ye et al. presented fuzzy credibility sets (FCSs) and its operational laws [26]. On the basis of 

FCSs, Ye et al. further proposed a single-value neutrosophic credibility numbers sets (SvNCNs) and 

the trigonometric aggregation operators for SvNCNs [27], which defined credibility levels of the 

true, false, and uncertainty component of fuzzy values, enhancing the reliability of fuzzy values in 

MADM processes. This paper presents an aggregation operator method based on Einstein’s 

t-conorm and t-norm for geometric weighted and arithmetic weighted aggregation of SvNCN sets, 

and the methods are applied to the achievement degree of practice-based curriculum objectives 

evaluation. The organization of this article is as below. 

The Outcome-Based Education teaching model is being increasingly adopted by universities in 

China, and course achievement assessment serves as an effective method for evaluating the 

effectiveness of the OBE teaching model. However, during the achievement assessment process, 

particularly in engineering practice-based courses, there are significant inconsistencies and 

uncertainties in the attributes of the data being evaluated. As a result, the assessment outcomes 

tend to be influenced by the evaluator’s subjective opinions, which makes it difficult to accurately 

reflect the teaching effectiveness. In such uncertain and inconsistent environments SvNCNs offer an 

advantage, as they not only represent true, false, and uncertain information but also express their 

credibility. In contrast, methods such as rough sets, IVIFS, and QROF are unable to express these 

types of information. 

The Einstein aggregation operator is one of the most fundamental and widely recognized 

algebraic operations. It is a norm characterized by its nonlinear properties, which provides 

significant advantages in its strong ability to handle nonlinear processing and adaptability. This 

makes it especially effective for solving complex fuzzy problems, particularly excelling in MADM. 

In comparison, the Aczel-Alzina, Frank, and Dombi norms also offer advantages in specific 

applications. However, when dealing with more complex nonlinear relationships and 

multi-dimensional fuzzy data, the Einstein norm typically yields better results. Therefore, this 

paper proposes an improved aggregation operator method based on Einstein's t-conorm and 

t-norm, built upon SvNCNs. This method is then applied to evaluate the achievement of practical 

course objectives in the Electrical Engineering program at Shaoxing University. The structure of this 

paper is outlined as follows. 

Section2 introduces the theory of SvNCNs. Section3 shows the operational laws and proof 

processes of Einstein t-conorm and t-norm aggregation operators on SvNCNs. Section 4 elaborates 

on the application steps in which SvNCNEWG (Einstein weighted geometric operator of SvNCNs) 

and SvNCNAWG (Einstein weighted arithmetic operator of SvNCNs) are applied to MADM. 

Section 5 gives an application example of the presented method in curriculum objective 

achievement degree evaluation and a comparative analysis with other techniques. The conclusion is 

provided in the final section. 
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2. SvNCNs 

Ye et al. presented SvNCNs to enhance the credibility levels of SvNSs, along with the 

definition and basic operational rules of SvNCNs. 

Definition 1. Set 1 2{ , ,..., }nV v v v= as a finite universe set, then a SvNCN Nc in V is expressed 

below：          

 { ,( ( ), ( )),( ( ), ( )),( ( ), ( )) }c r r i i e eN v a v c v a v c v a v c v v V=   (1) 

In the above equation 2[0,  1]V → , ( ( ), ( )), ( ( ), ( )), ( ( ), ( ))r r i i e ea v c v a v c v a v c v  represent the true 

FCN, uncertain FCN, and false FCN, respectively. Int the three ordered pairs, the first component 

( ){ 1,2,3}ja v j = represents the fuzzy value, and the second component ( ){ 1,2,3}ic v i =  

represents the credibility level closely associated with the first component, which is used to ensure 

the reliable measurement of the first component. Furthermore, Nc satisfies the conditions 

0 ( ) ( ) ( ) 3r i ea v a v a v + +  and 0 ( ) ( ) ( ) 3r i ec v c v c v + +  . 

The simplified representation of the formula (1) is expressed as:   

 ( , ),( , ),( , )c r r i i e en a c a c a c=  (2)                            

Definition 2. Set two SvNCN, 1 1 1 1 1 1 1( , ),( , ),( , )c r r i i e en a c a c a c= and 2 2 2 2 2 2 2( , ),( , ),( , )c r r i i e en a c a c a c= . 

Their mutual relationships and operational rules between them are defined as below: 

(1) 1 2 1 2 1 2 2 2 1 2 2 2 1 2 , , , , , ;c c r r r r i i i i e e e en n a a c c a a c c a a c c         

(2) 1 2 1 2 =  c c c cn n n n  and 2 1 ;c cn n  

(3) 
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ),( , ),( , ) ;c c r r r r i i i i e e e en n a a c c a a c c a a c c=        

(4)
1 2 1 2 1 2 1 2 1 2 1 2 1 2 ( , ),( , ),( , ) ;c c r r r r i i i i e e e en n a a c c a a c c a a c c=        

Definition 3. For two SvNCN j j j j j j j j( , ), ( , ), ( , )  =1,2
ejcj r r r r i i i i ej ej ejn a a c c a a c c a a c c j= , their sorting 

is determined by the score function and accuracy function, which are defined below: 

 
2

( )  ( ) [0,1]
3

rj rj ij ij ej ej

cj cj

a c a c a c
S n for S n

+ − −
=   (3) 

  ( )   ( ) [ 1,1]cj rj rj ej ej cjA n for A n   = −  −                      (4) 

The score values ( )cjS n and accuracy values ( )cjA n  calculated using the above two 

formulas are ranked according to the following criteria: 

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

(i)   If  ( ) ( ),  the sorting oder is  ;

(ii)  If  ( ) ( ) &  ( ) ( ),  the oder is  ;

(iii) If  ( ) ( ) &  ( ) ( ),  both is  .

c c c c

c c c c c c

c c c c c c

S n S n n n

S n S n A n A n n n

S n S n A n A n n n

 

=  

= = 
 

3. Modified Aggregation Operators of Einstein for SvNCNs 

3.1 Einstein paradigm operations of SvNCNs 

Definition 4. The Einstein t-norm function ( , )    and t-conorm function ( , )C    are 

defined as below, which and are real numbers within the range [0, 1]. 

 ( , )
1 (1 )(1 )


  

 
=

+ − −
 (5) 

                   ( , )
1

C  
  



+
=

+
                               (6)                               
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Both ( , )   and ( , )C    are monotone increasing functions, with their values ranging 

within [0, 1]. Based on the formulas (5) and (6), the operational rules for SvNCNs are defined as 

below. 

Definition 5. Set 
1 1 1 1 1 1 1( , ), ( , ), ( , )r r i i e ea c a c a c = and 

2 2 2 2 2 2 2( , ), ( , ), ( , )r r i i e ea c a c a c =  are 

two SvNCNs, 1 2 and [0,1]   ,  is the weight value. The operations and relationships between 

1 2 and   are defined as follows: 

1 2 1 21 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2

1 2 1 2

1 2 1 2

, , , ,
1 1 (1 )(1 ) 1 1 (1 )(1 ) 1 (1 )(1 ) 1 (1 )(1 )

,
1  (1 )(1 ) 1 (1 )(1 )

i i i ir r r r r r r r

r r r r r r r r i i i i

e e e e

e e e e

a a c ca a a a c c c c

a a a a c c c c a a c c

a a c c

a a c c

 

  + +
− −   

+ + − − + + − − + − − + − −   
 =

 
 
+ − − + − − 

 (7) 

    

1 2 1 2 1 2 1 21 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

, , , ,
1 (1 )(1 ) 1 (1 )(1 ) 1 1 (1 )(1 ) 1 1 (1 )(1 )

 

,
1 1 (1 )(1 ) 1

i i i i i i i ir r r r

r r r r i i i i i i i i

e e e e e e e

e e e e e e

a a a a b b b ba a c c

a a c c a a a a b b b b

a a a a c c c

a a a a c c

 

   + +
− −  

+ − − + − − + + − − + + − −   
 =

+ +
− −

+ + − − +

1 2

1 21 (1 )(1 )

e

e e

c

c c

 
 

+ − − 

 (8) 

 

 

1 11 1 1 1

1 1 1 1 1 1 1 1

1

1 1

1 1 1 1

2( ) 2( )(1 ) (1 ) (1 ) (1 )
, , , ,

(1 ) (1 ) (1 ) (1 ) (2 ) ( ) (2 ) ( )
 

2( ) 2( )
,

(2 ) ( ) (2 ) ( )

i ir r r r

r r r r i i i i

e e

e e e e

a ca a c c

a a c c a a c c

a c

a a c c

    

       

 

   



  + − − + − −
  

+ + − + + − − + − +   
=

 
 

− + − + 

 (9) 

   

 

1 1 1 11 1

1 1 1 1 1 1 1 1

1

1 1 1 1

1 1 1 1

(1 ) (1 ) (1 ) (1 )2( ) 2( )
, , , ,

(2 ) ( ) (2 ) ( ) (1 ) (1 ) (1 ) (1 )
 

(1 ) (1 ) (1 ) (1 )
,

(1 ) (1 ) (1 ) (1

i i i ir r

r r r r i i i i

e e e e

e e e e

a a c ca c

a a c c a a c c

a a c c

a a c c

    

       



   

  



   + − − + − −
  

− + − + + + − + + −   
=

+ − − + − −

+ + − + + − )
 
 
 

 (10) 

                   

3.2 Operator of Weighted Arithmetic Average and Weighted Geometric Average of Einstein for SvNCNs 

Definition 6. Set 1 2 3{ , , }z    =  is a SvNCNs. This weighted arithmetic average operator 

of Einstein for SvNCNs (SvNCNEWA) is expressed as below: 

 
1 2

1
3( ), ,

z

SvNCNEWA   


     
=

=   (11) 

Where   is the weight of  , with a range of [0,1], and satisfies the criteria 
1

1
z




=
= . 

Theorem 1. Let , , ( , ),( , ),( , )  ( =1,2,3 ) r r i i e eR I E a c a c a c z          = = be a group of SvNCNs, where 

the weight coefficients of each SvNCN satisfy [0,1]   and
1

 
z




= . According to equation (11), 

the result of SvNCNEWA can be calculated as follows: 
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1 1 1 1 1

1 1 1 1 1 1

1 2 3

(1 ) (1 ) (1 ) (1 ) 2 ( ) 2 ( )

, , ,

(1 ) (1 ) (1 ) (1 ) (2 ) ( )

), ,(

z z z z z

r r r r i i

z z z z z z

r r r r i i

a a c c a c

a a c c a a

SvNCNEWA

    

     

     

   

     

    

     

 



   

   

= = = = =

= = = = = =

 
+ − − + − − 

 
 

+ + − + + − − + 
 

=

    

     

1

1 1

1 1

1 1 1 1

,

(2 ) ( )

2 ( ) 2 ( )

,

(2 ) ( ) (2 ) ( )

z

z z

i i

z z

e e

g g

z z z z

e e e e

c c

a c

a a c c



 

 

   

 

 









 

 

 

  

   

 

=

= =

= =

= = = =

 
 
 
 

− + 
 

 
 
 
 

− + − + 
 



 

 

   

 (12) 

Proof： 

(1) If  =2，the SvNCNEWA can be calculated using the formula(7) and (9) as follows: 

1 2 1 2

1 11 1 1 1

1 1 1 1 1 1 1 1

1

1

1

1

2

1

1 1

,

2( ) 2( )(1 ) (1 ) (1 ) (1 )
, , , ,

(1 ) (1 ) (1 ) (1 ) (2 ) ( ) (2 ) ( )

2( ) 2( )
,

(2 ) ( ) (2 ) )

( )

(

i ir r r r

r r r r i i i i

e e

e e e e

a ca a c c

a a c c a a c c

a

S

c

W

a a

vNCN A

c c

E

    

       

 

   

    

  + − − + − −
  

+ + − + + − − + − +   
=



− − +

=

+


 
 

  

 

2 22 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2

2 22 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2

2( ) 2( )(1 ) (1 ) (1 ) (1 )
, , , ,

(1 ) (1 ) (1 ) (1 ) (2 ) ( ) (2 ) ( )

2( ) 2( )
,

(2 ) ( ) (2 ) ( )

i ir r r r

r r r r i i i i

e e

e e e e

a ca a c c

a a c c a a c c

a c

a a c c

    

       

 

   

  + − − + − −
  

+ + − + + − − + − +   


 
 

− + − +   
 

1 2 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1

1

1 2 2 2 1 2 2 2

1 2 2 2 1 2 2 2

1 2

1 2 1

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )
,

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )

2( ) ( )

(2 ) (2 ) ( ) (

r r r r r r r r

r r r r r r r r

i i

i i i i

a a a a c c c c

a a a a c c c c

a a

a a a a

      

       

 

  

 + + − − − + + − − −
 

+ + + − − + + + − − 

=
− − +

1 2

2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2

2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

2( ) ( )
,

) (2 ) (2 ) ( ) ( )

2( ) ( ) 2( ) ( )
,

(2 ) (2 ) ( ) ( ) (2 ) (2 ) ( ) ( )

i i

i i i i

e e e e

e e e e e e e e

c c

c c c c

a a c c

a a a a c c c c

 

    

   

       

 
 

− − + 

 
 

− − + − − + 

 

 
2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 2

1 1 1 1 1 1 1

(1 ) (1 ) (1 ) (1 ) 2 ( ) 2 ( )

, , ,

(1 ) (1 ) (1 ) (1 ) (2 ) ( ) (2 )

r r r r i i

r r r r i i i

a a c c a c

a a c c a a c

     

      

     

     

     

     

      

      



= = = = = =

= = = = = = =

 
+ − − + − − 

 
 

+ + − + + − − + − + 
 

=

     

      
2

1

2 2

1 1

2 2 2 2

1 1 1 1

,

( )

2 ( ) 2 ( )

,
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(2) Let =W, then the SvNCNEWA can be expressed as: 
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(3) Let =W+1, then SvNCNEWA is expressed as: 

1 2 3 1 1 2 3 11( ) ( , ) , , ,  *WW W WSvNCNEWA SvNCNEWA         + ++= 
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From the above formula, it can be concluded that the equation holds for any value of  , and 

the SvNCNEWA satisfies the below properties. 

(i) Idempotency. Let ( , ),( , ),( , )  ( =1,2,3 ) r r i i e ea c a c a c z       = be a group of SvNCNs. 

When  = , it satisfies 1 2 3( , ), zSvNCNEWA     = . 
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(ii) Boundedness. Let ( , ),( , ),( , )  ( =1,2,3 ) r r i i e ea c a c a c z       = be a group of SvNCNs, 

then maximum values and the minimum are given by:  

min maxmin( , ),max( , ),max( , ) , max( , ),min( , ),min( , ) .r r i i e e r r i i e ea c a c a c a c a c a c            = =  

(iii)Monotonicity. Let 
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1 2    , then it satisfies 

1

1 1 1 1
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1

2 2 2 2

2 3, ),( zSvNCNEWA     . 

Proof: 

(1) Let ( , ),( , ),( , ) ( , ),( , ),( , )r r i i e e r r i i e ea c a c a c a c a c a c       = = =  be a group of SvNCNs, 

where the weight coefficients   represent the weights of  , which are constrained within the 

range [0, 1]. Furthermore, it satisfies 
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(2) Set 1 2 3( ), , zSvNCNEWA      be given. According to the formula (12), it be expressed below: 
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According to the formula (3), 1 2 3( )( ), , zSvNCNEWA z    =1, 2, 3 , min , max  are defined see 

below: 

1 2 3( ( ))
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 

 
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( ) (2 max( ) max( ) min( ) min( ) min( ) min( )) / 3 .

r r i i e e

r r i i e e

S a c a c a c

S a c a c a c

     

     





= + − −

= + − −
 



Neutrosophic Sets and Systems, Vol. 86, 2025  166  

 

 

Tong Zhang, Xueping Lu, Kun Chen, Chunping Liu, Jun Y. Evaluation of Practice-Based Curriculum Objectives 

Achievement Degree Using Einstein Aggregation Operators of Single-Valued Neutrosophic Credibility Numbers 

 

From the above formula, min 1 2 3 max( ) , , ( )( ( ))zS SvNCNS EWA S       can be obtained. According 

to the (i)-th properties of the score function, min 1 2 3 max, ,( )zSvNCNEWA        can be derived. 

(3)  Set two groups SvNCNs, their relationship can be expressed as follows:  
1 1 1 1 1 1 1 2 2 2 2 2 2 2( , ),  ( , ),  ( , )  , ( , ),  ( , ),  ( , )  

r r i i e e r r i i e e
a c a c a c a c a c a c

             = = then
1 2 .    Then they satisfy  

the following constraints:
1 2 1 2 1 2 1 2 1 2 1 2

r r r r i i i i e e e e
a a c c a a c c a a c c

           
     ， ， ， ， ， . 

Using the equation (12), it can be derived as: 
1

1 1 1 1 1 1 1 1 1 1

2 3, , ( ,  ( ) ), ( , ), ( , )z r r i i e eS a cvNCNEWA a c a c    =  

and 
1

2 2 2 2 2 2 2 2 2 2

2 3, , ( , ), ( , ), ( , )( )z r r i i e eaSvNCNEWA c a c a c    = . 

According to the above formula, it is evident that 
1 2 1 2 1 2 1 2

ir r r r i i ia a c c a a c c   , , , , 1 2

e ea a , 1 2

e ec c  

can be obtained. Consequently, 
1 1

1 1 1 2 2 2

2 2( ) (, , , , )z zSvNCNEWA SvNCNEWA       can be deduced. 

Definition 7. Let 1 2 3{ , , }z    = be a group of SvNCNs. The weighted geometric average 

operator of Einstein for SvNCNs (SvNCNEWG) is expressed as follows: 

 
1 2 3
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( , , )z

z

SvNCNEWG 




    
=

=                (13) 

Where   represents the weight of  , with a range of [0, 1], and it satisfies 
1

1
z




=
= . 

Theorem 2. Let , , ( , ),( , ),( , )  ( =1,2,3, ) r r i i e eR I E a c a c a c z          = = be a group of 

SvNCNs, where weight coefficients of each SvNCN satisfy [0,1]   and
1

z




= . On basis of the 

operational rules, the result is calculated as follows: 
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(14) 

The proof process for SvNCNEWG is consistent with that of SvNCNAWG. 

4. Application of SvNCNEWG and SvNCNAWG in MADM  

In order to make optimal decisions, this section introduces the MADM based on SvNCNs. In the 

DM problem, it is assumed that a decision-maker needs to evaluate H alternatives, with the set of 

alternatives expressed as 1 2 3{ , }HA A A A A= ， ， . Each alternative has L attributes which 

expressed as 1 2 3{ , }LC C C C C= ， ， . The weight coefficient corresponding to each attribute in the 

decision process is denoted as 1 2 3{ , , , }L    = . Thus, the SvNCN of the th −  attribute of 

the th − alternative is expressed as ,, , , , ,
, ( , ),( , ), ( , )t t i i f fa c a c a c

          
  = 1,2, , H = and 1, 2, , L = . 

For all alternatives with L attributes, the expression is as below matrix: ,{( )}H L   = . The 

steps for applying the SvNCNs method in MADM are see below: 

Step 1: Calculate the aggregated value of SvNCNs for H alternatives and L attributes using the 

given aggregation formulas (12) and (14), each attribute of each candidate is composed of truth, 

false, uncertainty values and their corresponding credibility values. 

1 2 3
1

, ,( )
L

HSvNCNEWA      


      
=

= =   
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Step 2: Substitute the aggregated values of SvNCN obtained from Step 1 into the scoring 

formula (3) and (4), then calculate the values of score and accuracy for each alternative. 

Step 3: Rank alternatives on basis of their score values and make the optimal choice among the 

multiple alternatives. 

5. Application Instance and Algorithm Comparison  

This section presents an application instance of Einstein aggregation operators based on 

SvNCNs in MADM and provides a comparative analysis with other DM methods. 

5.1 Application Example 

The the achievement degree of curriculum objectives evaluation is an effective method to 

construct the evaluation system of students' learning quality and measure the effectiveness of OBE 

teaching. The evaluation carried out in the practical curriculums of electrical engineering major in 

Shaoxing University，and its evaluation results consists of four components: regular performance, 

design report, project demonstration, and teamwork. However, there is fuzziness and uncertainty 

in the evaluation of each part of the practical curriculum，so we set the four curriculums of 

Embedded System, Single Chip Microcomputer Principle, Electronic Circuit Design and Sensor as 

the alternatives, denoted as 1 2 3 4={ }    ， ， ， .The attributes of the four evaluation parts are defined 

as 1 2 3 4={ , , , }     . The known weight vector corresponding to each attribute is defined as: 

1 2 3 4{ 0.2, 0.3, 0.4, 0.1}    = = = = = . Thus, the achievement degree evaluation of these four 

curriculums can be expressed as a SvNCNs matrix: 

(0.7,0.8), (0.2,0.7), (0.2,0.8) (0.7,0.9), (0.1,0.6), (0.1,0.7) (0.8,0.8), (0.2,0.7), (0.2,0.8) (0.8,0.7), (0.1,0.7), (0.2,0.8)

(0.8,0.8), (0.1,0.6), (0.1,0.7) (0.8,0.7), (0.1,0.8), (0.2,0.6) (0.9,0.7), (0.2,0.7), (0.1
 =

,0.8) (0.7,0.7), (0.2,0.7), (0.2,0.8)

(0.8,0.9), (0.2,0.8), (0.1,0.7) (0.8,0.8), (0.1,0.9), (0.1,0.7) (0.9,0.8), (0.2,0.6), (0.1,0.8) (0.8,0.6), (0.2,0.7), (0.1,0.9)

(0.7,0.7), (0.1,0.7), (0.2,0.8) (0.8,0.8), (0.2,0.7), (0.1,0.8) (0.7,0.8), (0.2,0.8), (0.1,0.9) (0.7,0.6), (0.1,0.8), (0.1,0.8)

 
 
 
 
 
  

 

According to the application of the Einstein aggregation operator based on SvNCNs in MADM, 

the calculation steps see below: 

Step 1: Calculate aggregation values of SvNCNEWA and SvNCNEWG using the formulas (12) 

and (14). The aggregated value of each course consists of three parts: truth, uncertainty and false, 

with each part represented as a SvNCN. The aggregate values are shown in the Table 1 below: 

 

Table 1. Calculation of Two Aggregation Operators 
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Aggregate operations                                Aggregate values 

 

 

SvNCNEWA 

1 (0.75,0.83),(0.15,0.66),(0.16,0.76) =  

2 (0.84,0.72),(0.14,0.70),(0.13,0.72) =  

3 (0.84,0.81),(0.16,0.73),(0.10,0.76) =  

4 (0.73,0.76),(0.16,0.74),(0.11,0.84) =  

 

 

SvNCNEWG 

1 (0.75,0.82),(0.16,0.67),(0.17,0.77) =  

2 (0.83,0.72),(0.15,0.72),(0.14,0.73) =  

3 (0.84,0.79),(0.17,0.77),(0.10,0.77) =  

4 (0.72,0.75),(0.17,0.75),(0.12,0.85) =  

 

 

Step 2: In accordance with the scoring formula (3) and (4), the results of the four curriculums 

are ranked as shown in the Table 2 below: 

Table 2. Scores and Rankings of Two Aggregation Operators 

Aggregation Operators        Score ( ( 1, 2, 3, 4)


 = )             Rank             Optimal Value    

SvNCNEWA 0.801,0.806,0.834,0.783 3 2 1 4       3  

SvNCNEWG 0.791,0.795,0.820,0.774 3 2 1 4       3  

Step 3: After sorting the results of the two aggregation operators from Table 1 and Table 2, the 

curriculum with the highest score is is identified as having the optimal achievement. 

5.2 Comparative Analysis 

Ye et al. proposed a MCDM model on basis trigonometric weighted average operators and 

trigonometric geometry operators for SvNCNs. This model utilizes the operational rules of 

triangular t-norm and triangular t-conorm to define aggregation operations, including triangular 

weighted averaging (SvNCNTWA) and triangular weighted geometric (SvNCNTWG) operators for 

SvNCNs matrices, and has been successfully applied to slope protection in mountainous terrain. 

For comparison, this paper presents the two aggregation operations based on the Einstein 

aggregation operator (SvNCNEWG and SvNCNEWA) and compares them with Ye’s SvNCNTWA 

and SvNCNTWG, as well as the classic SvNNWA and SvNNWG. All six methods use the same 

SvNCNs matrix and are compared in Table 3. 

 

Table 3. Comparison table of the four methods 

Aggregation Operators        Score ( 1, 2, 3, 4)


 =           Rank            Optimal Value 

SvNNWA               0.813, 0.856, 0.862, 0.819        3 2 4 1                 3  

SVNNWG               0.846, 0.889, 0.900, 0.863        3 2 4 1                3  

SvNCNTWA 0.799, 0.804, 0.830, 0.781 3 2 1 4       3  

SvNCNTWG 0.784, 0.788, 0.813, 0.768 3 2 1 4       3  

SvNCNEWA 0.801, 0.806, 0.834, 0.783 3 2 1 4       3  

SvNCNEWG 0.791, 0.795, 0.820, 0.774 3 2 1 4       3  
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Figure 1. Comparison of aggregation operator 

As shown in Table 3, the classic SvNNWA and SvNNWG methods yield different ranking 

results when assessing course achievement, compared to the operators based on the SvNCNs. 

However, the final optimal decision remains the same. This indicates that the classic methods lack 

the credibility measure of SvNCNs, which is crucial when determining the optimal ranking for the 

same multi-attribute problem. In contrast, the SvNCNs-based aggregation operators effectively 

address this gap. Among the four SvNCNs-based methods, the two aggregation operations 

proposed in this paper SvNCNEWA and SvNCNEWG produce the same ranking results as the two 

previously proposed SvNCNTWA and SvNCNTWG algorithms, demonstrating the effectiveness of 

the methods introduced in this study.  

As shown in Figure 1, when the four SvNCNs-based methods are used to evaluate the four 

courses, the SvNCNEWA method proposed in this paper consistently achieves higher scores than 

the other three methods. This highlights the ability of the improved Einstein operator based on 

SvNCNs to help decision-makers make the optimal choice in MADM problems. 

6. Conclusions 

This paper first presents the SvNCNEWA and SvNCNEWG aggregation algorithms, based on 

the improved Einstein paradigm within SvNCNs. These algorithms were applied to assess the 

achievement levels of four practice-based courses in the Electrical Engineering program at Shaoxing 

University. By comparing the proposed methods with four existing aggregation algorithms, the 

effectiveness of the approach in addressing MADM problems is demonstrated. Looking ahead, 

future research will focus on extending SvNCNs to topological spaces and exploring the application 

of neutrosophic topological spaces in areas such as data analysis, pattern recognition, and robot 

control. 
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