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Abstract: In this article, we introduce two types of compositions in Neutrosophic Fuzzy Matrices 

(NFM): max(min) - max(min) - min(max) (◦) and min(max) – min(max) – max(min) ( ∗) compositions. 

Using these compositions, we derive several significant results. Additionally, we demonstrate how 

to construct idempotent NFM from any given NFM through the min(max) – min(max) – max(min) ( 

∗)  composition. To demonstrate the application of these theoretical findings, a numerical example 

is provided. Furthermore, we present an algorithm designed to solve decision-making (DM) 

problems using the min(max) – min(max) – max(min) ( ∗) composition. A practical example is 

included to highlight the success of the proposed method. Additionally, a practical problem from 

our local environment was identified and successfully resolved. A thorough comparative analysis of 

the solutions for existing problems was conducted to evaluate their effectiveness in detail. We have 

adopted the same example as presented in the composition method used in Mamoni Dhar [50] is 

max(min)-min(max)-min(max) (∗). In our analysis, we replaced the score function used in that paper 
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with various alternative score functions in Sahin [44], Nancy, Garg [45]. Upon comparing the results, 

we observed variations when different score functions were applied. Furthermore, when the 

min(max) – min(max) – max(min) ( ∗) composition method (proposed method) was applied, the 

results remained consistent. Finally, our proposed composition method, min(max) – min(max) – 

max(min) (∗)  is better than Mamoni Dhar [50] composition method, max(min)-min(max)-min(max) 

(∗).  

 

Keywords: Neutrosophic Fuzzy Set , Neutrosophic Fuzzy Matricrs, nearly irreflexive, weakly 

reflexive, Idempotent matrix  

1. Introduction 

In recent decades, the concept of fuzziness has expanded beyond the classical framework to 

better model uncertainty and vagueness in complex systems. The seminal work by Zadeh[1] on 

fuzzy sets laid the groundwork for this field, with further contributions by Atanassov[14] 

introducing intuitionistic fuzzy sets (NFS) , which account for both membership and 

non-membership values. Intuitionistic fuzzy sets have since evolved, influencing a wide range of 

applications[15,16]. However, limitations in fuzzy set theory, especially in addressing complex 

decision-making under uncertain conditions, led researchers like Molodtsov[2] to propose soft set 

theory as an alternative framework, thus broadening the conceptual landscape. Building on this, 

Maji et al. [3,4] further extended fuzzy and soft set theories to create fuzzy soft sets, integrating 

elements of fuzziness into the soft set structure to enhance decision-making applications with the 

need for even greater flexibility in managing indeterminacy, NFS have been developed by 

Smarandache [6,7]. These sets generalize traditional fuzzy and NFS  by adding an indeterminate 

component, enabling a broader range of applications that can address not only uncertain but also 

inconsistent information. This has spurred advancements in both theoretical and applied areas, such 

as decision making Maji [9], with Deli and Broumi[11] pioneering neutrosophic soft matrices and 

NSM-DM, a methodology that allows for handling incomplete and contradictory data Das [12]. 

 

Within the framework of fuzzy and neutrosophic theories, fuzzy matrices have also been 

extensively researched. Kim and Roush [27] explored generalized fuzzy matrices, while others like 

Ragab and Emam[30] examined specific properties, such as the determinant and adjoint of FM. The 

work on FM continued with investigations into transitivity and canonical forms, as proposed by 

researchers like Hashimoto [22] and Kim [33], who provided foundational insights into matrix 

operations under fuzzy conditions. Additionally, studies have explored extensions of these matrices 

into the intuitionistic and neutrosophic realms. Emam [41], for instance, examined consistent and 

weak transitive intuitionistic fuzzy matrices, highlighting their applicability in complex decision 

processes. The evolution of fuzzy and intuitionistic theories has also been marked by the 

introduction of advanced structures, such as k-idempotent neutrosophic fuzzy matrices, which 

allow for novel approaches in matrix characterization and generalization. Anandhkumar et.al [38] 

have contributed significantly to this area, focusing on partial orderings and pseudo similarity in 
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neutrosophic fuzzy matrices Eman [39]. In parallel, efforts have been made to refine and apply these 

structures in various contexts, such as soft and hypersoft sets for decision-making applications, as 

explored by Smarandache [6] and Vellapandi and Gunasekaran [8], enabling strategies for optimal 

decision processes under conditions of high uncertainty. 

 

Several investigators have contributed significantly to the advancement of fuzzy and NFM and 

their applications. For instance, Emam and Fndh [42] investigated various properties of the 

max–min and min–max compositions of bifuzzy matrices, offering valuable insights into their 

mathematical structures. In the context of neutrosophic sets, Singh and Bhat [43] introduced a novel 

score and accuracy function, demonstrating its utility in MCDM scenarios. Similarly, Sahin [44] 

proposed a MCDM approach based on score functions (SF) and accuracy functions (AF) within a 

neutrosophic framework . Garg and Nancy [45] further refined these concepts by developing an 

improved score function for ranking NFS, which was successfully applied to DM problems. Recent 

advancements in neutrosophic fuzzy matrices have expanded their applications and theoretical 

underpinnings. Anandhkumar et.al [46] offered the concept of interval-valued secondary k-range 

symmetric NFM, providing a robust framework for representing and analyzing uncertainty. 

Anandhkumar et.al [47] extended this work to generalized symmetric neutrosophic fuzzy matrices, 

enhancing the mathematical versatility of these models. Additionally, Anandhkumar [48] explored 

the properties of generalized symmetric Fermatean neutrosophic fuzzy matrices, further 

contributing to this growing field. Moreover, Anandhkumar et.al [49] proposed secondary k-column 

neutrosophic fuzzy matrices, introducing new dimensions to the study of neutrosophic fuzzy matrix 

compositions. Mamoni Dhar [50] has studied  NSM and Its Application in Medical Diagnosis 

(AMD). 

 

1.1 Abbreviations  

 

FM:Fuzzy Matrices 

NFSs: Neutrosophic fuzzy Sets 

NFM: Neutrosophic fuzzy matrices. 

MCDMP: Multi-Criteria Decision- Making Problem. 

 

1.2 The structure of the article is organized as follows 

 

The article begins with Section 2: Main Contributions of the Work, highlighting the development 

of compositions of Neutrosophic Fuzzy Matrices (NFMs) to enhance uncertainty modeling and 

address existing methodological limitations. Section 3: Research Gap identifies critical shortcomings 

in handling complex compositions and relationships, which the proposed framework effectively 

resolves. Section 4: Comparative Analysis of the NFM Model with Existing Soft Models 

demonstrates the superiority of the NFM model over traditional soft computing approaches in terms 
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of accuracy, adaptability, and efficiency. Section 5: Novelty emphasizes the unique capabilities of the 

framework in advancing the representation of uncertain compositions. Section 6: Literature Review 

justifies the study by examining related works, while Section 7: Preliminaries introduces key 

concepts such as neutrosophic sets, fuzzy matrices, and the composition framework. Section 8: 

Theorems and Results presents theoretical developments, proofs, and findings, complemented by an 

Example section that offers a step-by-step practical illustration. Section 9: Algorithm and 

Application outlines a systematic algorithm and its use in real-world problems. Finally, Section 10: 

Conclusion and Future Work summarizes the key findings and proposes integrating the framework 

into dynamic systems and machine learning models in future research. 

2. Main Contribution of our Work: 

 Introduction of New Compositions for Neutrosophic Fuzzy Matrices (NFMs): We define two 

novel compositions for NFMs—namely, the max(min)–max(min)-min(max) (◦) and min(max) – 

min(max) – max(min) ( ∗) compositions. These operations are designed to facilitate enhanced 

manipulation and analysis of NFMs, thereby broadening the theoretical framework for neutrosophic 

fuzzy logic. 

Development of Idempotent Neutrosophic Fuzzy Matrices: We construct idempotent NFMs 

through the min-min-max composition. This provides a systematic approach for deriving consistent 

and self-reinforcing NFMs, crucial for stable applications within neutrosophic-based systems. 

Theoretical Insights and Key Results: Through these newly defined compositions, we derive 

several important results that contribute to the foundational understanding of neutrosophic fuzzy 

matrices. These results offer insights into the structure and behavior of NFMs under the proposed 

compositions. 

Algorithm for Decision-Making (DM) Applications: We present an algorithm that leverages NFMs 

to solve DMP. This algorithm is designed to handle the indeterminacy and uncertainty present in 

complex decision environments. 

 Practical Application and Numerical Example: To establish the efficiency and success of the 

proposed compositions and algorithm, we include a arithmetical illustration demonstrating their 

ADM context. This example showcases the practicality of NFMs in addressing real-world 

decision-making scenarios. 

3. Research Gap 

In recent years, fuzzy and neutrosophic matrix theories have made significant progress, offering 

valuable tools for addressing uncertainty and imprecision in mathematical modeling and 

decision-making contexts. However, despite advancements in fuzzy matrices and their applications, 

several gaps remain that limit their effectiveness and broader applicability. 

For instance, Ragab and Emam's work on min-max composition in FM [21] and Mishref and Emam’s 

study on transitivity and subinverses in FM [29] contribute foundational concepts but do not 

address the limitations of composition operations under higher levels of indeterminacy. 
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Furthermore, the existing methods often fail to provide robust handling of transitivity when 

extended to neutrosophic or intuitionistic fuzzy matrices. 

Recent studies, such as Uma, Murugadas, and Sriram's development of Fuzzy NSM of Type I and 

Type II [36], have demonstrated the adaptability of NFM structures. However, the lack of a 

comprehensive framework for examining the relationships and properties within these matrices 

under different composition rules restricts their practical utility in complex, real-world decision 

environments. 

 

Additionally, Emam's research on operations within intuitionistic fuzzy matrices[39], as well as 

consistent and weak transitivity max-min and min-max conditions [42], indicate a need for further 

development of transitivity frameworks that can accommodate multi-level uncertainty and provide 

a unified structure for matrix-based decision analysis. The work of Pradhan and Pal[40] on strongly 

transitive intuitionistic fuzzy matrices suggests promising avenues, yet integrating these approaches 

within a consistent neutrosophic or fuzzy-neutrosophic framework remains an open challenge. We 

identified this gap and defined new types of Neutrosophic Fuzzy Matrices, introducing the 

max(min)–max(min)-min(max) (◦) and min(max) – min(max) – max(min) ( ∗) compositions of these 

matrices. Through these compositions, we derived several critical results that expand the theoretical 

foundation of NFMs. Notably, we constructed idempotent Neutrosophic Fuzzy Matrices from any 

given matrix using the min-min-max composition, adding an essential tool for achieving consistency 

within NFM-based models. To demonstrate these concepts and their practical applications, we 

included a numerical example. 

Table:1 An overview of the advancements in extending NFM. 

References Extension of NFM. Year 

E.G. Emam et al. [21] On the min-max composition of FM 1995 

E.G. Emam, et ai [42] Some results associated with the max–min and 

min–max compositions of bifuzzy matrices, 

2016 

Madhumangal Pal, et al [40] Transitive and strongly transitive IFM 2017 

E. G. Emama [39] An Operation on IFM 2020 

E. G. Emam [41] On Consistent and Weak Transitive IFM 2022 

 P. Murugadas  

Proposed 

Min(Max) – Min(Max) – Max(Min) ( ∗) Compositions 

of NFM and its AMD 

2024 

 

4. Comparative of NFM model with the existing soft models 

Types of soft set Uncertainty Falsity Hesitation Indeterminacy 

https://www.tandfonline.com/author/Emam%2C+E+G
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FSS [3] ✓ × × × 

IVFSS [16] ✓ × × × 

IFSS [15] ✓ ✓ ✓ × 

IVIFSS [46] ✓ ✓ ✓ × 

NSS [7] ✓ ✓ × ✓ 

 

 

Aspect FS IFS NFS 

Components Membership degree μ           Tμ and F ν Tμ, Iu and Fν 

Range of Values μ∈[0,1] μ,ν∈[0,1] with  0≤μ 

μ+ν≤1 

μ,I,ν∈[0,1] with 0≤μ+I+ 

ν≤3 

Handling of 

Uncertainty 

Can only handle 

partial membership 

Can model uncertainty 

to some extent with 

membership and 

non-membership 

Explicitly models 

uncertainty with the 

indeterminacy 

component 

Representation Single value for 

membership degree μ. 

Pair of values for each 

element: (μ,ν). 

Triple of values for 

each element: (μ,I,ν). 

Information 

Flexibility 

Limited; only 

considers degree of 

membership 

Improved flexibility 

with membership and 

non-membership 

Maximum flexibility; 

considers T, I, and F. 

Applications Simple systems with 

partial truth 

Systems where both 

acceptance and 

rejection are relevant 

Complex, uncertain 

systems with 

significant 

indeterminacy 

Strengths Simplicity and ease of 

computation 

Manages dual aspects 

of ambiguity 

Comprehensive 

uncertainty 

representation, 

handling of complex 

systems with 

indeterminate 

information 

 

5. Novelty 
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The referenced works present significant advancements across fuzzy sets, soft sets, IFS, and NFM, 

each addressing specific limitations and expanding the theoretical and practical frameworks for 

handling uncertainty. Zadeh [1] introduced fuzzy set theory, laying the groundwork for modeling 

imprecision in various systems. Atanassov [14-15] advanced this by developing intuitionistic fuzzy 

sets, which introduced an added degree of hesitation. Later, Molodtsov [2] proposed soft set theory 

to address uncertainties without requiring traditional fuzzy membership functions, which Maji et al. 

[3-5] further refined by integrating fuzzy and soft set theory. Smarandache [6-7] took this forward by 

introducing hypersoft and neutrosophic sets, offering tools to model multi-dimensional uncertainty. 

 

Building on these foundations, Vellapandi and Gunasekaran [8] applied multi-soft set logic to 

decision-making, while Das et al. [12] explored neutrosophic soft matrices for collaborative 

decision-making. Emam and Mishref [29] examined transitivity and subinverses in FM, enhancing 

the understanding of composition rules, while Ragab and Emam [21, 30] provided insights into the 

min-max compositions crucial for matrix operations. Deli and Broumi [11] extended 

decision-making methodologies with neutrosophic soft matrices, and Emam with Fndh [42] 

explored advanced bifuzzy matrix compositions, offering valuable results for complex fuzzy 

environments.  

 

Further studies by Padder and Murugadas [35] and Uma et al. [36] on idempotent intuitionistic 

and neutrosophic matrices have contributed significantly to matrix consistency and structural 

advancements in data analysis. Recent studies by Anandhkumar et al. [37-38] on k-idempotent and 

pseudo-similarity operations in neutrosophic matrices have introduced novel approaches for matrix 

ordering and comparative analysis. This paper builds upon these contributions by defining new 

Neutrosophic Fuzzy Matrix (NFM) compositions, specifically the max(min)–max(min)-min(max) 

and min(max) – min(max) – max(min) ( ∗) operations. These new compositions aim to provide 

essential theoretical insights and demonstrate practical applications for decision-making, thereby 

addressing a critical gap in the field’s understanding of NFM structures and their consistency within 

model-based applications. 

 

6. Literature review  

In the study of uncertainty modeling, fuzzy sets have laid the foundational framework since 

Zadeh's pioneering work [1], which introduced the concept of partial membership to describe 

imprecise information. This led to further exploration by Atanassov [14-15], who developed 

intuitionistic fuzzy sets (IFSs) to include a degree of hesitation, thereby broadening the scope of 

fuzzy systems. Subsequent research aimed to address the limitations of IFSs, leading to 

advancements like interval-valued fuzzy sets [16], which provided extended flexibility in 

representing uncertainty. Molodtsov [2] introduced soft set theory, which enables more flexible 

solutions by allowing parameters without fixed membership degrees, providing a valuable tool for 

real-world decision-making. This was expanded by Maji et al. [3-4], who developed fuzzy soft sets to 
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combine fuzzy logic and soft set principles, enhancing their application potential in ambiguous 

environments.  

Smarandache [6-7] advanced these concepts further with neutrosophic sets, which generalize IFSs 

and incorporate three components: T, I, F. This neutrosophic approach has provided a robust 

framework for tackling complex uncertainty, with applications in MCDM  and modeling 

inconsistent data. Building on these, Smarandache proposed hypersoft sets to add dimensional 

flexibility, accommodating an even wider range of parameters and decision scenarios. Vellapandi 

and Gunasekaran [8] employed multi-soft set logic to formulate decision-making frameworks, 

emphasizing application-oriented techniques. Das et al. [12] and Kumar Das [13] utilized 

neutrosophic soft matrices for group decision-making and transportation problems, providing 

algorithmic approaches to handle more nuanced uncertainty in practical scenarios. 

 

Within matrix theory, the study of FM  has led to various operations and compositions. Emam 

and Mishref [29] focused on transitivity and subinverses in FM, essential for analyzing fuzzy 

relations in decision models. Similarly, Ragab and Emam [21] introduced the min-max composition 

for fuzzy matrices, a fundamental tool for matrix manipulation and modeling relationships. Further 

contributions by Emam and Fndh [42] on maximum-minimum and minimum-maximum bifuzzy 

matrix compositions underscore the complexity of handling multi-layered uncertainties in real 

applications. Emam [39, 41] extended this to intuitionistic fuzzy matrices by examining transitive 

operations and weak consistency, crucial in maintaining logical coherence in fuzzy-based decision 

systems. 

 

In response to evolving complexities, recent research has directed focus toward neutrosophic 

and intuitionistic fuzzy matrices. Padder and Murugadas [35] explored idempotent intuitionistic 

fuzzy matrices, contributing to structural consistency, while Uma et al. [36] worked on type I and 

type II fuzzy neutrosophic soft matrices to support complex system modeling. Anandhkumar et al. 

[37-38] introduced k-idempotent and pseudo-similarity concepts in neutrosophic matrices, which 

enable effective matrix ordering and structural consistency in diverse applications. These studies 

mark significant strides in matrix-based uncertainty modeling but highlight a gap in methods for 

constructing idempotent structures in neutrosophic fuzzy matrices (NFMs), which are critical for 

consistent application in decision-making. The current research addresses this gap by defining new 

compositions for NFMs, namely max(min)–max(min)-min(max) and min(max) – min(max) – 

max(min) ( ∗) operations, to expand the theoretical groundwork for matrix idempotency and 

consistency. These compositions are expected to enhance the applicability of NFMs in 

decision-making frameworks by ensuring reliable results across complex data sets. Through the 

introduction of these novel operations, this study contributes to both the theoretical development 

and practical applications of NFMs in uncertainty modeling. 

In recent years, the study of fuzzy and neutrosophic matrices has gained significant momentum due 

to their wide applicability in complex decision-making environments involving uncertainty and 
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imprecision. M. Anandhkumar and collaborators have made substantial contributions to this 

evolving field. For instance, Anandhkumar et al. [51] introduced the Determinant Theory of 

Quadri-Partitioned Neutrosophic Fuzzy Matrices with applications to multi-criteria 

decision-making problems, while Radhika et al. [52] extended this framework through Interval 

Valued Secondary k-Range Symmetric Quadri Partitioned Neutrosophic Fuzzy Matrices. Further 

foundational developments include the exploration of various inverse concepts by Anandhkumar, 

Kanimozhi, Chithra, Kamalakannan, and Said [53], and the Schur complement in block structures as 

discussed by Radhika, Harikrishnan, Prabhu, Tharaniya, John Peter, and Anandhkumar [54]. 

Additionally, Prathab, Ramalingam, Janaki, Bobin, Kamalakannan, and Anandhkumar [55] 

investigated generalized inverses within interval-valued fuzzy environments. Meanwhile, 

Anandhkumar and colleagues have systematically studied different matrix orderings, such as 

Reverse Tilde and Minus Partial Ordering [56], Reverse Sharp and Left-T Right-T Partial Ordering 

on Intuitionistic Fuzzy Matrices [57], and their extensions to neutrosophic fuzzy contexts [60]. 

Another line of research by Anandhkumar, Prathab, Chithra, Prakaash, and Bobin [58] introduced 

Secondary K-Range Symmetric Neutrosophic Fuzzy Matrices, while Punithavalli and 

Anandhkumar [59] analyzed Kernel and K-Kernel Symmetric Intuitionistic Fuzzy Matrices, 

providing deeper algebraic insights. These collective efforts form a robust foundation for further 

advancements in neutrosophic fuzzy matrix theory and its multifaceted applications. 

 

7. Preliminaries 

7.1 Neutrosophic Fuzzy Matrices 

Definition: 7.1 A  NFSs P on the universe of discourse Y is well-defined as 

( ) ( ) ( ) , , , ,T I FP y p y p y p y y Y=    , everywhere , , : ] 0,1 [T I Fp p p Y − +→
  also 

0 3.T I Fp p p + +          

 Definition 7.2 . The score NFM P and Q is defined as ( )1 1 1 1,S V W V W= −  where 

1 1, TV P Q W P Q=  =   and ( )1 ij ij ij ijV v T I F= + − , ( )1 ij ij ij ijW w T I F= + −  are called 

membership value NFM. 

Definition 7.3 For n x n Nutrosophic Fuzzy Matrices ( ), ,T I F

ij ij ijP p p p=  we have 

(a) If P is transitive iff 
2 .P P   

(b) If P is idempotent iff 
2 .P P=  

(c) If P is reflexive iff ( ) ( ), , 1,1,0T I F

ii ii iip p p =  for each i  belongs to  1,2,...,n . 
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(d) If P is irreflexive iff ( ) ( ), , 0,0,1T I F

ij ij ijp p p =  for each i  belongs to  1,2,...,n  

(e) If P is weakly reflexive iff ( ) ( ), , , ,T I F T I F

ii ii ii ij ij ijp p p p p p  for each i ,j  belongs to 

 1,2,...,n  

(f) If P is nearly irreflexive iff ( ) ( ), , , ,T I F T I F

ii ii ii ij ij ijp p p p p p  for each i ,j  belongs to 

 1,2,...,n  

(g) If P is symmetric iff 
2 .P P=  

(h) If P is nilpotent  iff 0,0,1 .nP =     

(i) If P Asymmetric iff pij ∧ pji = (0,0,1). 

Definition 7.4  Let ( ), ,T I F

ij ij ij mx
P p p p


=  and ( ), ,T I F

ij ij ij xl
Q q q q


=  be two NFM. Then the 

maximum(minimum) –maximum(minimum)-minimum(maximum) composition ( ◦) of P, Q is 

represented by P ◦ Q and is well-defined as 

( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jmxl
P Q t p p p p p p

  

     

  = = =

 = =       

i.e., P Q  = [max min (
T

ijp  , 
T

ijp  ), max min (
I

ijp ,
I

ijp  ), min max (
F

ijp ,
F

ijp )] for all i and j. 

The min(max) – min(max) – max(min) composition ( ∗) of P, Q is represented by P ∗Q and is 

well-defined as 

( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jmxl
P qQ s p q p p q

  

     

  = = =

 = =       

i.e., P ∗Q = [min max (
T

ijp  , 
T

ijp  ),min max(
I

ijp ,
I

ijp  ),max min(
F

ijp ,
F

ijp )] for all i and j. 

where ∨ represents the max operation,  ∧ represents the min operation. 

Definition 7.5 (constant, nearly constant NFM) . An a × b NFM  P = Pij is called constant iff if pij = pkj 

for all i , k belongs to  {1, 2, ...,a }, j belongs to  {1, 2, ..., b }, P is nearly constant iff  pij = pkj, where 

i j  for all k j . 

 

8. Theorems and results 

Theorem 8.1  Let ( ), ,T I F

ij ij ijP p p p=  and ( ), ,T I F

ij ij ijQ q q q=  be two nearly irreflexive NFM. 

Then P Q P Q   . 
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Proof: Let R P Q=   and T P Q=  . 

Then  ( ) ( ) ( )
1 1 1

, , , ,T I F T T I I F F

ij ij ij ij i j i j i jr r r r p q p q p q
  

     

  = = =

= =      

and ( ) ( ) ( ), , , ,T I F T T I I F F

ij ij ij ij ij ij ij ij ij ijt t t t p q p q p q= =      

Now  ( ) ( ) ( )
1

T T T T T T T T

ij i j ii ij ij ij ijr p q p q p q t


 

=

=      =   

I I

ij ijr t=  

( ) ( ) ( )
1

F F F F F F F F

ij i j ii ij ij ij ijr p q p q p q t


 

=

=      = . 

Thus, we have 
ij ijr t  and so P Q P Q   . 

Hence the Theorem  

It It is noted that P ∨ Q = Q for P ≤ Q. 

 

Theorem 8.2 Let P, Q be two nearly irreflexive NFM and P ≤ Q. Then P ∗Q ≤ Q .  

Proof. This Theorem ( 8.2 ) follows immediately from Theorem (8.1). 

Theorem 8.3  Let ( ), ,T I F

ij ij ijP p p p=  be a symmetric and nearly irreflexive NFM. Then the 

following conditions are true 

(i) P ∗P ≤ P , 

(ii) P∗P is symmetric and nearly irreflexive, 

(iii) P2 is weakly reflexive. 

Proof.  (i) This section (i) follows immediately from Theorem 8.1  and 8.2. 

(ii) Suppose S = P ∗P. It is clear that S is symmetric and so 

( ) ( )
1 1 1

T T T T T T T

ii i i i i j ijs p p p p p s
  

    

  = = =

=     =  

I I

ii ijs s=  

( ) ( )
1 1 1

F F F F F F F

ii i i i i j ijs p p p p s
  

    

  = = =

=     =  

Thus, s ii ≤ s ij, Therefore P ∗P ≤ P. 

Therefore, P is nearly irreflexive. 
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(iii) Let T = P 2 . Then 

( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jt p p p p p p
  

     

  = = =

=      

( )
1

. ., ,T T T T T

ij i j ih hji e t p p p p


 

=

=  =  for some h n . 

But since P is symmetric, 

( )
1 1

T T T T T T T T

ii i i i ih ih hj ijt p p p p p p t
 

  

 = =

=  =    =  

Also 
I I

ii ijt t=  

and ( ) ( )
1

,F F F F F

ii i j is sjt p p p p s


 




=

=  =    

That is  
ii ijt t  

F F

ii ijt t=  

P2 is weakly reflexive. 

Hence the Theorem 

Theorem 8.4  For NFM [ ] , [ ] , [ ] [ ]ij m ij m ij l ij p mP p Q q R r and S s     = = = = ,  we have  

(i) ( ) ,
t t tQ R R Q =   

(ii) ,If P Q then R P R Q and P R Q R       

Proof: 
t tLet A R Q=  and .B Q R=   

Then ( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i ja r q r q r q
  

     

  = = =

=      

and ( ) ( ) ( )
1 1 1

, ,T T I I F F

ji j i j i j ib q r q r q r
  

     

  = = =

=      

.i e A B=  

( )ii Let C S P and D S Q=  =   

( ) ( ) ( )
1 1 1

. ., , ,T T I I F F

ij i j i j i ji e c s p s p s p
  

     

  = = =

=      
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and  ( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jd s q s q s q
  

     

  = = =

=      

Since we have that P Q , we get , ,T T I I F F

kj kj kj kj kj kjp q p q p q    and  

( ) ( ), T T T T

i j i jSo s p s q       for every .m   

Therefore, ( ) ( ) ( ) ( )
1 1 1 1

,T T T T I I I I

i j i j i j i js q s q s p s q and
   

       

   = = = =

       

( ) ( )
1 1

F F F F

i j i js p s q
 

   

 = =

    

., ij ijie c d  

Similarly, one can show that .P R Q R     

Hence the Theorem. 

 

Theorem 8.5  For any m  NFM P , then P∗Pt  is nearly irreflexive and symmetric. 

Proof. Let R = P∗Pt. That is 

( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jr p p p p p p
  

     

  = = =

=      

( )
1

T T T T T

ij i j il jlr p p p p


 

=

=  =   for some l   

and ( ) ( )
1

F F F F F

ij j j ig gjr p p p p


 

=

=  =   for some g   

Now ( )
1 1

, T T T T T

ii j i ik ihr p p p p
 

 

 = =

=  = =  for some l   

I I

ii ihr p=  for some l   

and ( )
1

F F F F

ii i i imr p p p


 

=

=  =  for some ,h m   

Since, T T T T T T

ii ih il il jl ijr p p p p r=    =  

I I I I I I

ii ih il il jl ijr p p p p r=    =  
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F F F F F F

ii im ig ig jg ijr p p p p r=    =  

Therefore
ii ijr r  

Therefore, P∗Pt is nearly irreflexive 

The symmetry of R is clear. 

Hence the Theorem. 

Theorem 8.6 Let P be an   asymmetric NFM. Then P∗Pt = (0,0,1) (the zero matrix) 

Proof: Let T = P∗Pt 

Then, ( ) ( ) ( )
1 1 1

, ,T T I I F F

ij i j i j i jt p p p p p p
  

     

  = = =

=      

, ,T T I I F F

ih jh ih jh is jsp p p p p p=     for so ,h s n . 

Therefore, P is asymmetric, it is irreflexive and so 

T T T T T T

ij ih jh ij jj ijt p p p p p=    =  

I I I I I I

ij ih jh ij jj ijt p p p p p=    =  

F F F F F F

ij is js ij jj ijt p p p p p=    =  

. ., , .ij iji e t p ij jit p  

0,0,1ij ij jit p p  =   

Thus 0,0,1ijt =   and so 0,0,1 .t =   

Hence the Theorem. 

Corollary 8.1 If P is nilpotent, then Pm is irreflexive for all m ≤ n .  

Proof: Theorem 8.6 establishes that the nilpotency of a NFM P guarantees the asymmetry of the 

matrix. Though, the reverse implication does not necessarily hold, as asymmetry does not always 

imply nilpotency. 

Theorem 8.7  Let P  be an n ×n nilpotent NFM. Then P is asymmetric.  

Proof. Subsequently P is nilpotent 
( ) 0,0,1n

ijp =   

(0,0,1)ij jiIf p p   

. ., (0,0,1)T T

ij jii e if p p   

(0,0,1)I I

ij jip p   
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and (1,1,0)F F

ij jip p   

then , (0,0,1), , (0,0,1)T I T I

ij ij ji jip p p p   

and , (1,1,0)F F

ij jip p   

Now, we consider two cases for n . 

Case 1: If n is odd, then 

( )
( )

.... (0,0,1)
n

T T T T T

ij ij ji ij ijp p p p p       (n- elements) 

( )
( )

.... (0,0,1)
n

I I I I I

ij ij ji ij ijp p p p p      (n- elements) 

( )
( )

.... (1,1,0)
n

F F F F F

ij ij ji ij ijp p p p p      (n- elements) 

which is a contradiction. 

Case 2: If n is even, then by Corollary 8.1 , we take 

( )
( )

.... (0,0,1)
n

T T T T T

ij ij ji ij jip p p p p      (n- elements) 

( )
( )

.... (0,0,1)
n

I I I I I

ij ij ji ij jip p p p p      (n- elements) 

( )
( )

.... (1,1,0)
n

F F F F F

ij ij ji ij jip p p p p      (n- elements) 

which is a contradiction. 

Thus, (0,0,1), (0,0,1) (1,1,0)T T I I F F

ij ji ij ji ij jip p p p and p p =  =  =  

 . ., (0,0,1)ij jii e p p =  

Consequently, P is then asymmetric. 

Hence the Theorem. 

 

Theorem 8.8  If P is irreflexive and transitive NFM, then P is nilpotent. 

Proof: Theorem 8.8 directly follows as a logical consequence of Theorem 8.7. 

Theorem 8.9  Let P and Q be two transitive NFM, such that P ≤ Q . Then 
tP Q!  is transitive. 

Proof:  Let 
tR P Q= ! and suppose (0,0,1)ik kjr r c =  for some k n .That is 

( ) ( ), , , , , , , ,T I F T I F T I F T I F

ik ik ik ki ki ki kj kj kj jk jk jkp p p q q q p p p q q q        ! !  

( ), , (0,0,1)T I Fc c c=     
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Thus T T

ik kip q  and 
T T

kj jkp q  

So that ( ), , , , , ,T I F T I F T I F

ik ik ik kj kj kjp p p p p p c c c    =    

. ., ,T T T I I I

ik kj ik kji e p q c p q c =  = and 
F F F

ik kjp q c =  

Since P is transitive, , , , , .T I F T T I I F F

ij ij ij ij ik kj ik kj ik kjp p p p p q p q p q=         

Now, we show that p   T T

ij jiq ,there are contradictions. 

(a) If T T

ikp c=  then T T

kiq c  and T T

kiso p c  

Since we have that P ≤ Q . Though, since we have assumed q   TT T

ji ijp c  ,  

we get 
    q    q  . T T T T T T

ki kj ji kj jiq q p c      This represents a contradiction.  

(b) If , pT

kj

Tc=  then 
T T

jkq c . Though 
TT

jkq c  

This represents a contradiction. 

Therefore, > qT T

ij jip  and so , , , ,T I F T I F

ij ij ji ij ij ij ji ji jir p q p p p q q q= =   ! !  

( ) ( ), , , , , ,T I F T T I I F F T I F

ij ij ij ik kj ik kj ik kjp p p p q p q p q c c c=     =    

i.e., 
ij ik kjr c r r =   and R is thus transitive. Hence the Theorem 

Corollary 8.2. Let P and Q be two transitive NFM, with P ≤ Q. Then (P⊖Qt ) ∗(P⊖Qt )t = <0,0,1>. 

Proof. It is evident that P⊖Qt is irreflexive and so by Propositions 8.6,8.7,8.9, we get the result. 

 

Theorem 8.10 Let S be an n ×n symmetric and nearly irreflexive NFM. Then the NFM and nearly 

constant  nT I S=  is idempotent and nearly constant. 

Proof: Given the symmetry of S, the elements of the NFM T can be expressed in terms of the 

elements of S as:

, ,

, ,
, ,

T I F

ij ij ij
T I F

T I Fij ij ij ij
i i i

i i i

t t t if i j

t t t t
s s s if i j  

    

  


= =   =


 

Initially we know that  t ij , we note that T is nearly constant. Next, Subsequently, we prove that T is 

idempotent. Any element 
(2)

ijt  of T2  is computed as 
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(2)

ijt = , ,T T I I F F

i j i j i jt t t t t t     =     for some , .h l n  

Though, we have some cases for the indices i , j , h and l to show that 
(2)

ij ijt t=  

Case 1: Assume that i j h l= = = . In this situation we take  

(2)
T T T T T T

ij ih hj ij ij ijt t t t t t=  =  =  

(2)
I I

ij ijt t= and 
(2)

F F

ij ijt t=  

Thus, 
(2) .ij ijt t=  

Case 2: Assume that i j h l= =  . In this situation we take  

(2) (2)

,T T I I

ij ij ij ijt t t t= =  

As in case 1 .Also  

 
(2)

F F F F F F F F

ij il lj ij jj ij jj ijt t t t t t t t=    =  =  

Thus 
(2)

F F

ij ijt t=  and so 
(2) .ij ijt t=  

Case 3: Assume that i j l h= =  . In this situation we take  

(2)
T T T T T T T

ij ih hj ij jj ij ijt t t t t t t=       (Since i = j) 

But  
( 2)

T T T T T T T T T T

ij ik ii hh ii hh jj ih hj ij

i k

t s s s s s s t t t


=    =  =  =  

Thus, 
(2)

,T T

ij ijt t=  

Also, as in Case 1, we get
(2) (2)

,I I F F

ij ij ij ijt t t t= =  

Therefore, 
T

ij ijt t=  

Case 4: Assume that .i h l j= =   In this situation we take  

T T T T T T

ii ij ih hj ij jjt t t t t t =     and so 

T T

ii jjt t . We know that 
T

jjt . It is evident that 
T T

jj jjt s    

so that 
T T T

ii jj jjt t s   

Thus, 
(2)

.T T T T T T T T T

ij ih hj ii hj ii jj jj ijt t t t t t s s t=  =  =  = =  

Similarly, 
I I I I I I

ii ij ih hj ij jjt t t t t t =     ans so 
I I

ii jjt t  
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By the definition  of 
I

jjt  It is evident that 
I I

jj jjt s  

So that 
I I I

ii jj jjt t s   

(2)

.I I I I I I

ij ih hj ii hj ijt t t t t t=  =  =  

Also, in this situation we have
F F F F F F

ii ij il lj ij jjt t t t t t =     and so .F F

ii jjt t  

But 
F F

jj jjt s  and so .F F F

ii jj jjt t s   

Thus, 
(2)

.F F F F F F

ij il lj ii lj ijt t t t t t=  =  =  

Therefore, 
(2)

.F F

ij ijt t=  

Case 5: Assume that .j l h j= =   In this situation we take  

( 2)

.T T T T T T T T T

ij ih hj ij ji jj j jj ij

j

t t t t t s s s t



 
=  =  =  = = 

 
 

(2)

.I I

ij ijt t=  

(2)

.F F F F

ij il hj ijt t t t=  =  

Case 6: Assume that .j l h l= =   In this situation we take  

(2)
T T T T T T T T

ij ih hj ij jj ij ij ijt t t t t t t t=    =  = (since i = j).  

Conversely, we have S is nearly irreflexive 
( 2)

T T T T T T T T T T

ij i ii hh ii hh jj ih hj ij

i k

t s s s s s s t t t



=    =  =  =  

Thus, 
(2)

T T

ij ijt t=  

Also, 
(2)

I I

ij ijt t=  

(2)
T F F F F F

ij il Lj ij jj ijt t t t t t=    =  

Thus,
( 2)

F F F F F F F F F F

ij il ii hh ii hh jj ih hj ij

i

t s s s s s s t t t


=    =  =  =  and so 
(2)

F F

ij ijt t=  

Case 7: Assume that .i h j l=    In this situation we take  

T T T T T T

ii ij ih hj ij jjt t t t t t =     and  
T T T

ii jj jjt t s   

As in Case 4, we get 
( 2)T T

ij ijt t=  
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Similarly,  
I I I I I I

ii ij ih hj ij jjt t t t t t =     

I I I

ii jj jjt t s  , 
( 2)I I

ij ijt t=  

Also  
F F F F F F F

ll jj il lj ij jj jjs s t t t t s =     . 

So, 
F F

ll jjs s  Therefore, 

Therefore, 
( 2)

.F F

ij ijt t=  

Case 8: Assume that .i l h j=    In this situation we take  

( 2)

.T T T T T T T T T

ij ih hj ij jj jj j jj ij

j

t t t t t s s s t



 
=    =  = = 

 
 

On the other hand we have 

(2)
T T T T T T T

ij jj hh jj ih hj ijt s s s t t t=   =  =  

Therefore, 
(2)

T T

ij ijt t= . Similarly,
(2)

I I

ij ijt t=  

Also, as in Case 4, we get 
(2)

F F

ij ijt t=  

Thus, 
(2)

ij ijt t=  

Case 9: Assume that .j h i l=    In this situation we take  

( 2)

.T T T T T T T T T

ij ih hj ij jj jj j jj ij

j

t t t t t s s s t



 
=  =  =  = = 

 
 

(2)

.I I

ij ijt t=  

And in Case 7. Therefore 
(2)

F F

ij ijt t= ,
(2) .ij ijt t=  

Case 10: Assume that .j l h i=    In this situation we take  

( 2)

.T T T T T T T T T

ij ih hj ij jj jj j jj ij

j

t t t t t s s s t



 
=    =  = = 

 
 

On the other hand, 
(2)

T T T T T T T

ij jj hh jj ih hj ijt s s s t t t=   =  =  

Thus, 
(2)

T T

ij ijt t= also, 
(2)

,I I

ij ijt t=
(2)

F F

ij ijt t=  

Therefore,  
(2)

ij ijt t=  
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Case 11: Assume that .h l i j=   As in  case 8, 
(2)

T T

ij ijt t= , 
(2)

I I

ij ijt t= and 
(2)

F F

ij ijt t=  as in 

Case 7. Consequently, 
(2)

ij ijt t= . 

Case 12: Assume that .h l i j   As in  case 4 and 9 , 
(2)

ij ijt t= . From the computations of 

(2)

ijt ,we find that
(2)

ij ijt t= in all the above cases and so T is idempotent. 

Hence the Theorem 

 

Corollary 8.3. Let P be any m ×n NFM. Then the NFM I m∗( P ∗Pt ) is idempotent and nearly constant. 

Proof: This Corrolary ( 8.3) follows directly from Theorems 8.5 and 8.10 . 

 

The following example Theorem 8.10 and its corollaries are useful in studying NFM. Though, 

they enable us to construct an idempotent NFM from any given NFM.  

Example.8.1  Let us consider NFM 

0.5,0.1,0.3 0.4,0.1,0.6 0.8,0.1,0.2 0.7,0.1,0.3

0.8,0.1,0 0.9,0.1,0.1 1,0.1,0 0.3,0.1,0.6

0.4,0.1,0.4 0.5,0.1,0.5 0,0.1,1 0.8,0.1,0.3

0.7,0.1,0.2 0.6,0.1,0.3 0.9,0.1,0 0.5,0.1,0.4

P

       

       
=

       

       


 
 
 
 



 

0.5,0.1,0.3 0.8,0.1,0 0.4,0.1,0.4 0.7,0.1,0.2

0.4,0.1,0.6 0.9,0.1,0.1 0.5,0.1,0.5 0.6,0.1,0.3

0.8,0.1,0.2 1,0.1,0 0,0.1,1 0.9,0.1,0

0.7,0.1,0.3 0.3,0.1,0.6 0.8,0.1,0.3 0.5,0.1,0.4

tP

       

       
=

       

       


 
 
 
 
 

 

Then 
tS P P=   

0.4,0.1,0.6 0.7,0.1,0.3 0.5,0.1,0.5 0.6,0.1,0.3

0.7,0.1,0.3 0.3,0.1,0.6 0.8,0.1,0.1 0.5,0.1,0.4

0.5,0.1,0.5 0.8,0.1,0.1 0,0.1,1 0.6,0.1,0.3

0.6,0.1,0.3 0.5,0.1,0.4 0.6,0.1,0.3 0.5,0.

S

       

       
=

       

       1,0.4

 
 
 
 
 

 

 

It is clear that S is nearly irreflexive and symmetric. Also, let 4T I S=   That is 

1,1,0 0,0,1 0,0,1 0,0,1

0,0,1 1,1,0 0,0,1 0.5,0.1,0.4

0,0,1 0,0,1 1,1,0 0,0,1

0,0,1 0,0,1 0,0,1 1,1,0

T

        
 
       
 =
        
 
        
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0.4,0.1,0.6 0.7,0.1,0.3 0.5,0.1,0.5 0.6,0.1,0.3

0.7,0.1,0.3 0.3,0.1,0.6 0.8,0.1,0.1 0.5,0.1,0.4

0.5,0.1,0.5 0.8,0.1,0.1 0,0.1,1 0.6,0.1,0.3

0.6,0.1,0.3 0.5,0.1,0.4 0.6,0.1,0.3 0.5,0.1

       

       

       

       ,0.4

 
 
 
 
 

 

 

0.5,0.1,0.5 0.3,0.1,0.6 0,0.1,1 0.5,0.1,0.4

0.4,0.1,0.6 0.5,0.1,0.4 0,0.1,1 0.5,0.1,0.4

0.4,0.1,0.6 0.3,0.1,0.6 0.5,0.1,0.5 0.5,0.1,0.4

0.4,0.1,0.6 0.3,0.1,0.6 0,0.1,1 0.5,0.1,0.4

T

       

       
=

       

       


 
 
 
 



 

2

0.5,0.1,0.5 0.3,0.1,0.6 0,0.1,1 0.5,0.1,0.4

0.4,0.1,0.6 0.5,0.1,0.4 0,0.1,1 0.5,0.1,0.4

0.4,0.1,0.6 0.3,0.1,0.6 0.5,0.1,0.5 0.5,0.1,0.4

0.4,0.1,0.6 0.3,0.1,0.6 0,0.1,1 0.5,0.1,0.4

T

       

       
=

       

       


 
 
 
 
 

 

2T T=  

Then it is clear that T is nearly constant and it is also idempotent . 

Theorem 8.11  For p,q∈ NFM , we have: ( ) ( )( ) , ( ) .
c cc c c ci p q p q ii p q p q =   =   

The proof is trivial. The following Theorems and Corrolaries shows the relationship between the two 

composition ∗ and ◦ of NFM.  

Theorem 8.12  For NFM ,ij m
P p


 =   and 

ij l
Q q


 =   we have: 

( )( )
c c ci P Q P Q =  

( )( )
cc cii P Q PQ =  

Proof. (1) Let ( )
c

D P Q=  and 
c cE P Q=  

( ) ( ) ( )
1 1 1

, ,

c
n n

T T I I F F

ij i j i j i j

k k

d p q p q p q


     

= = =

 
=    
 

 

( ) ( ) ( )
1 1 1

, ,
n n n

F F T T I I

ij i j i j i j

k k k

d p q p q p q     

= = =

 
=    
 

 

and  ( ) ( ) ( )
1 1 1

, ,
n n n

F F T T I I

ij i j i j i j

k k k

e p q p q p q     

= = =

 
=    
 

 

Therefore, D = E 

(ii) Likewise, we can prove that ( )
cc cP Q PQ =  
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Corollary 8.6. For NFM  ,ij m n
P p


 =   and , ,ij ijn p p g

Q q R r
 

   = =    ij m p
S s


 =   we have: 

(i) ( ) ( )P Q R P Q R  =    (ii) ( ) .c c cP Q S iff P Q S = =  

From the above theorem, it is evident that the operation ∗ is associative. In the following theorem, 

we show  that ∗ is distributive over the ∨ (maximum) and ∧ (minimum) operations. 

Theorem 8.13  For any three NFM P , Q and R of order m ×n , n ×m and n ×m correspondingly, the 

following property holds:  

(i) ( ) ( ) ( ),P Q R P Q P R  =     (ii) ( ) ( ) ( ).P Q R P Q P R  =     

Proof. (i) Let ( ) ( ) ( ),P Q R P Q P R  =     

, , , ,D Q R R P D G P Q H P R W G H=  =  =  =  =   

Then, , ,T T I I F F

ij ij ij ij ij ij ijd q r q r q r=      

( ) ( ) ( )
1 1 1

, ,
n n n

T T I I F F

ij i j i j i jr p d p d p d     

  = = =

=      

( ) ( ) ( )
1 1 1

, ,
n n

T T T T F F

ij i j i j i j

k k

g p q p q p q


     

= = =

=      

Then, ( ) ( ) ( )
1 1 1

, ,
n n

T T T T F F

ij i j i j i j

k k

h p r p r p r


     

= = =

=      

Thus 
ij ij ijw g h=  ( ) ( ) ( )

1 1 1

, ,
n n

T T T T F F

i j i j i j

k k

p q p q p q


     

= = =

 
=      
 

 

( ) ( ) ( )
1 1 1

, ,
n n n

T T T T F F

i j i j i j

k k k

p r p r p r     

= = =

 
      
 

 

( )( ) ( )( ) ( )( )
1 1 1

, ,
n n

T T T I I I F F F

i i j i i j i i j

k k

p p r p p r p p q


        

= = =

=         

We complete that ( ) ( ) ( ),P Q R P Q P R  =     

(ii) Can be shown by similar manner. Hence the Theorem 

Theorem 8.14 For NFM  ,ij m
P p


 =   and , ,ij ijp p

Q q R r
  

   = =    we have: 

(i) ( ) ( ) ( )P Q R P Q P R   ! !  (ii) ( ) ( ) ( )P Q R PQ PR=! !  

Proof. (i) Let ( ), , ,S Q R T P S U P Q V P R= =  =  = ! ,W VU= !  
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0,0, , ,

0,0,1 , ,

, , , ,

F T T I I F F

ij ij ij ij ij ij ij

T T I I F F

ij ij ij ij ij ij ij

T I F T T I I F F

ij ij ij ij ij ij ij ij ij

q if q r q r q r

s if q r q r q r

q q q if q r q r q r

    


=     

    

 

( ) ( ) ( )
1 1 1

, ,T T T T F F

ij i j i j i jv p r p r p r
  

     

  = = =

=      

( )

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

, , , ,

, , , ,

, , ,

T I F F T T I I F F

i i i kj ij ij ij ij ij ij

T I F T T I I F F

ij i i i ij ij ij ij ij ij

T T I I F F T T I I

i j i j i j ij ij ij ij

p p p q if q r q r q r

t p p p if q r q r q r

p q p q p r if q r q r

  

  

  

  

  

  

  

     

  

= = =

= = =

= = =

     

=     

       .











 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

1 1 1 1 1

1 1

1 1 1 1

1

0,0, , ,

.

0.0,1 , ,

F F T T T T I I I I

i j i j i j i j i j

F F F F

i j i j

T T T T I I I I

i j i j i j i j

ij

F F

i j

p q if p q p r p q p r

p q p r

if p q p r p q p r

w

p q

    

         

    

 

   

 

   

       

   



 



= = = = =

= =

= = = =

=

        

  

       

=

  ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1 1 1

1 1 1

.

, ,

.

F F

i j

n
T T I I T T T T

i j i i j i j

F F I I I I

i j i j i j

p r

p q p q if p q p r

p q p q p r



 



  

       

   

  

     

  

=

= = = =

= = =











 



     



    


 

( )

( ) ( ) ( )

1

1 1 1

0,0, , , ,

0.0,1 , ,

, , ,

F F T T I I F F

i j j j j j j j

T T I I F F

ij j j j j j j

T T I I F F T T I I

i j i j i j ij ij ij ij

p q if q r q r q r

w if q r q r q r

p q p q p q if q r q r



       



     

  

     

  

=

= = =


     



=     

      


We note that T W . Hence ( ) ( ) ( )P Q R P Q P R   ! !  

(ii) Similar to (i). Hence the Theorem 

Theorem 8.15  For NFM  ,ij m n
P p


 =   , ,ij ijn l y p

Q q R r
 

   = =    ,ij p m
S s


 =   and 

ij l g
T t


 =   , we have  
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(i) ( )R S P Q T RS P QT      

(ii) ( ) ( ) ( )R S P Q T R SPQ T      

Proof. (i) Let , , ,A S P Q B RA C BT=   = =  

, , ,D RS E QT F D P G F E= = =  =   

( ) ( ) ( )
1 1 1 1 1 1

, ,
n m n m n m

T T T I I I F F F

ij iu ux xj iu ux xj iu ux xj

x u x u x u

a s p q s p q s p q
= = = = = =

     
=            

     
 

( ) ( )
1 1 1 1

p p n m
T T T T T T T

ij ik kj ik ku ux xj

k k x u

b r a r s p q
= = = =

   
=  =       

   
 

( ) ( )
1 1 1 1

p p n m
F F F F F F F

ij ik kj ik ku ux xj

k k x u

b r a r r a q
= = = =

   
=  =       

   
 

( ) ( )
1 1 1 1 1

pl l n m
T T T T T T T T

ij iv vj ik ku ux xv vj

v v k x u

c b t r s p q t
= = = = =

      
 =  =                 

 

( )( )
1 1 1 1

pl n m
T T T T T T

ij ik ku ux xv vj

v k x u

c r s p q t
= = = =

=      

( ) ( ) ( )( )
1 1 1 1

pl n m
T I I I I I I I I I

ij ik ku vj ik ux vj ik xv vj

v k x u

c r s t r p t r q t
= = = =

=          

( )( )
1 1 1 1

pl n m
T I I I I I

ij ik ku ux xv vj

v k x u

c r s p q t
= = = =

=      

( ) ( ) ( )( )
1 1 1 1

pl n m
T I I I I I I I I I

ij ik ku vj ik ux vj ik xv vj

v k x u

c r s t r p t r q t
= = = =

=          

( ) ( )
1 1 1 1 1

pl l n m
F F F F F F F I

ij iv vj ik ku ux xv vj

v v k x u

c b t r s p q t
= = = = =

      
 =  =                 

 

( )( )
1 1 1 1

pl n m
F I I I I I

ij ik ku ux xv vj

v k x u

c r s p q t
= = = =

=      

( ) ( ) ( )( )
1 1 1 1

pl n m
F I I I I I I I I I

ij ik ku vj ik ux vj ik xv vj

v k x u

c r s t r p t r q t
= = = =

=          

Thus, ( ) ( ) ( )
1 1 1

, ,
p p p

T T I I F F

ij ik kj ik kj ik kj

k k k

d r s r s r s
= = =

=      
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( ) ( ) ( )
1 1 1

, ,
m m m

T T I I F F

ij iu uj iu uj iu uj

u u u

f d p d p d p
= = =

=      

( ) ( ) ( )
1 1 1

, ,
l l l

T T I I F F

ij iv vj iv vj iv vj

v v v

e q t q t q t
= = =

=      

Thus, ( )
1

n
T T

ij ix xj

x

g f e
=

=   

( ) ( )
1 1 1 1

pn m l
F T T T T T

ij ik ku ux xv vj

x u k v

c r s p q t
= = = =

=      

( ) ( )
1 1 1 1

pl m n
T T T T T

ik ku ux xv vj

v k u x

r s p q t
= = = =

=      and  

( )
1

n
F F F

ij ix xj

x

g f e
=

=   

( ) ( )
1 1 1 1

pn m l
F F F F F

ik ku ux xv vj

v k u x

r s p q t
= = = =

=      

( ) ( ) ( )
1 1 1 1

pl m n
F F F F F F F F F

ik ux xv ik ux vj ku ux xv

v k u x

r p q r p t s p q
= = = =

=          

( )F F F

ku ux vjs p q    

We get 
T T

jj jjc g  

Also, since ( ),F F F F F F F F

ik ux xv ik ku ux vj vjr p q r s p q q       

( )F F F F

ik ux vj vjr p t t    

We get 
F F

jj jjc g  

Thus 
jj jjc g  and R W  

(ii) Similar to (i). Hence the Theorem. 

 

9. Algorithm and Application 
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In this article, utilizing the previously stated definitions (7.2) and (7.4), the aim is to develop an 

approximate understanding of the diseases inferred from the symptoms presented by patients to 

healthcare professionals. The subsequent sections include the proposed algorithm and a case study 

to illustrate the concept in detail. 

Step 1: Construct Matrices P and Q: 

Matrix P (Patients × Symptoms): Arrange patients as rows and symptoms as columns. Populate each 

entry with Neutrosophic fuzzy values (T,I,F) regarding the presence of a specific symptom in a 

particular patient. 

Matrix Q (Symptoms × Diseases): Arrange symptoms as rows and diseases as columns. Populate 

each entry with Neutrosophic fuzzy values (T,I,F) indicating the degree of association between a 

symptom and a particular disease. 

Step 2. Compute  the Transpose of neutrosophic Fuzzy  matrix  QT.  

Step 3. Compute patient symptom disease matrix P Q   

Step 4. Compute  ( )1 ,T I F

ij ij ijV p p p= + −  

Step 5. Compute patient symptom non disease matrix ( ), ,T T I F

ij ij ijP Q p p p =   

Step 6. Compute ( )1 ,T I F

ij ij ijW p p p= + −   

Step 7. Compute score matrix ( ) 1 1, .TS P Q P Q V W  = −   

Step 8. Identify maximum score for the patient Ai and conclude that the patient Ai is suffering from 

the disease Ci. 

9.1 Healthcare Diagnosis Using Multi-Criteria Decision-Making (MCDM) 

In the context of healthcare, diagnosing diseases based on the symptoms observed in patients is a 

critical task that requires careful analysis of various factors. MCDM is a method that helps in 

evaluating multiple alternatives (in this case, potential diseases) by considering several criteria 

(symptoms).  

Let us consider four patients A = {A1, A2, A3, A4} , each exhibiting a set of symptoms  B = {B1, B2, B3, 

B4, B5}, where: B1  represents  temperature, B2 represents headaches, B3 represents cough,  B4 

represents stomach pain and B5  represents body pain 

The possible diseases associated with these symptoms are represented by  C = {C1, C2, C3} where: C1  

corresponds to viral fever, C2  corresponds to typhoid,  and C3 corresponds to malaria of these 

diseases. 

In this MCDM problem, the goal is to evaluate and diagnose the most likely disease for each patient 

based on their symptoms. The analysis will consider various symptom values for each patient to 

determine which disease has the highest probability based on the observed symptoms. This requires 

the use of MCDM techniques, such as composition of min-min-max ( ∗), score function ranking, to 

make informed decisions about the appropriate disease diagnosis. 

Construct Matrices P and Q, 
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0.7,0.1,0.2 0.6,0.1,0.3 0.2,0.8,0.2 0.6,0.1,0.2 0.1,0.6,0.3

0.1,0.8,0.1 0.4,0.4,0.5 0.6,0.1,0.3 0.1,0.7,0.2 0.1,0.8,0.2

0.6,0.1,0.4 0.8,0.1,0.2 0.6,0,0 0.5,0.3,0.3 0.6,0.5,0.1

0.5,0.

P

         

         
=

         

 2,0.4 0.5,0.4,0.1 0.3,0.4,0.5 0.7,0.2,0.1 0.3,0.4,0.4

 
 
 
 
 

         

 

0.6,0.2,0.3 0.6,0.2,0.2 0.3,0.4,0.3

0.3,0.5,0.4 0.2,0.6,0.3 0.7,0.2,0.4

0.1,0.8,0.1 0.5,0.4,0.3 0.7,0.2,0.3

0.4,0.5,0.3 0.7,0.2,0.1 0.3,0.4,0.4

0.7,0.4,0.2 0.1,0.8,0.2 0.2,0.7,0.3

Q

     

     

=      

     

     




 
 
 
 
 

0.2,0.2,0.2 0.5,0.2,0.3 0.2,0.2,0.3

0.4,0.5,0.4 0.1,0.4,0.3 0.2,0.2,0.4

0.5,0.2,0.3 0.6,0.2,0.2 0.5,0.2,0.3

0.3,0.2,0.3 0.3,0.2,0.2 0.3,0.4,0.3

P Q

      
 
     
  =
      
 
      

,  

1

0.2 0.4 0.1

0.5 0.2 0

0.4 0.6 0.4

0.2 0.3 0.4

V

 
 
 =
 
 
 

 

0.2,0.2,0.3 0.2,0.2,0.2 0.3,0.2,0.3

0.2,0.5,0.3 0.1,0.4,0.3 0.3,0.2,0.5

0.8,0.2,0.4 0.5,0.2,0.4 0.5,0.2,0.3

0.3,0.2,0.4 0.3,0.2,0.4 0.3,0.4,0.5

TP Q

      
 
     
  =
      
 
      

, 1

0.1 0.2 0.2

0.4 0.2 0

0.6 0.2 0

0.1 0.1 0.2

W

 
 
 =
 
 
 

 

( )

1 2 3

1

1 1 2

3

4

0.1 0.2 0.1

, 0.1 0 0

0.2 0.3 0

0.1 0.2 0.2

T

C C C

A

S P Q P Q V W A

A

A

 
 

−
 
   = − =
 

− 
  

 

Analysis: In the first row, the max value is 0.2, indicating that the patient is suffering from typhoid. 

In the second row, the max value is 0.1, indicating that the patient is suffering from viral fever. In the 

third row, the max value is 0.3, indicating that the patient is suffering from typhoid. In the fourth 

row, the max value is 0.2, suggesting that the patient may be suffering from both typhoid  and 

malaria. Mamoni Dhar 

In this study, we have adopted the same example as presented in Mamoni Dhar [50]. The results 

obtained are detailed below: 

 TABLE:1  
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Ai Dhar[SF] [50]  Sahin, R.[SF][44]  Sahin,[AF][44] Nancy, Garg,[SF][45] Nancy, 

Garg,[AF][45] 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

A1 

0.2 0.4 0.2 0 0.2 0.1 0.24 0.44 0.24 0.14 0.28 0.14 0.2 0.4 0.2 

A2 

0.6 0.2 0.1 -0.15 0.1 0.05 0.26 0.28 0.16 -0.165 0.2 

0.08

5 -0.3 0.2 0.1 

A3 

0.3 

-0.

1 0.2 0.15 

-0.0

5 0.1 0.32 

-0.0

8 0.28 0.195 -0.065 0.14 0.3 

-0.

1 0.2 

A4 

0.1 0.5 0 0.05 0.25 0 0.12 0.56 0.08 0.075 0.345 0.07 0.1 0.5 0 

 

The composition method used in Dhar [50] is max-min-min (∗). In our analysis, we replaced the 

score function used in that paper with various alternative score functions  in Sahin [44], Nancy, 

Garg [45]. Upon comparing the results, we observed that Patient 2 is identified as suffering from 

viral fever rather than typhoid when different score functions are applied.  

TABLE : 2 

Ai Dhar[SF] [50]  Sahin, R.[SF][44]  Sahin,[AF][44] Nancy, Garg,[SF][45] Nancy, 

Garg,[AF][45] 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

A1 

0.1 0.2 -0.1 0.05 0.1 -0.05 0.08 0.28 -0.12 0.055 0.2 -0.095 0.1 0.2 -0.1 

A2 

0.1 0 0 0.05 0.00 0 0.25 0 -0.04 0.225 0 -0.06 0.1 0 0 

A3 

-0.2 0.3 0 -0.1 0.15 0 -0.28 0.28 0 -0.12 0.165 0 -0.2 0.3 0 

A4 
0.1 0.2 0.2 0.05 0.1 0.1 0.08 0.16 0.12 0.045 0.1 0.04 0.1 0.2 0.2 

 

 

Furthermore, when the composition min-min-max (∗) (proposed method) is applied, the results 

remain consistent, confirming that Patient 2 is diagnosed with viral fever. This analysis underscores 

the influence of score function selection on the outcomes while showcasing the robustness of the 

proposed composition method. Additionally, based on the above analysis, it can be decided that 

Patient 4 may be affected by both typhoid and  malaria.  

 

10. Conclusion and Future Work 
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In this paper, we introduced new types of Neutrosophic Fuzzy Matrices (NFMs) and defined 

specificcompositions—namely,the-max(min)–max(min)-min(max) (◦) and min(max) – min(max) – 

max(min) ( ∗) compositions—for these matrices. Through these compositions, we derived several 

critical theoretical results that enhance the understanding and potential applications of NFMs. 

Notably, the construction of an idempotent NFM using the min-min-max composition 

demonstrates a significant advancement, as this approach provides a method for simplifying 

matrices while preserving essential neutrosophic properties. A numerical example was provided to 

clarify the practical implementation of these compositions, illustrating the theoretical results in a 

tangible form. Additionally, we proposed an algorithm that applies NFMs in the context of 

decision-making (DM), showcasing its effectiveness in solving DM problems that involve high 

degrees of uncertainty. By using the specific compositions of max(min)–max(min)-min(max)(◦)and- 

min(max) – min(max) – max(min) ( ∗), the proposed method enables flexible and reliable solutions 

in DM applications. This work highlights the versatility and potential of NFMs in both theoretical 

and applied settings, particularly in fields requiring nuanced uncertainty handling. 

In this study, we revisited the example presented by Mamoni Dhar [50], which employed the 

max-min-min (∗) composition method. While adopting the same example, we replaced the score 

function used in Dhar’s approach with various alternative score functions proposed by Sahin [44] 

and Nancy, Garg [45]. The comparative analysis revealed notable variations in the results when 

different score functions were applied, indicating the sensitivity of the method to the choice of score 

functions. Moreover, when we applied our proposed composition method, 

min(max)-min(max)-max(min) the results remained consistent irrespective of the score functions 

used. This robustness highlights the reliability of the proposed method in handling variations 

introduced by different score functions. Overall, our proposed min(max) – min(max) – max(min) ( ∗) 

composition method outperforms the max(min)-min(max)-min(max) (∗) method used by Mamoni 

Dhar [50] by ensuring consistency and reducing dependency on the choice of score functions. This 

improvement demonstrates the potential of our method for applications requiring robust and 

reliable decision-making frameworks. 

 

Future research will focus on further exploring the theoretical properties and potential 

applications of NFMs, with an emphasis on expanding the range of compositions and examining 

their implications for broader classes of mathematical structures. Additionally, we aim to enhance 

the proposed DM algorithm by incorporating more complex neutrosophic operations and exploring 

its performance in real-world DM scenarios with higher uncertainty and larger datasets. Another 

promising direction involves the integration of NFMs with other mathematical frameworks, such as 

fuzzy graph theory and machine learning, to extend the applicability of NFMs in complex 

decision-making, pattern recognition, and other data-intensive fields. These efforts will contribute to 

the development of more sophisticated tools for uncertainty management in a variety of disciplines. 
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