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Abstract: This research explores the reduction of Neutrosophic Fuzzy Matrices (NFMs) and 

highlights their significant properties, focusing particularly on nilpotent NFMs. The study examines 

the reduction of irreflexive and transitive NFMs and applies these principles to nilpotent NFMs, 

which are represented as acyclic graphs. These acyclic graphs play a critical role in defining 

consistent systems, especially when their union forms a cyclic graph that is isomorphic. Failure to 

meet these conditions results in non-isomorphic graphs. To demonstrate these ideas, numerical 

examples are provided, and the equivalent conditions for reduction are thoroughly established. 

Furthermore, the collection of s-transitive and w-transitive NFMs is shown to encompass the set of 

transitive NFMs for which reduction models have been verified. The properties of these reduction 

models are also proven to be applicable to s-transitive and w-transitive NFMs.  
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1. Introduction 

Neutrosophic Fuzzy Matrices (NFMs) have garnered considerable interest in recent years for 

their ability to manage uncertainty, imprecision, and vagueness across diverse complex systems. 

These matrices extend the concepts of fuzzy sets and intuitionistic fuzzy sets (IFSs) by incorporating 

the degree of truth, indeterminacy, and falsity into a unified framework, as introduced by 

Smarandache [6]. Building upon the foundational work of Zadeh [1] on fuzzy sets and Atanassov [2] 

on IFSs, NFMs offer a versatile approach for modeling and analyzing systems characterized by 

incomplete and inconsistent information. Meenakshi [7] has extensively studied fuzzy matrix theory 

and its applications. The theoretical development of fuzzy matrices has been a topic of extensive 

research. For instance, studies by Shyamal and Pal [8] and Bhowmik and Pal [9,10] have explored 

operators and properties of fuzzy and intuitionistic fuzzy matrices. Further advancements include 

works by Meenakshi and Gandhimathi [11] and Sriram and Murugadas [12], which delve into the 

structural and algebraic properties of these matrices. These investigations laid the groundwork for 

extending the theory to neutrosophic fuzzy matrices, enabling the representation of more complex 

relationships. 

Reduction models for fuzzy and intuitionistic fuzzy matrices have been extensively studied. 

Hashimoto [14,15] introduced the concepts of subinverses and the reduction of nilpotent fuzzy 

matrices, while Antonion et al. [21] explored methods for simplifying transitive fuzzy matrices. 

Similarly, Padder and Murugadas [22,24] extended these reduction techniques to intuitionistic fuzzy 

matrices, demonstrating their applications in various mathematical and computational contexts. 

These studies emphasize the importance of reduction techniques for simplifying the analysis and 

computation of large-scale fuzzy systems. A significant body of work has been devoted to exploring 

the properties of nilpotent matrices, which are integral to the characterization of acyclic graphs and 

consistent systems. Han et al. [31] and Lur et al. [32,34] investigated nilpotent fuzzy matrices and 

their algebraic properties, while Tan [35] examined their applications over distributive lattices. In the 

context of neutrosophic fuzzy matrices, these concepts have been extended to analyze systems with 

higher levels of uncertainty. 

Recent studies have introduced new classes of NFMs, such as secondary k-column symmetric 

matrices and interval-valued secondary k-range symmetric matrices (Anandhkumar et al. [28,36]). 

These developments demonstrate the versatility of NFMs in modeling symmetrical relationships 

and interval-based uncertainties. Furthermore, the works on generalized symmetric Fermatean 

neutrosophic fuzzy matrices (Anandhkumar et al. [37]) highlight their applicability in advanced 

mathematical frameworks. The notion of transitivity plays a pivotal role in the study of NFMs. 

Transitive matrices are crucial for representing consistent systems and ensuring the reliability of 

conclusions drawn from such systems. The reduction of s-transitive and w-transitive neutrosophic 

fuzzy matrices, as explored by Padder and Murugadas [25,26], further enriches the theoretical 

understanding of these constructs. Additionally, the canonical forms of transitive intuitionistic fuzzy 

matrices, as discussed by Lee and Jeong [33], provide a basis for extending these ideas to 

neutrosophic systems. Mohamed et al. [38] have studied an efficient neutrosophic approach for 
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evaluating possible Industry 5.0 enablers in consumer electronics: a case study. Salama et al. [39] 

have discussed a neutrosophic model for measuring and evaluating the role of digital 

transformation in improving sustainable performance using the balanced scorecard in Egyptian 

universities. 

 

Anandhkumar et al [40] have studied Determinant Theory of Quadri-Partitioned Neutrosophic 

Fuzzy Matrices and its Application to Multi-Criteria Decision-Making Problems. Radhika, et al [41] 

have presented on Interval Valued Secondary k-Range Symmetric Quadri Partitioned Neutrosophic 

Fuzzy Matrices with Decision Making on various Inverse of Neutrosophic Fuzzy Matrices. 

Anandhkumar et al [42] have studied  Pseudo Similarity of Neutrosophic Fuzzy matrices. Radhika 

et al [43] have studied On Schur Complement in k-Kernel Symmetric Block Quadri Partitioned 

Neutrosophic Fuzzy Matrices. Prathab et al [44] have characterized Interval Valued Secondary 

k-Range Symmetric Fuzzy Matrices with Generalized Inverses. Anandhkumar et al [45] have 

studied Reverse Tilde (T) and Minus Partial Ordering on Intuitionistic fuzzy matrices. Punithavalli1 

et al [46] have presented Reverse Sharp and Left-T Right-T Partial Ordering On Intuitionistic Fuzzy 

Matrices. Anandhkumar et al [47] have analyzed Secondary K-Range Symmetric Neutrosophic 

Fuzzy Matrices. Anandhkumar, et al [48] have studied Partial orderings, Characterizations and 

Generalization of k-idempotent Neutrosophic fuzzy matrices. Punithavalli, and Anandhkumar [49] 

have focused on Kernel and K-Kernel Symmetric Intuitionistic Fuzzy Matrices. Anandhkumar et al 

[50] have analyzed Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy 

Matrices. Anandhkumar et al [51] have studied Reverse Sharp and Left-T Right-T Partial Ordering 

on Neutrosophic Fuzzy Matrices. 

This article explores the reduction of NFMs and highlights their significant properties, focusing 

particularly on nilpotent NFMs. The study examines the reduction of irreflexive and transitive 

NFMs and applies these principles to nilpotent NFMs, which are represented as acyclic graphs. 

These acyclic graphs play a critical role in defining consistent systems, especially when their union 

forms a cyclic graph that is isomorphic. Failure to meet these conditions results in non-isomorphic 

graphs. To demonstrate these ideas, numerical examples are provided, and the equivalent 

conditions for reduction are thoroughly established. Furthermore, the collection of s-transitive and 

w-transitive NFMs is shown to encompass the set of transitive NFMs for which reduction models 

have been verified. The properties of these reduction models are also proven to be applicable to 

s-transitive and w-transitive NFMs. 

 

Abbreviations 

FM: Fuzzy Matrices 

IFM: Intuitionistic Fuzzy Matrices 

NFM : Neutrosophic Fuzzy Matrices 

AI: Artificial intelligence 

https://www.scopus.com/authid/detail.uri?authorId=58220200200
https://www.scopus.com/authid/detail.uri?authorId=58220200200
https://www.scopus.com/authid/detail.uri?authorId=58220200200
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1.1 Literature Review 

Evolution of Neutrosophic Fuzzy Matrices 

Neutrosophic Fuzzy Matrices (NFMs) have emerged as an extension of fuzzy sets and 

intuitionistic fuzzy matrices (IFMs), addressing the limitations of traditional models in handling 

uncertainty, imprecision, and vagueness. Smarandache [6] introduced the concept of neutrosophic 

sets, which incorporate truth, indeterminacy, and falsity components into a unified framework. 

Building on the foundational theories of fuzzy sets by Zadeh [1] and IFSs by Atanassov [2], NFMs 

provide a robust mathematical tool for analysing complex systems characterized by incomplete or 

inconsistent information. 

Development of Fuzzy and IFMs 

Fuzzy matrices have been a significant area of research since their introduction, with extensive 

studies focusing on their structural properties and practical applications. Shyamal and Pal [8] 

explored fundamental operators and properties of fuzzy matrices, while Bhowmik and Pal [9,10] 

extended these studies to IFMs. Later, Meenakshi and Gandhimathi [11] and Sriram and Murugadas 

[12] advanced this work by delving into the algebraic and structural characteristics of these matrices. 

These foundational studies have paved the way for the application and theoretical extension of 

NFMs. 

Reduction Techniques for Fuzzy and Intuitionistic Fuzzy Matrices 

Reduction techniques have been central to simplifying and analysing large-scale fuzzy and 

intuitionistic fuzzy systems. Hashimoto [14,15] pioneered the concepts of sub inverses and the 

reduction of nilpotent fuzzy matrices, a concept further explored by Antonion et al. [21] in the 

context of transitive matrices. Padder and Murugadas [22,24] extended these reduction techniques to 

intuitionistic fuzzy matrices, demonstrating their practical applications in computational analysis. 

1.2 Novelty 

The novelty of this study lies in its extension of existing theoretical frameworks and its 

exploration of new techniques and applications of Neutrosophic Fuzzy Matrices (NFMs) in handling 

uncertainty, imprecision, and vagueness in complex systems. While previous research has focused 

on the foundational properties and reduction techniques for fuzzy and intuitionistic fuzzy matrices, 

this work introduces a novel approach by emphasizing the role of NFMs in representing systems 

with higher levels of uncertainty and more intricate relationships. Specifically, the study proposes 

the reduction of neutrosophic fuzzy matrices and their application to consistent systems, focusing on 

the properties of nilpotent NFMs in characterizing acyclic graphs. Additionally, the research 

explores the generalization of transitivity concepts through the examination of s-transitive and 

w-transitive neutrosophic fuzzy matrices, offering new perspectives for system modelling. 

This paper’s approach builds on and enhances prior research by incorporating reduction techniques, 

numerical examples, and advancing the theoretical understanding and practical utility of NFMs in 

various domains. 
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The referenced publications have significantly advanced the fields of fuzzy matrices, 

intuitionistic fuzzy matrices, and neutrosophic fuzzy matrices. Zadeh's foundational work on fuzzy 

sets [1] laid the groundwork for modelling uncertainty, while Atanassov extended this theory by 

introducing intuitionistic fuzzy sets [2], incorporating a degree of hesitation. Atanassov's later works 

further expanded on fuzzy logic with intuitionistic fuzzy implications [3] and fuzzy negations [4,5], 

introducing new logical tools for reasoning in complex systems. Smarandache [6] introduced 

neutrosophic sets, offering a comprehensive framework for handling truth, indeterminacy, and 

falsity, enabling better modelling of uncertainty. 

In the realm of fuzzy matrices, Shyamal and Pal [8] introduced new operators, enhancing the 

mathematical tools available for modelling in fuzzy environments. Bhowmik and Pal's work on 

generalized intuitionistic fuzzy matrices [9,10] contributed novel results on the algebraic properties 

of these matrices, expanding their applicability in decision-making systems. Meenakshi and 

Gandhimathi [11] provided important methods for solving intuitionistic fuzzy relational equations, 

broadening the scope of IFSs in relational problem-solving. Sriram and Murugadas [12] investigated 

the algebraic properties of intuitionistic fuzzy matrices, particularly sub inverses, adding to the 

understanding of matrix operations in fuzzy systems. 

Hashimoto's studies [13-15] on fuzzy matrix reductions, traces, and nilpotent matrices 

introduced essential techniques for simplifying complex fuzzy systems. Antonion et al. [21] focused 

on the reduction of transitive fuzzy matrices, providing key methods for analysing transitive 

properties in fuzzy relations. Murugadas and Padder [22,24] contributed significantly to the 

reduction techniques for intuitionistic fuzzy matrices, including nilpotent matrices, simplifying their 

computational analysis. The work of Padder and Murugadas [25,26] on s-transitive and w-transitive 

intuitionistic fuzzy matrices provided critical insights into the transitivity concepts in fuzzy systems, 

enriching the understanding of consistency and decision-making processes. 

1.3 Main Contributions of the Study 

This study makes the following key contributions: 

Introduction of Advanced Reduction Techniques for NFMs 

o Developed innovative methods for reducing Neutrosophic Fuzzy Matrices (NFMs), 

focusing on irreflexive, transitive, and nilpotent matrices. 

o These reduction techniques simplify complex systems while preserving their 

structural and functional integrity. 

Exploration of Nilpotent NFMs and Acyclic Graphs 

o Highlighted the unique role of nilpotent NFMs in representing acyclic graphs, 

which are integral to defining consistent systems. 

o Demonstrated the importance of the union of acyclic graphs forming cyclic graphs 

that are isomorphic, and analysed the consequences when these conditions are not 

met. 

Equivalent Conditions for Reduction 
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o Established rigorous equivalent conditions for reducing NFMs, providing a 

mathematical framework to determine when reductions can be applied without loss 

of essential information. 

Generalization of Transitivity Concepts 

o Investigated and validated reduction models for s-transitive and w-transitive 

NFMs. 

o Demonstrated that these models encompass general transitive NFMs, thus 

broadening the theoretical understanding of transitivity in neutrosophic systems. 

Practical Demonstrations through Numerical Examples 

o Presented detailed numerical examples to illustrate the application of reduction 

techniques. 

o These examples offer a clear pathway for implementing the proposed methods in 

real-world scenarios. 

Advancement of Theoretical Frameworks 

o Extended the theoretical underpinnings of NFMs by integrating reduction 

techniques with structural properties of nilpotent, irreflexive, and transitive 

matrices. 

o Enhanced the application potential of NFMs in decision-making, system modelling, 

and analysis of uncertain environments. 

1.4 Expansion on Existing Problems 

The study addresses several critical challenges and highlights existing gaps in the 

research on NFMs: 

Computational Complexity in Reduction 

Existing reduction methods for fuzzy and intuitionistic fuzzy matrices are not 

optimized for large-scale neutrosophic systems, resulting in high computational 

overhead. This study introduces more efficient reduction techniques, though further 

work is needed to optimize them for scalability in dynamic environments. 

Inadequate Representation of Higher Uncertainty 

Traditional fuzzy and intuitionistic fuzzy matrices struggle to handle high levels of 

uncertainty and indeterminacy. NFMs provide a more comprehensive framework, 

but the quantification and representation of complex uncertainties in real-time 

applications remain challenging. 

Limited Understanding of Transitivity Variants 

While transitivity is central to consistent system modelling, there is limited 

understanding of how s-transitivity and w-transitivity interact with general 

transitive properties. This work expands the theoretical framework but calls for 

further exploration of hybrid transitivity properties in practical applications. 

Graph Isomorphism and Structural Analysis 
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The connection between acyclic graphs derived from nilpotent NFMs and cyclic 

graphs forming isomorphic structures is insufficiently explored. This study 

identifies these relationships, but a comprehensive classification of non-isomorphic 

graphs is required to strengthen consistency analysis. 

Real-World Implementation Challenges 

Despite their theoretical robustness, NFMs have limited implementation in practical 

domains like AI, engineering, and decision-making due to the lack of integrated 

software tools and frameworks. The proposed numerical examples bridge this gap 

partially, but more extensive case studies and tool development are needed to 

validate the methods in real-world settings. 

Scalability of Reduction Models 

Reduction techniques are often designed for static systems and lack adaptability for 

large, dynamic, or evolving datasets. Future work must focus on creating adaptive 

algorithms that can handle the evolving nature of data and relationships in 

neutrosophic systems. 

Interdisciplinary Applications of NFMs 

While NFMs are powerful, their application in interdisciplinary fields like 

healthcare, economics, and climate modelling is underexplored. This study lays a 

theoretical foundation that could inspire future research to apply NFMs in these and 

other domains, leveraging their ability to model uncertainty effectively. 

 

1.5 Open Issues and Limitations 

Scalability: 

Existing reduction techniques face challenges in handling large-scale NFMs due to 

computational complexity. Efficient algorithms are needed to ensure scalability in 

real-world applications. 

Generalization of Transitivity: 

While this study extends transitivity concepts to s-transitive and w-transitive matrices, 

further exploration is required to handle systems with hybrid or dynamic transitivity 

properties. 

Uncertainty Representation: 

Although NFMs manage uncertainty effectively, representing and quantifying complex 

indeterminacies remain an open problem, particularly in real-time systems. 

Practical Implementation: 

Limited studies bridge the gap between theoretical reductions and their practical 

implementations in fields like AI, decision-making, and engineering. 
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Graph Isomorphism and System Consistency: 

The relationship between cyclic graph formations and system consistency in NFMs is not 

fully resolved. Further investigation is needed to characterize non-isomorphic scenarios 

robustly. 

1.6 Explanation of the Proposed Work 

This research focuses on the reduction of Neutrosophic Fuzzy Matrices (NFMs) and the analysis 

of their properties, with a particular emphasis on nilpotent NFMs, irreflexive matrices, and 

transitive matrices. Below is a detailed description of the proposed work, its steps, limitations, 

and rationale. 

Proposed Work 

Key Objectives 

• Develop and analyse reduction techniques for NFMs to simplify complex systems. 

• Explore the role of nilpotent NFMs in defining acyclic graphs and their significance in 

consistent systems. 

• Extend transitivity concepts by examining s-transitive and w-transitive NFMs. 

Steps in the Proposed Work 

Mathematical Framework Development 

o Extend existing theories of fuzzy and intuitionistic fuzzy matrices to neutrosophic 

fuzzy systems. 

o Define the properties and operators specific to NFMs, such as those for reduction, 

transitivity, and nilpotency. 

Reduction Techniques 

o Irreflexive NFMs: Formulate conditions for reduction by identifying and 

eliminating redundancies in the matrices. 

o Transitive NFMs: Establish rules for maintaining transitivity during reduction 

processes. 

o Nilpotent NFMs: Apply graph theory concepts to model nilpotent matrices as 

acyclic graphs. Develop conditions for reduction while preserving acyclic 

properties. 

Graph Representation 
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o Represent nilpotent NFMs as acyclic graphs and examine the isomorphic properties 

of their unions when forming cyclic graphs. 

o Analyse non-isomorphic cases and their implications for consistency in system 

representation. 

Verification of s-Transitive and w-Transitive Properties 

o Extend reduction models to encompass s-transitive and w-transitive matrices. 

o Prove that these classes are subsets of general transitive NFMs. 

Numerical Examples 

o Provide detailed numerical examples to illustrate reduction methods, transitivity 

extensions, and graph isomorphism analyses. 

Validation 

o Verify the applicability of the reduction models and transitivity concepts through 

rigorous mathematical proofs and case studies. 

1.7 Limitations of the Proposed Work 

Scalability Challenges 

o The proposed reduction methods are computationally intensive for large-scale 

NFMs. 

o Handling high-dimensional matrices or dynamic systems with evolving uncertainty 

requires further optimization. 

Complexity of Graph Isomorphism 

o The analysis of cyclic and acyclic graphs, especially for large matrices, can be 

computationally challenging due to the NP-complete nature of the graph 

isomorphism problem. 

Real-Time Applications 

o The proposed methods are primarily theoretical and may require additional 

adaptation for real-time applications in domains like AI or decision-making 

systems. 

Limited Interdisciplinary Case Studies 

o While the methods are robust, their application to practical problems in diverse 

fields (e.g., healthcare or logistics) remains underexplored. 
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Assumptions in Reduction Models 

o The reduction models assume ideal conditions, such as the availability of complete 

input data and precise matrix properties, which may not always hold in real-world 

scenarios. 

1.8 Reasons for Choosing These Approaches 

Addressing Gaps in Existing Research 

o Traditional methods for fuzzy and intuitionistic fuzzy matrices are insufficient for 

handling higher degrees of uncertainty. NFMs, with their inclusion of truth, 

indeterminacy, and falsity components, provide a more comprehensive approach. 

Enhancing Analytical Capabilities 

o Reduction techniques simplify the computational analysis of NFMs, making them 

more accessible for modelling complex systems. 

Graph Theory Integration 

o The use of graph theory provides a visually intuitive and mathematically rigorous 

way to analyse properties like nilpotency and transitivity. 

Generalization of Transitivity 

o Expanding transitivity concepts (s-transitive and w-transitive) broadens the 

applicability of NFMs to various domains where consistency and relational 

hierarchies are critical. 

Feasibility and Rigor 

o The proposed methods build on well-established mathematical principles, ensuring 

theoretical robustness and a clear pathway for practical implementation. 

1.9 Detailed Steps for the Work 

Step 1: Define NFMs and Their Properties 

• Define NFMs, their components (truth, indeterminacy, falsity), and their fundamental 

properties such as transitivity, irreflexivity, and nilpotency. 

Step 2: Develop Reduction Methods 

• Identify redundant elements in NFMs that do not contribute to system analysis. 

• Formulate rules for reduction that preserve critical properties like transitivity and 

irreflexivity. 
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Step 3: Analyse Nilpotent NFMs 

• Model nilpotent matrices as acyclic graphs. 

• Explore the union of acyclic graphs and analyse conditions under which they form cyclic or 

isomorphic structures. 

Step 4: Generalize Transitivity 

• Define s-transitive and w-transitive matrices as extensions of transitive NFMs. 

• Prove that the reduction models for these matrices are consistent and comprehensive. 

Step 5: Provide Numerical Examples 

• Use numerical matrices to demonstrate the reduction process. 

• Show how equivalent conditions for reduction are applied to irreflexive, transitive, and 

nilpotent matrices. 

Step 6: Validate Through Proofs and Applications 

• Mathematically verify the properties of the reduced matrices and their applicability in 

complex systems. 

• Apply the proposed methods to theoretical case studies and identify potential applications 

in decision-making, AI, and engineering systems. 

1.10 Key Trends in Clarity of Results 

Improved Simplification Through Reduction Techniques 

o Trend: The proposed reduction techniques simplify large and complex 

neutrosophic fuzzy matrices (NFMs) while preserving key properties such as 

transitivity, irreflexivity, and nilpotency. 

o Key Results: Reduction leads to faster computation and better interpretability in 

real-world applications, such as consistent system modelling. 

Graphical Representation of Nilpotent NFMs 

o Trend: Representing nilpotent NFMs as acyclic graphs offers a clear visualization of 

consistent systems and their behaviour when combined into cyclic graphs. 

o Key Results: Demonstrating the structural differences between isomorphic and 

non-isomorphic graphs enhances understanding of system consistency. 

Extension of Transitivity Concepts 
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o Trend: Generalizing transitivity to s-transitive and w-transitive matrices broadens 

the scope of NFMs for diverse applications. 

o Key Results: Verification of reduction models for these classes of matrices ensures 

applicability to more complex systems. 

Numerical Validation 

o Trend: The numerical examples provided validate the practical utility of the 

reduction methods. 

o Key Results: These examples highlight the scalability and effectiveness of the 

proposed techniques. 

1.11 Comparison with Other Neutrosophic Methods (Tabular format) 

This section provides a detailed comparison of the proposed methods for reducing 

Neutrosophic Fuzzy Matrices (NFMs) with existing approaches. The focus is on their 

computational efficiency, ability to handle uncertainty, and practical applicability. Key 

aspects such as transitivity, nilpotency, and structural preservation are discussed to 

highlight the advantages and limitations of each method. 

 Comparison Criteria 

To ensure a comprehensive comparison, the following criteria are evaluated: 

• Reduction Efficiency: The ability to simplify complex NFMs while retaining essential 

properties. 

• Support for Transitivity Extensions: Whether the method accommodates s-transitive and 

w-transitive matrices. 

• Handling of Uncertainty: The capacity to manage higher levels of indeterminacy and 

falsity. 

• Graph Representation: Effectiveness in visualizing matrices as acyclic and cyclic graphs. 

• Computational Complexity: The resources required for execution. 

Existing Methods 

Hashimoto’s Reduction Techniques for Fuzzy Matrices 

o Key Features: Pioneered reduction methods for nilpotent fuzzy matrices; primarily 

applied to simpler fuzzy systems. 
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o Limitations: Focused on fuzzy environments; lacks support for neutrosophic 

components (indeterminacy and falsity). 

o Comparison: The proposed methods extend these concepts by incorporating 

neutrosophic components, making them applicable to more complex systems. 

Padder and Murugadas’ Reduction for Intuitionistic Fuzzy Matrices 

o Key Features: Introduced reduction techniques for intuitionistic fuzzy matrices 

with extensions to s-transitivity and w-transitivity. 

o Limitations: Limited adaptability to neutrosophic systems, which require 

simultaneous handling of three-valued logic (truth, indeterminacy, falsity). 

o Comparison: Our approach generalizes these techniques to neutrosophic matrices, 

enabling broader applicability in systems with higher uncertainty. 

Anandhkumar et al.’s Work on Symmetric Neutrosophic Fuzzy Matrices 

o Key Features: Explored symmetry and interval-based uncertainties in neutrosophic 

matrices. 

o Limitations: Focused on structural properties and symmetry rather than reduction 

or computational efficiency. 

o Comparison: The proposed work complements these methods by emphasizing 

reduction techniques while preserving symmetry and structural integrity. 

Lee and Jeong’s Canonical Forms for Transitive Intuitionistic Fuzzy Matrices 

o Key Features: Developed canonical forms for transitive matrices; improved 

consistency in system modelling. 

o Limitations: Restricted to intuitionistic matrices; lacks the flexibility to address 

neutrosophic environments. 

o Comparison: The proposed methods expand upon this work by verifying reduction 

models for s-transitive and w-transitive neutrosophic fuzzy matrices. 

Proposed Method’s Advantages 

Criterion Proposed Method Existing Methods 

Reduction Efficiency Achieves significant matrix 

size reduction while 

preserving key properties. 

Limited efficiency for 

large-scale matrices. 
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Support for Transitivity Verifies reduction models 

for s-transitive and 

w-transitive matrices. 

Focused on general 

transitivity; lacks extension. 

Handling of Uncertainty Incorporates neutrosophic 

components (truth, 

indeterminacy, falsity). 

Primarily focused on fuzzy 

or intuitionistic systems. 

Graph Representation Visualizes nilpotent matrices 

as acyclic graphs with 

conditions for cyclic unions. 

Graph-based interpretations 

not emphasized. 

Computational Complexity Optimized for large, 

complex systems with 

higher uncertainty levels. 

Computational complexity 

increases with system size. 

2. Preliminaries 

Definition: 2.1 A NFSs R on the universe of discourse Y is well-defined as 

( ) ( ) ( ) , , , ,T I FR y r y r y r y y Y=    , everywhere , , : ] 0,1 [T I Fr r r Y − +→  also 

0 3.T I Fr r r + +                   

Definition: 2.2 Let R and S be an n x n NFMs where ( ), ,T I F

ij ij ijR r r r=  and ( ), ,T I F

ij ij ijS s s s=  

respectively. 

(i) ( ) ( ), , , , , ,T I F T I F T T I I F F

ij ij ij ij ij ij ij ij ij ij ij ijR S r r r s s s r s r s r s =      =       

(ii) ( ) ( ), , , , , ,T I F T I F T T I I F F

ij ij ij ij ij ij ij ij ij ij ij ijR S r r r s s s r s r s r s =      =       

(iii) ( ) ( )1 1 1 1 1 1 2 2 2 2 2 2, , , ,T T I I F F T T I I F F

i j i j i j i j i j i jR S r s r s r s r s r s r s =             

( )... , , .T T I I F F

in nj ni nj ni njr s r s r s        

(iv) ( )1 , 0,1,2,... ,k kR R R k+ =  =    

Definition:2.3  A neutrosophic Fuzzy Matrices  R is less than or equal to S ( or R and S are 

comparable) i.e, P Q if ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijp p p q q q means 

, ,T T I I F F

ij ij ij ij ij ijp q p q p q   . 
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Definition 2.4 Let , ,i j k n  and let ( ), ,T I F

ij ij ij ijR r r r r = =
 

 be an NFM. Then R is called 

Transitive iff 
2R RR R=   . ., ,T T T I I I

ik kj ij ik kj iji e r r r r r r     and 
F F F

ik kj ijr r r  for every 

, , .i j k n  

Nilpotent iff ...nR RR R= ( n-times) = 0 

consistent iff 
ij jir r  and 

jk kjr r  implies ik kir r . 

Weak transitive if and only if 
ij jiu u  and 

jk kju u  implies ik kiu u . 

Definition 2.5 For any two comparable elements ( ) ( ) ( ), , , , ,T I F T I Fr r r s s s NFM the 

operation ( ) ( ), , , ,T I F T I Fr r r s s s is defined as 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, , , , , , ,
, , , ,

0,0,1 , , , , .

T I F T I F T I F

T I F T I F

T I F T I F

r r r if r r r s s s
r r r s s s

if r r r s s s

 
 = 



 

Definition 2.6 (Isomorphism graph) 

Two graphs are said to be isomorphic if they satisfy the following four conditions: 

(i) Equal Number of Vertices: Both graphs must have the same number of vertices. 

(ii) Equal Number of Edges: Both graphs must have the same number of edges. 

(iii) Equal Degree Sequence: The degree sequence (the list of vertex degrees) must be identical 

for both graphs. 

(iv) Cycle Structure Consistency: If one graph forms a cycle of length k using a set of vertices 

{v1,v2,v3,…,vk} the other graph must also form a cycle of the same length k with a 

corresponding set of vertices. 

Or In graph theory, graph isomorphism is a way to determine if two graphs are equivalent 

or similar. 

Definition 2.7 (Cyclic graphs and Acyclic graphs) 

Cyclic graphs contain at least one cycle, which is a closed loop that allows you to return to the 

starting point by traversing a series of edges and nodes.  

Acyclic graphs contain no cycles, which means there are no repeated edges or nodes in any path 

within the graph. Acyclic graphs are also known as Directed Acyclic Graphs (DAGs) when 

considering directed graphs. 



Neutrosophic Sets and Systems, Vol. 86, 2025     386  

 

 

K. Karuppiah, R. Sudharani, R. Ambrose Prabhu, A. Anandan, D. Ramesh, K. Lawrence Mary, Reduction of Neutrosophic 

Fuzzy Matrices Using Implication Operator 

Definition 2.8   Let ( ), ,T I FR r r r=  and ( ), ,T I FS s s s=  be two NFM then 

(i) 
1 , ( 1,2,3,...)k kR R R k+ =  =  

(ii) ( )
1

.
n

ik kj

k

R S r s
=

 
 =  

 
 

(iii) , ,T T I F

ji ji jiR r r r =   (the transpose of P) 

(iv) R2 = R (R  is  idempotent) 

(v) Rk = O (R is nilpotent k N ) 

(vi) ( )/ ,
c

R S R R S=    

(vii) ( ) 2 ... nR R R R
+
=      

(viii) R W  iff ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijr r r w w w  

(ix) R S  iff R S and S R  

The following provides a clear explanation of the concepts described: 

• It is straightforward to conclude that    defines an equivalence relation on all m×n NFMs. 

• Let R S   imply that matrices R and S have the same number of zero-entries located at 

corresponding positions. 

• A zero matrix (0,0,1)  is a matrix in which all entries are neutrosophic zero.  

• An NFM R is said to be irreflexive if all its diagonal elements are zero. 

i.e ( ), ,T I F

ii ii iir r r = (0,0,1)  for all i and reflexive ( ), ,T I F

ii ii iir r r = (1,1,0) for all I, antisymmetric iff  

( ) ( ), , 0,0,1T I F

ij ij ijr r r  implies ( ) ( ), , 0,0,1T I F

ji ji jir r r =  for all i ,j with i j ,max-min transitive 

iff 
2 ,T T w-transitive iff ( ) ( ), , 0,0,1 :T T I I F F

ik kj ik kj ik kjr r r r r r    implies 

( ) ( ), , 0,0,1T I F

ij ij ijr r r  for all , ,i j k  or equivalently iff 
2R R , s-transitive iff 

( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r and ( ) ( ), , , ,T I F T I F

kj kj kj jk jk jkr r r r r r implies 

( ) ( ), , , ,T I F T I F

ij ij ij ji ji jir r r r r r for any , ,i j k  such that , ,i j j k i k   or equivalently 

iff ( )
2

R R  . It is obvious that always positive matrix R, i.e., ( ) ( ), , 0,0,1T I F

ij ij ijr r r   for every 

i,j is w-transitive. 
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3. Reduction of Neutrosophic Fuzzy Nilpotent Matrix  

Theorem3.1. If R is an nxn irreflexive and transitive NFM, then ( )/ .R R R
+
=  

Proof: Since ( )
( ) ( ) ( )

( ), , / , , ,
k k k

T I F k T I F

ij ij ij ij ij ijW w w w R R W w w w= = = . 

Let R and W are nilpotent. Then, evidently, ( ) ( ) ( ) ( )
2 1

/ / / ... / ,
n

R R R R R R R R R
+ −
=      

To prove that ( ) ( ) ( )
2 1

/ / ... /
n

R R R R R R R
−

     

That is, ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijr r r w w w  for few ( )1 1 .k k k  −  

Assume that ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijr r r w w w  for every 1, 2,..., 1.k n= −  

(1) (a) Since ( ) ( ), , , , ,T I F T I F

ij ij ij ij ij ijw w w r r r we get  

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij il lj il lj il lj

k k k

w w w r r r r r r r r r
= = =

 
=     

 
 

That is , ( ) ( ) ( ) ( )
1 1 1

, , , ,
n n n

T I F T T I I F F

ij ij ij il lj il lj il lj

k k k

r r r r r r r r r
= = =

 
    
 

 

Thus, we can find 11l  such that ( ) ( )
11 11 11

, , , ,T I F T I F

il il il ij ij ijr r r r r r  and 

( ) ( )
11 11 11

, , , ,T I F T I F

il il il ij ij ijr r r r r r . 

It follows that 
( ) ( ) ( )

( ) ( )
2 2 2

, , , , (0,0,1)T I F T I F

ij ij ij ij ij ijr r r r r r  . 

Therefore, 
( ) ( ) ( )

( ) ( )
2 2 2

, , , ,T I F T I F

ij ij ij ij ij ijr r r r r r= , since R is transitive. 

We now prove that ( ) ( )
1 1 1(1) (1) (1)

, , , ,
p p p

T I F T I F

il il il ij ij ijw w w r r r  and 

( ) ( )
1 1 1(1) (1) (1)

, , , ,
p p p

T I F T I F

l l l ij ij ijr r r r r r  foe a few  
(1)1 .

p
l  

(b) If ( ) ( )
1 1 1(1) (1) (1)

, , , , ,
p p p

T I F T I F

il il il ij ij ijw w w r r r then we put (1) 1p = . 

If ( ) ( )
11 11 11

, , 0,0,1T I F

il il ilw w w = that is if  

( ) ( ) ( ) ( ) ( )
11 11 11

1 1 1

, , , , 0,0,1
n n n

T I F T T I I F F

ij ij ij il ll il ll il ll

k k k

r r r r r r r r r
= = =

 
    = 

 
, 
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Then ( ) ( ) ( ) ( )
11 11 11 11 11 11

1 1 1

, , , , .
n n n

T I F T T I I F F

il il il il ll il ll il ll

k k k

r r r r r r r r r
= = =

 
    
 

 

Since, ( ) ( )
11 11 11

, , , , ,T I F T I F

il il il ij ij ijr r r r r r  

we get ( ) ( ) ( ) ( )
12 12 12 12 11 12 11 12 11

, , , , , , , , ,T I F T I F T I F T I F

il il il ij ij ij l l l l l l ij ij ijr r r r r r r r r r r r  and 

( ) ( ) ( )

( ) ( )
3 3 3

, , , , (0,0,1)T I F T I F

ij ij ij ij ij ijr r r r r r=   for a few 12l . 

Further, since ( ) ( )
12 11 11 12 11 11 12 11 11 12 12 12

, , , ,T T I I F F T I F

l l l j l l l j l l l j l j l j l jr r r r r r r r r     

and ( ) ( )
11 11 11

, , , , ,T I F T I F

l j l j l j ij ij ijr r r r r r We have ( ) ( )
12 12 12

, , , , .T I F T I F

l j l j l j ij ij ijr r r r r r  

(c ) Moreover, if ( ) ( )
11 11 11

, , , , ,T I F T I F

il il il ij ij ijw w w r r r then we put p(1) = 2. 

If ( ) ( )
12 12 12

, , 0,0,1T I F

il il ilw w w =  

that is ( ) ( ) ( ) ( ) ( )
12 12 12 12 12 12

1 1 1

, , , , 0,0,1
n n n

T I F T T I I F F

il il il il ll il ll il ll

k k k

r r r r r r r r r
= = =

 
    = 

 
 

Then, ( ) ( ) ( ) ( )
12 12 12 12 12 12

1 1 1

, , , , .
n n n

T I F T T I I F F

il il il il ll il ll il ll

k k k

r r r r r r r r r
= = =

 
    
 

 

Since ( ) ( )
12 12 12

, , , , ,T I F T I F

il il il ij ij ijr r r r r r  

we get ( ) ( ) ( ) ( )
12 12 12 13 12 13 12 13 12

, , , , , , , , ,T I F T I F T I F T I F

il il il ij ij ij l l l l l l ij ij ijr r r r r r r r r r r r   and 

( ) ( ) ( )

( ) ( )
4 4 4

, , , , (0,0,1)T I F T I F

ij ij ij ij ij ijr r r r r r=   for some 13l . 

Thus, since ( ) ( )
13 12 12 13 12 12 13 12 12 13 13 13

, , , ,T T I I F F T I F

l l l j l l l j l l l j l j l j l jr r r r r r r r r     

and ( ) ( )
12 12 12

, , , , ,T I F T I F

l j l j l j ij ij ijr r r r r r  

We have ( ) ( )
13 13 13

, , , , .T I F T I F

l j l j l j ij ij ijr r r r r r  

(d) By iterating the similar process, since R is nilpotent for some 
(1)ipl  such that (1) 1.p n −  

We obtain the following result ( ) ( )
1 (1) 1 (1) 1 (1)

, , , , ,
p p p

T I F T I F

il il il ij ij ijw w w r r r  

( ) ( )
1 (1) 1 (1) 1 (1)

, , , , .
p p p

T I F T I F

il il il ij ij ijr r r r r r  
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(2) Next, since 
( ) ( ) ( )

( ) ( )
2 2 2

, , , , ,T I F T I F

ij ij ij ij ij ijw w w r r r   

we get ( ) ( )
(2) (2) (2)

, , , , .
p j p j p j

T I F T I F

l l l ij ij ijw w w r r r  

Then, by ( ) ( )
1 (2) 1 (2) 1 (2)

, , , ,
p j p j p j

T I F T I F

l l l ij ij ijr r r r r r it follows that  

( ) ( ) ( ) ( ) ( )
12 12 12 1 (1) 1 (1) 1 (1)

1 1 1

, , , , 0,0,1
p l p l p l

n n n
T I F T T I I F F

il il il l ij l ij l ij

k k k

r r r r r r r r r
= = =

 
    = 

 
 

That is ( ) ( ) ( ) ( )
1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

1 1 1

, , , ,
p j p j p j p l p l p l

n n n
T I F T T I I F F

l l l l ij l ij l ij

k k k

r r r r r r r r r
= = =

 
    
 

 

Since ( ) ( )
1 (1) 1 (1) 1 (1)

, , , ,
p j p j p j

T I F T I F

ij ij ij l l lr r r r r r ,  

we have ( ) ( ) ( ) ( )
1 (1) 21 1 (1) 21 1 (1) 21 21 21 21

, , , , , , , , , ,
p p p j j j

T I F T I F T I F T I F

l l l l l l ij ij ij l l l ij ij ijr r r r r r r r r r r r   

and 
( ) ( ) ( )

( ) ( ) ( )
2 2 2

1 (1) 1 (1) 1 (1)
, , , , 0,0,1

p j p j p j

T I F T I F

l l l ij ij ijr r r r r r   for a few 21l . 

Using the similar process as described in (1), the following result is obtained. 

( ) ( ) ( ) ( )
1 (1) 2 (2) 1 (1) 2 (2) 1 (1) 2 (2) 2 (2) 2 (2) 2 (2)

, , , , , , , , , ,
p p p p p p p j p j p j

T I F T I F T I F T I F

l l l l l l ij ij ij l l l ij ij ijw w w r r r r r r r r r   and 

( ) ( ) ( )

( ) ( ) ( )
2 2 2

2 (2) 2 (2) 2 (2)
, , , , 0,0,1 .

p p p

T I F T I F

il il il ij ij ijw w w r r r   for some 
2 (2)pl . 

(3) By continuing the process outlined above, we arrive at the following. 

( ) ( ) ( ) ( )
1 ( 1) ( ) 1 ( 1) ( ) 1 ( 1) ( ) ( ) ( ) ( )

, , , , , , , , , ,
n p n np n n p n np n n p n np n n p n j n p n j n p n j

T I F T I F T I F T I F

l l l l l l ij ij ij l l l ij ij ijw w w r r r r r r r r r
− − − − − −

 

and 
( ) ( ) ( )

( ) ( ) ( )
2 2 2

( ) ( ) ( )
, , , , 0,0,1 .

np n np n np n

T I F T I F

il il il ij ij ijw w w r r r    

Thus, a contradiction emerges under the assumption that S is nilpotent. 

Thus, we obtained 
( ) ( ) ( )

( ) ( ), , , ,
k k k

T I F T I F

ij ij ij ij ij ijw w w r r r for a some ( )1 1k k n  − , so that 

W R+ =  

The subsequent illustration demonstrates that R/R is the reduced form of R, and it suffices to 

calculate the transitive closure of R/R rather than directly calculating the transitive closure of R. 

Example3.1. Let R be the subsequent irreflexive and transitive NFM 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,0,1 0.5,0.3,0.4 0,0,1

0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0.5,0.3,0.4 0,0,1

R

 
 

=  
 
 

  ( Irreflexive) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

0,0,1 0,0,1 0,0,1

0,0,1 0,0,1 0,0,1

0,0,1 0.5,0.3,0.4 0,0,1

R

 
 

=  
 
 

     ( Transitive 
2R R )  

Now, ( )/ ,
c

R R R R R=    

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,0,1 0.5,0.3,0.4 0,0,1

/ 0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0,0,1 0,0,1

R R

 
 

=  
 
 

 

( ) ( ) ( ) ( )
2 3

/ / / / ,R R R R R R R R
+
=    

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,0,1 0.5,0.3,0.4 0,0,1

/ 0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0.5,0.3,0.4 0,0,1

R R
+

 
 

=  
 
 

 

Therefore, ( ) ( ) ( ) ( )
2 3

/ / / / ,R R R R R R R R
+
=                                           (1) 

 

 

Figure 1 

 

Figure 1: The graphical representation of equation (1) is isomorphism Graph 

Remark 3.1 . In the above theorem, both irreflexivity and transitivity are crucial conditions. If either 

of these conditions fails, the result does not hold. This is demonstrated in the following example: 

Example 3.2. Let R be the subsequent not irreflexive and transitive NFM 

(0,0,1) (0.3,0,4,0.5)

(0,0,1) (0.2,0.4,0.8)
R

 
=  
 

(R is not irreflexive) 

2
(0,0,1) (0.3,0,4,0.5)

(0,0,1) (0.2,0.4,0.8)
R

 
=  
 

(Transitive 
2R R )  
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Now, ( )/ ,
c

R R R R R=    

(0,0,1) (0.3,0,4,0.5)
/

(0,0,1) (0,0,1)
R R

 
=  
 

, ( )
2 (0,0,1) (0,0,1)

/
(0,0,1) (0,0,1)

R R
 

=  
 

 

( ) ( ) ( )
2

/ / / ,R R R R R R
+
=   

Therefore, ( ) ( ) ( )
2

/ / /R R R R R R R
+

 =                                                    (2)                                                                   

 

Figure 2 

Figure 2: The graphical representation of equation (2) non isomorphism graph 

Example 3.3 Let R be the following irreflexive and not transitive NFM 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,0,1 0.5,0.3,0.4 0.3,0.4,0.5

0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0.5,0.3,0.4 0,0,1

R

 
 

=  
 
 

     ( Irreflexive)   

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

0.3,0.3,0.5 0.3,0.3,0.5 0,0,1

0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0.5,0.3,0.4 0.3,0.3,0.5

R

 
 

=  
 
 

( Not transitive)  

Now, ( )/ ,
c

R R R R R=   ( ) ( ) ( ) ( )
2 3

/ / / / ,R R R R R R R R
+
=    

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,0,1 0.5,0.3,0.4 0.3,0.4,0.5

/ 0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0,0,1 0,0,1

R R

 
 

=  
 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0.3,0.4,0.5 0.5,0.3,0.4 0.3,0.4,0.5

/ 0,0,1 0,0,1 0,0,1

0.5,0.3,0.4 0.5,0.3,0.4 0.3,0.4,0.5

R R
+

 
 

=  
 
 

 

Therefore, ( ) ( ) ( ) ( )
2 3

/ / / /R R R R R R R R R
+

 =                                   (3)       
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Figure 3 

Figure 3: The graphical representation of equation (3) non isomorphism graph 

Theorem3.2. Let R be a nxn irreflexive and transitive matrix. Then, the subsequent conditions are 

equal 

(i) /R R S R   

(ii) S R+ = for any nxn NFMS 

Proof: Let 
( ) ( ) ( )

( ), ,
k k k

k T I F

ij ij ijS s s s= and ( ), , /T I F

ij ij ijT t t t R R= = . That is 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

t t t r r r r r r r r r
= = =

 
=     

 
. 

(1) Assume that /R R S R   evidently from Theorem 3.1, S R+ =  

(2) Assume that S R+ = then we get S R  

(a) Let n=1. The only irreflexive matrix is ( )0,0,1 . Thus,  

(b) Let n = 2. Since S is nilpotent ( )2 0,0,1S = ,we get 
2/ .R R R S S S S+ = =  =  

(c) Let 3n  .Suppose that ( ) ( ), , , , ,T I F T I F

ij ij ij ij ij ijs s s t t t then 
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( ) ( ) ( ), , , , 0,0,1T I F T I F

ij ij ij ij ij ijt t t r r r=  and

( ) ( ) ( ) ( )
1 1 1

, , , , .
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

r r r r r r r r r
= = =

 
    

 
 

Now we obtained, 

( ) ( ) ( ) ( )
1 1 1 1 2 1 2 1 2
, , , , ... , , , ,

h h h

T I F T I F T I F T I F

il il il l l l l l l l j l j l j ij ij ijs s s s s s s s s r r r   = for right 

indices ( )1 2, ,..., 1 2hl l l h n  − , 

So that, ( ) ( ) ( ) ( )
1 1 1 1 2 1 2 1 2
, , , , ... , , , , .

h h h

T I F T I F T I F T I F

il il il l l l l l l l j l j l j ij ij ijr r r r r r r r r r r r     

Thus ( ) ( )
1 1 1
, , , ,T I F T I F

il il il ij ij ijr r r r r r  and ( ) ( )
1 1 1

, , , ,T I F T I F

l j l j l j ij ij ijr r r r r r  for 1l . 

Then, ( ) ( ) ( ) ( )
1 1 1

, , , , .
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

r r r r r r r r r
= = =

 
    

 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , 0,0,1 .
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

t t t r r r r r r r r r
= = =

 
=     = 

 
 

This contradicts the fact that ( ) ( ), , 0,0,1 .T I F

ij ij ijt t t  Thus T S , so that /R R S R  .By the 

properties of Theorem3.3 above, /R R is minimal in the set of NFMs such that S R+ = . 

Theorem3.3. Let R be an nxn irreflexive and transitive NFM. Then, the subsequent conditions are 

equal: 

(i) /R R S R   

(ii) / /R R S R=  

Proof: Let ( ), , /T I F

ij ij ijF f f f R R= = and ( ), , /T I F

ij ij ijG g g g S R= = .Then, 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

f f f r r r r r r r r r
= = =

 
=     

 
 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , .
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

g g g s s s s s s r s s
= = =

 
=     

 
 

(i) implies (ii): Assume that /R R S R  , so that 

( ) ( ) ( ), , , , , , .T I F T I F T I F

ij ij ij ij ij ij ij ij ijf f f s s s r r r   

(a) To prove that ( ) ( ), , , , .T I F T I F

ij ij ij ij ij ijf f f g g g Let ( ), , (0,0,1).T I F

ij ij ijf f f   
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Then, ( ) ( ), , , , (0,0,1),T I F T I F

ij ij ij ij ij ijf f f r r r=  , so that ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijs s s r r r= and 

( ) ( ) ( ) ( )
1 1 1

, , , , .
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

r r r r r r r r r
= = =

 
    

 
 

Since ( ) ( ), , , ,T I F T I F

ik ik ik ik ik ikr r r s s s ,  

we have ( ) ( ) ( ) ( )
1 1 1

, , , , .
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

s r s r s r r r r
= = =

 
    

 
 

Consequently, 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ik ik ik ik kj ik kj ik kj

k k k

g g g s s s s r s r s r
= = =

 
=     

 
 

( ) ( ) ( ) ( )
1 1 1

, , , ,
n n n

T I F T T I I F F

ik ik ik ik kj ik kj ik kj

k k k

r r r s r s r s r
= = =

 
=     

 
  

so that ( ) ( ), , , , .T I F T I F

ij ij ij ij ij ijf f f g g g  

(b)  To prove that ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijg g g f f f  

Let ( ), , (0,0,1),T I F

ij ij ijg g g  then ( ) ( ), , , , (0,0,1),T I F T I F

ij ij ij ij ij ijg g g s s s=  and hence, 

( ) ( ) ( ) ( )
1 1 1

, , , , .
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

s r s r s r r r r
= = =

 
    

 
Recall that 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

f f f r r r r r r r r r
= = =

 
=     

 

( ) ( ), , , , .T I F T I F

ij ij ij ij ij ijs s s r r r   

We have since ( ), , (0,0,1),T I F

ij ij ijs s s  ( ), , (0,0,1).T I F

ij ij ijr r r   

We shall Prove, if ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijf f f r r r , then there is a contradiction.  

Assume that ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijf f f r r r .  

Then, ( ) ( ) ( )
1 1 1

, , (0,0,1),
n n n

T T I I F F

ik kj ik kj ik kj

k k k

r r r r r r
= = =

 
    

 
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So that ( ) ( ) ( ) ( )(1) (1) (1) (1) (1) (1), , , , , , , , ,T I F T I F T I F T I F

ik ik ik ij ij ij k j k j k j ij ij ijr r r r r r r r r r r r   and 

( ) ( ) ( )
( 2) ( 2) ( 2)

(1) (1) (1), , , , , ,T I F T I F T I F

ik ik ik ij ij ij ij ij ijr r r r r r r r r=   for few k (1). 

We have ( ) ( )(1) (1) (1), , , ,T I F T I F

ik ik ik ij ij ijs s s r r r , since ( ) ( )(1) (1) (1), , , ,T I F T I F

k j k j k j ij ij ijr r r r r r  

 and ( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kj ik kj ik kj ij ij ij ij ij ij

k k k

r r r r r r s s s r r r
= = =

 
     

 
 

Therefore, F S  and  ( ) ( )(1) (1) (1), , , , .T I F T I F

ik ik ik ij ij ijf f f r r r  

Furthermore, ( ) ( )(1) (1) (1) (1) (1) (1), , , , ,T I F T I F

ik ik ik ik ik ikf f f r r r  

since ( ) ( )(1) (1) (1), , , , .T I F T I F

ik ik ik ij ij ijr r r r r r  

Thus, ( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kj ik kj ik kj ij ij ij ij ij ij

k k k

r r r r r r s s s r r r
= = =

 
     

 
 

Therefore, 

( ) ( ) ( ) ( )(2) (2) (2) (2) (2) (2) (2) (2) (2), , , , , , , , , ,T I F T I F T I F T I F

ik ik ik ij ij ij k k k k k k ij ij ijr r r r r r r r r r r r    

and ( ) ( )
(3) (3) (3)

, , , , (0,0,1)T I F T I F

ij ij ij ij ij ijr r r r r r  for some k(2). 

Since ( ) ( )(1) (1) (1), , , ,T I F T I F

k j k j k j ij ij ijr r r r r r and ( ) ( )(2) (1) (2) (1) (2) (1), , , , ,T I F T I F

k k k k k k ij ij ijr r r r r r  

We have ( ) ( )(2) (2) (2), , , ,T I F T I F

k j k j k j ij ij ijr r r r r r ,  

so that ( ) ( )(2) (2) (2), , , ,T I F T I F

ik ik ik ij ij ijs s s r r r , 

since ( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kj ik kj ik kj ij ij ij ij ij ij

k k k

s r s r s r s s s r r r
= = =

 
     

 
Then, 

Therefore,  F S  and  ( ) ( )(2) (2) (2), , , , .T I F T I F

ik ik ik ij ij ijf f f r r r  

Moreover, 

( ) ( )(2) (2) (2) (2) (2) (2), , , , ,T I F T I F

ik ik ik ik ik ikf f f r r r since ( ) ( )(2) (2) (2), , , , .T I F T I F

ik ik ik ij ij ijr r r r r r  

Thus, 

( ) ( ) ( ) ( ) ( )(2) (2) (2) (2) (2) (2)

1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kk ik kk ik kk ik ik ik ij ij ij

k k k

r r r r r r r s s r r r
= = =

 
     

 
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Therefore, 

( ) ( )(3) (3) (3), , , , ,T I F T I F

ik ik ik ij ij ijr s s r r r ( ) ( )(3) (2) (3) (2) (3) (2), , , , ,T I F T I F

k k k k k k ij ij ijr r s r r r and 

( ) ( )
( 4) ( 4) ( 4)

, , , , (0,0,1)T I F T I F

ij ij ij ij ij ijr r r r r r=  , for a some k(3). 

we obtain  ( )
( ) ( ) ( )

, , (0,0,1)
n n nT I F

ij ij ijr r r  a result that leads to a contradiction, since R is nilpotent, 

Thus, ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijf f f r r r ,  

so that ( ) ( ) ( ) ( ), , , , , , , , .T I F T I F T I F T I F

ij ij ij ij ij ij ij ij ij ij ij ijg g g s s s r r r f f f=    

(2)  (1) Assume that / /R R S R= . 

(a) It is obvious that / / .R R S R S=   

(b) We prove that .S Q Assume that ( ) ( ), , , , .T I F T I F

ij ij ij ij ij ijs s s r r r  

Since ( ) ( ) ( ) ( )
1 1 1

, , , ,
n n n

T I F T T I I F F

ij ij ij ik kj ik kj ik kj

k k k

r r r r r r r r r
= = =

 
    

 
 

We take ( ) ( ) ( ) ( )
1 1 1

, , , , (0,0,1),
n n n

T I F T T I I F F

ij ij ij ik kj ik kj ik kj

k k k

s s s r r r r r r
= = =

 
    = 

 
  

so that ( ) ( ) ( ) ( )
1 1 1

, , , , (0,0,1).
n n n

T T I I F F T I F

ik kj ik kj ik kj ij ij ij

k k k

s r s r s r s s s
= = =

 
     

 
 

Since, ( ) ( )(1) (1) (1), , , , ,T I F T I F

ik ik ik ij ij ijs s s s s s ( ) ( )(1) (1) (1), , , , ,T I F T I F

k j k j k j ij ij ijr r r s s s  

and ( ) ( )
(1) (1) (1)

(1) (1) (1), , , , (0,0,1)T I F T I F

k j k j k j ij ij ijr r r s s s=   for few k(1). 

Since ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijr r r s s s   

and ( ) ( ) ( )(1) (1) (1) (1) (1) (1), , , , , , ,T I F T I F T I F

ij ij ij ik ik ik k j k j k jr r r r r r r r r   

We have ( ) ( )(1) (1) (1), , , , ,T I F T I F

ik ik ik ij ij ijr r r s s s  

so that ( ) ( )(1) (1) (1) (1) (1) (1), , , ,T I F T I F

ik ik ik ik ik ikr r r s s s .  

Since ( ) ( ) ( ) ( )(1) (1) (1) (1) (1) (1)

1 1 1

, , , ,
n n n

T I F T T I I F F

ik ik ik ik kk ik kk ik kk

k k k

r r r r r r r r r
= = =

 
    

 
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( ) ( ) ( ) ( )(1) (1) (1)

1 1 1

, , , ,
n n n

T I F T T I I F F

ij ij ij ik kk ik kk ik kk

k k k

s s s s r s r s r
= = =

 
    

 
. 

( ) ( ) ( ) ( ) ( )(1) (1) (1) (1) (1) (1)

1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kk ik kk ik kk ik ik ik ij ij ij

k k k

s r s r s r s s s s s s
= = =

 
     

 
 

Then, ( ) ( )(2) (2) (2), , , , ,T I F T I F

ik ik ik ij ij ijs s s s s s  

( ) ( )(2) (1) (2) (1) (2) (1), , , , ,T I F T I F

k k k k k k ij ij ijr r r s s s  

and ( ) ( )
( 2) ( 2) ( 2)

(2) (2) (2), , , , (0,0,1)T I F T I F

k j k j k j ij ij ijr r r s s s   for a few k(2). 

Since ( ) ( )(1) (1) (1), , , ,T I F T I F

ik ik ik ij ij ijr r r s s s   

and ( ) ( ) ( )(1) (1) (1) (2) (2) (2) (2) (1) (2) (1) (2) (1), , , , , ,T I F T I F T I F

ik ik ik ik ik ik k k k k k kr r r r r r r r r  , 

We get ( ) ( ) ( ) ( )(2) (2) (2) (2) (2) (2) (2) (2) (2), , , , , , , , ,T I F T I F T I F T I F

ik ik ik ij ij ij ik ik ik ik ik ikr r r s s s r r r s s s   

Since ( ) ( ) ( ) ( )(2) (2) (2) (2) (2) (2)

1 1 1

, , , ,
n n n

T I F T T I I F F

ik ik ik ik kk ik kk ik kk

k k k

r r r r r r r r r
= = =

 
    

 
 

( ) ( ) ( ) ( )(1) (1) (1)

1 1 1

, , , ,
n n n

T I F T T I I F F

ij ij ij ik kk ik kk ik kk

k k k

s s s s r s r s r
= = =

 
    

 
 

We get 

( ) ( ) ( ) ( ) ( )(2) (2) (2) (2) (2) (2)

1 1 1

, , , , , , .
n n n

T T I I F F T I F T I F

ik kk ik kk ik kk ik ik ik ij ij ij

k k k

s r s r s r s s s s s s
= = =

 
     

 

Then, ( ) ( ) ( ) ( )(3) (3) (3) (3) (2) (3) (2) (3) (2), , , , , , , , ,T I F T I F T I F T I F

ik ik ik ij ij ij k k k k k k ij ij ijs s s s s s s s s s s s   and 

( ) ( )
(3) (3) (3)

(2) (2) (2), , , , (0,0,1)T I F T I F

k j k j k j ij ij ijr r r s s s   for some k(3). 

By following the same reasoning, we encounter a 

contradiction.

( ) ( ) ( ) ( )( ) ( ) ( ) (3) ( 1) (3) ( 1) (3) ( 1), , , , , , , , ,T I F T I F T I F T I F

ik n ik n ik n ij ij ij k k n k k n k k n ij ij ijs s s s s s s s s s s s− − −   and  

( ) ( )
( ) ( ) ( )

(2) (2) (2), , , , (0,0,1)
n n nT I F T I F

k j k j k j ij ij ijr r r s s s  , 

This contradicts the fact R is nilpotent. Hence ( ) ( ), , , ,T I F T I F

ij ij ij ij ij ijs s s r r r for all i,j.            

4.Reduction of an w-transitive and s-transitive NFM 
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In this section we examine the general reduction system of NFM concerning a product of three 

NFM. If A is an mxn, R is an nxn and S is an mXm NFM respectively. Also, we prove some 

properties of reduction of nilpotent NFMs of [30] remain valid or w-transitive and s-transitive 

NFMS. 

 

Lemma 4.1. : Let R be antisymmetric NFM then R is w-transitive NFM iff R is s-transitive NFM. 

Proof. Let R be w-transitive 

Then ( ) ( ) ( ) ( ) ( ), , , , 0,0,1 , , 0,0,1T I F T I F T I F

ik ik ik kj kj kj ij ij ijr r r r r r r r r     

Since R is antisymmetric ( ) ( ) ( ) ( ), , 0,0,1 , , 0,0,1T I F T I F

ij ij ij ji ji jir r r r r r  =  

Now let, ( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r and ( ) ( ), , , , .T I F T I F

kj kj kj jk jk jkr r r r r r  

To prove that ( ) ( ), , , ,T I F T I F

ij ij ij ji ji jir r r r r r  

( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r  and ( ) ( ), , , , .T I F T I F

kj kj kj jk jk jkr r r r r r  

( ) ( ) ( ) ( ) ( ), , , , 0,0,1 , , 0,0,1T I F T I F T I F

ik ik ik kj kj kj ij ij ijr r r r r r r r r      

( ) ( ) ( ) ( ), , 0,0,1 , , 0,0,1T I F T I F

ij ij ij ji ji jir r r r r r     

Therefore, ( ) ( ), , , ,T I F T I F

ij ij ij ji ji jir r r r r r  

Conversely let R be s-transitive, then ( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r and 

( ) ( ), , , , .T I F T I F

kj kj kj jk jk jkr r r r r r  

( ) ( ), , , ,T I F T I F

ij ij ij ji ji jir r r r r r   

To prove: ( ) ( ), , 0,0,1T I F

ij ij ijr r r   

Let ( ) ( ) ( ), , , , 0,0,1T I F T I F

ik ik ik kj kj kjr r r r r r   

( ) ( ) ( ) ( ), , 0,0,1 , , , 0,0,1T I F T I F

ik ik ik jk jk jkr r r r r r  

( ) ( ) ( ) ( ), , 0,0,1 , , , 0,0,1T I F T I F

ki ki ki jk jk jkr r r r r r = =  (because R is antisymmetric) 

( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r and 

( ) ( ) ( ) ( ), , , , , , , ,T I F T I F T I F T I F

kj kj kj jk jk jk ij ij ij ji ji jir r r r r r r r r r r r    
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( ) ( ), , 0,0,1T I F

ij ij ijr r r  (By antisymmetric property) 

Lemma4.2. If R is max-min transitive NFM, then R is w-transitive NFM. 

Proof. Let 
2R R  

( ) ( ) ( ), , , , , ,T I F T I F T I F

ik ik ik kj kj kj ij ij ijr r r r r r r r r    

( ) ( ) ( ), , , , 0,0,1T I F T I F

ik ik ik kj kj kjr r r r r r    

( ) ( ), , 0,0,1T I F

ij ij ijr r r  . Therefore, R is w-transitive. 

Lemma 4.3. If ( ), ,T I F

ij ij ijR r r r= is max-min transitive NFM then ( ), ,T I F

ij ij ijR r r r=  is s-transitive 

NFM. 

Proof. We must show that if R is max-min transitive NFM, ( ) ( ), , , ,T I F T I F

ik ik ik ki ki kir r r r r r and 

( ) ( ), , , ,T I F T I F

ji ji ji ij ij ijr r r r r r then ( ) ( ), , , ,T I F T I F

jk jk jk kj kj kjr r r r r r . 

Suppose if ( ) ( ), , , ,T I F T I F

jk jk jk kj kj kjr r r r r r  

Now 

( ) ( ) ( ) ( ) ( ), , , , , , , , , ,T I F T I F T I F T I F T I F

jk jk jk ji ji ji ik ik ik ij ij ij ki ki kir r r r r r r r r r r r r r r   

( ) ( ) ( ) ( ), , , , , , , ,T I F T I F T I F T I F

jk jk jk kj kj kj ji ji ji ij ij ijr r r r r r r r r r r r   

( ) ( ), , , ,T I F T I F

kj kj kj ij ij ijr r r r r r=  ( ) ( ), , , ,T I F T I F

kj kj kj ij ij ijr r r r r r   

On the other hand, ( ) ( ) ( ) ( ), , , , , , , ,T I F T I F T I F T I F

ik ik ik ki ki ki kj kj kj ij ij ijr r r r r r r r r r r r    

Since ( ) ( ), , , ,T I F T I F

kj kj kj ij ij ijr r r r r r  

( ) ( ) ( ), , , , , , ,T I F T I F T I F

ik ik ik kj kj kj ij ij ijr r r r r r r r r    

Which contradicts the max-min transitive of R. 

Hence ( ) ( ), , , , .T I F T I F

jk jk jk kj kj kjr r r r r r  

Theorem 4.1. If R antisymmetric and s-transitive NFM, implies  T w-transitive and nilpotent 

NFM. 

Proof. Let R be antisymmetric .R R =  

Since R is s-transitive R is w-transitive by Lemma 4.1 

2 2. .,i e R R R R   
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2R R  

( ) ( )
2 2

R R R R        

( )
2

R R  (By antisymmetric property). 

Hence R is w-transitive.  

Let ( ) ( )
, ,,

, ,
n nnn T I F

ij ij ijR r r r
 

 = .Let us consider that there exist indices  , 1,2,...,i j n  

So that ( ) ( )
, ,,

, , 0,0,1
n nnT I F

ij ij ijr r r
 

 . 

Then  

( ) ( ) ( )
, ,,

0 1 0 1 0 1 1 2 1 2 1 2
, , , , , ,

n nnT I F T I F T I F

ij ij ij h h h h h h h h h h h hr r r r r r r r r
       

= 

( ) ( )
1 1 1

... , , 0,0,1
n n n n n n

T I F

h h h h h hr r r
 

− − −
   . 

For a few integers  0 1 2, , ,... 1,2,...,nh h h h n so that 0h i= and nh j= . 

Then a bh h=  for a and b ( )a b  

and ( ) ( ) ( )1 1 1 1 1 1
, , 0,0,1 , , ,

a a a a a a a a a a a a

T I F T I F

h h h h h h h h h h h hr r r r r r
    

+ + + + + +
 =  

( ) ( ) ( )1 1 1 1 1 1 2 1 2 1 2 1
, , 0,0,1 , , ,

a a a a a a a a a a a a

T I F T I F

h h h h h h h h h h h hr r r r r r
    

+ + + + + + + + + + + +
 =  

( ) ( ) ( )1 1 1 1 1 1
... , , 0,0,1 , ,

b b b b b b b b b b b b

T I F T I F

h h h h h h h h h h h hr r r r r r
    

− − − − − −
 =  

By applying the s-transitivity of NFM R  we obtain the following result. 

( ) ( ) ( )
, , , , , ,, , ,

, , , , , ,
n n n n n nn n n

a a a a a a a b a b a b b a b a b a

T I F T I F T I F

h h h h h h h h h h h h h h h h h hr r r r r r r r r
       

=   

Which is not possible. 

Theorem 4.2. Let R be any w-transitive and irrefexive NFM then ( )0,0,1nR =  

Proof. Assume that ( )0,0,1nR  . Then there exists 1 2 1, ,..., nl l l −  such that  

( ) ( ) ( ) ( )
1 1 1 1 2 1 2 1 2 1 1 1

, , , , , , 0,0,1 .
n n n

T I F T I F T I F

il il il l l l l l l l j l j l jr r r r r r r r r
− − −

    

Put 0l i= and nl j= for some a and b such that ( )a b . 

( ) ( ) ( )
1 1 1 1 1 1
, , ... , , 0,0,1 .

a a a a a a a a a a a a

T I F T I F

l l l l l l l l l l l lr r r r r r
+ + + + + +

     

( ), ,
a a a a a a

T I F

l l l l l lr r r contradicts with fact that R is irreflexive. 
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Therefore ( )0,0,1nR =  

 Corollary 4.1Let R and P be w-transitive square NFMs of order n. If P is irreflexive NFM and  

P R , then ( )/A P R AR= for any mxn matrix A. 

Example:4.1  Let 

0.6,0.4,0.2 0.3,0.4,0.2

0.7,0.4,0.1 0.4,0.4,0.3

0.5,0.4,0.2 0.6,0.4,0.1

A

    
 

=    
 
     

 

1,1,0 0.6,0.4,0.1

0.6,0.4,0.1 1,1,0
R

    
=  

    
 

We assume R be a similarity matrix where ( ), ,T I F

ij ij ijR r r r= denotes the degree. 

Now, let  

0,0,1 0,0,1

0.6,0.4,0.1 0,0,1
P R

    
=  

    
be nilpotent NFM by means of which we reduce A. 

0.3,0.4,0.2 0,0,1

0.4,0.4,0.3 0,0,1

0.6,0.4,0.1 0,0,1

AP

    
 

=    
 
     

. Hence ( )/
c

A P A AP=   

0.6,0.4,0.2 0.3,0.4,0.2

/ 0.7,0.4,0.1 0.4,0.4,0.3

0,0,1 0.6,0.4,0.1

A P

    
 

=    
 
     

 

( )

0.6,0.4,0.2 0.6,0.4,0.2

/ 0.7,0.4,0.1 0.6,0.4,0.1

0.6,0.4,0.1 0.6,0.4,0.1

A P R

    
 

=    
 
     

 

0.6,0.4,0.2 0.6,0.4,0.2

0.7,0.4,0.1 0.6,0.4,0.1

0.6,0.4,0.1 0.6,0.4,0.1

AR

    
 

=    
 
     

 

Therefore, ( )/A P R AR=  

Theorem 4.3 Let R is irrefexive and w-transitive NFM, then ( )/ .R R R
+
  
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Proof:Let ( ), , / ,T I F

ij ij ijN n n n R R = =
 

( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , ,
n n n

T I F T I F T T I I F F

ij ij ij ij ij ij ik kj ik kj ik kj

k k k

n n n r r r r r r r r r
= = =

 
=     

 
. 

To prove ,N R+
suppose ( ), , (0,0,1)T I F

ij ij ijr r r =  and ( ), , (0,0,1)
k k kT I F

ij ij ijn n n   for some k. 

( ) ( ) ( )
1 1 1 1 2 1 2 1 2 1 1 1
, , (0,0,1), , , (0,0,1),..., , , (0,0,1)

k k k

T I F T I F T I F

ih ih ih h h h h h h h j h j h jn n n n n n n n n
− − −

   for 

a few indices 0 1 2 1, , ,..., ,k kh i h h h h j−= =  which implies 

( ) ( ) ( )
1 1 1 1 2 1 2 1 2 1 1 1

, , (0,0,1), , , (0,0,1),..., , , (0,0,1).
k k k

T I F T I F T I F

ih ih ih h h h h h h h j h j h jr r r r r r r r r
− − −

          

By w-transitivity of R, we get ( ), , (0,0,1)T I F

ij ij ijr r r  ,a contradiction, now we have to prove that, 

.R N +
Therefore, R and N is nilpotent, since .N R Assume that ( ), , (0,0,1)T I F

ij ij ijr r r  and 

( ) ( ), , (0,0,1) , , (0,0,1)
k k k k k kT I F T I F

ij ij ij ij ij ijn n n n n n=   for every k=1,2,…,n-1. Since 

( ), , (0,0,1).T I F

ij ij ijn n n  We obtain ( ) ( ) ( )
1 1 1 1 1 1

, , , , , , , (0,0,1)T I F T I F T I F

ih ih ih ij ij ij h j h j h jr r r r r r r r r   

for some 1h consequently ( )
( 2) ( 2) ( 2)

, , (0,0,1)T I F

ij ij ijr r r  . 

Now we must prove that ( ), , (0,0,1)T I F

ip ip ipn n n   and ( ), , (0,0,1)T I F

pj pj pjr r r  for a few p. 

If ( )
1 1 1
, , (0,0,1)T I F

ih ih ihn n n = then 

( ) ( )
2 2 2 1 1 1

, , , , (0,0,1),T I F T I F

ih ih ih ih ih ihr r r r r r  ( ) ( )
2 1 2 1 2 1 1 1 1

, , , , (0,0,1)T I F T I F

h h h h h h ih ih ihr r r r r r   for a 

few h2 and consequently ( )
(3) (3) (3)

, , (0,0,1)T I F

ij ij ijr r r  Of course, ( )
2 2 2

, , (0,0,1).T I F

h j h j h jr r r  If 

( )
2 2 2
, , (0,0,1)T I F

ih ih ihn n n =  then 

( ) ( ) ( ) ( )
3 3 3 2 2 2 3 2 3 2 3 2 2 2 2
, , , , (0,0,1), , , , , (0,0,1)T I F T I F T I F T I F

ih ih ih ih ih ih h h h h h h ih ih ihn n n n n n n n n n n n   

for a few h3 and consequently ( )
( 4) ( 4) ( 4)

, , (0,0,1)T I F

ij ij ijr r r   Of course, 

( )
3 3 3

, , (0,0,1).T I F

h j h j h jr r r   By repeating the same process, we have ( )
( ) ( ) ( )

, , (0,0,1)
n n nT I F

ij ij ijr r r   
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which is impossible because R is nilpotent. So we get ( ), , (0,0,1)
p p p

T I F

ih ih ihn n n  and 

( ), , (0,0,1)T I F

ij ij ijr r r  for a few p. 

Since ( )
( 2) ( 2) ( 2)

, , (0,0,1)T I F

ij ij ijn n n = , we obtain ( )
( 2) ( 2) ( 2)

, , (0,0,1)
p p p

T I F

h j h j h jn n n =  and 

consequently ( ) ( ), , , , (0,0,1),
p p p p p p

T I F T I F

h k h k h k h j h j h jr r r r r r   

( ) ( ), , , , (0,0,1).
p p p

T I F T I F

kj kj kj h j h j h jr r r r r r   By repeating the above process, we get 

( )
( 2) ( 2)

2 2 2
, , (0,0,1)

p p p

T I F

h l h l h ln n n  for a few 2l  and consequently 

( ) ( )
( 2) ( 2) ( 2)

2 2 2 1, , (0,0,1)T I F

il il il pn n n l h = . By continuing this procedure, we would have 

( )
( ) ( ) ( )

, , (0,0,1)
n n n

n n n

T I F

il il iln n n   this leads to a contradiction, as it conflicts with the fact that R is 

nilpotent. 

Example.4.2 Consider irreflexive and w-transitive NFM, whose graph is depicted easily 

(0,0,1) (0.3,0.4,0.6) (0.5,0.4,0.4) (0.3,0.4,0.6)

(0,0,1) (0,0,1) (0.4,0.4,0.5) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (0.4,0.4,0.5) (0.8,0.4,0.1) (0,0,1)

R

 
 
 =
 
 
 

. Then reduction of R and its 

transitive 

 

                Figure 4: Matrix (R/R) 

Now, ( )/ ,
c

R R R R R=    
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(0,0,1) (0.4,0.4,0.5) (0.6,0.4,0.3) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (0.4,0.4,0.5) (0,0,1)

RR

 
 
 =
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Figure 4: Matrix (R/R)+ 

 

5. Conclusion and Future Work 

       This research offers an in-depth analysis of the reduction of Neutrosophic Fuzzy Matrices 

(NFMs), with a specific emphasis on nilpotent NFMs and their representation as acyclic graphs. By 

examining the reduction of irreflexive, transitive, and nilpotent NFMs, we have established key 

insights into the structural behavior of these matrices in complex systems. The work highlights the 

importance of the union of acyclic graphs forming isomorphic cyclic graphs for defining consistent 

systems and emphasizes the role of transitivity in simplifying and analyzing NFMs. We have also 

presented equivalent conditions for reduction, verified the applicability of reduction models for 

s-transitive and w-transitive NFMs, and demonstrated these concepts through numerical examples. 

The study contributes to the theoretical understanding and practical applications of NFMs, 

providing valuable tools for handling uncertainty and complexity in a variety of systems. The 

verified reduction models offer a robust framework for analyzing large-scale neutrosophic fuzzy 

systems, making them more accessible and easier to compute. 

 

The current research provides a significant foundation for the study and application of 

Neutrosophic Fuzzy Matrices (NFMs), yet several opportunities for future exploration remain. One 

promising direction is the development of advanced reduction techniques tailored for large-scale 

and dynamically evolving NFMs. This includes integrating adaptive learning models and 

optimization methods to enhance computational efficiency, particularly for real-time systems. 

Additionally, there is considerable potential in combining NFMs with machine learning 

frameworks to address challenges such as feature extraction and classification in uncertain 

environments, with applications in healthcare, agriculture, and smart systems. Another avenue 
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involves extending the proposed methodologies to interval-valued and multi-attribute NFMs, 

enabling more effective multi-criteria decision-making in complex scenarios like supply chain 

optimization and urban planning. Despite its contributions, the current work has limitations, such 

as scalability concerns and assumptions of ideal conditions, which may limit its applicability to 

real-world datasets. Addressing these issues through noise tolerance mechanisms and distributed 

computing will be critical. Furthermore, the exploration of graph-theoretic properties of NFMs 

presents opportunities for breakthroughs in network analysis and optimization. The findings of this 

research not only enhance theoretical understanding but also hold the potential to revolutionize 

decision-making processes across diverse domains by providing robust tools for managing 

uncertainty and complexity. 
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