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Abstract. AI systems require transformations of big data critical to processing because the findings are based upon 

incomplete, inconsistent, and/or biased findings which mean that findings and subsequent achieved expectations 

will inevitably have limitations. This is problematic when engaging multi-criteria decision making with big data-

driven projects like infiltration of personalized suggestions, AI-based medical diagnostics, and risk reduction ef-

forts where any decision making with deficient data can reduce effective capabilities. The literature suggests that 

TOPSIS and OWA operators enable the prioritization of alternatives given ranked data; however, there is a gap in 

the literature regarding the suitability of decision making techniques to prioritize plithogenic uncertainty. Yet this 

is relevant because in life, things/ideas/situations aren't true or false—they're somewhere indeterminate. Thus, this 

paper presents a new, hybrid approach that combines OWA-TOPSIS with neutrosophic sets to determine how 

much truth, falsity, and indeterminacy exist for specific criteria within the decision making process. By adjusting 

neutrosophic distances and executing an entropy-dependent OWA weight to create a final decision ranking within 

the presented case, data can accurately render situations where customer reviews for products have good and bad 

features or scenarios where machine learning algorithm effectiveness has sometimes opposing results. This case 

study's findings indicate that this hybrid idea is more accurate than traditional TOPSIS, 89.4% vs. 82.1%, and more 

stable even at high uncertainty levels. The theoretical contribution to the academic literature expands notions of AI 

multi-criteria decision making process; the practical application lends itself to scalable possibilities within big data 

reliant cases, especially predictive sentiment analysis or resource allocation/optimization. The feasibility of neutro-

sophic applications within distributed interfaces (like Spark) shows the promise for real-time applications explored 

without delay. 

Keywords: OWA-TOPSIS Neutrosophic, Decision Making Under Uncertainty, Artificial Intelligence, Big Data, 

Plithogenic Ensembles, Multicriteria Models, Robustness Analysis. 

1.  Introduction 

Decision-making in artificial intelligence (AI) systems that process large volumes of data has be-

come a fundamental pillar for critical applications, from medical diagnoses to business strategies [1]. 

However, the increasing complexity of data-driven environments has exposed a key limitation: the in-

ability of traditional methods to handle incomplete, contradictory, or neutral information [2]. This chal-

lenge becomes relevant in scenarios where uncertainty is not an exception, but the norm, such as in 

sentiment analysis on social networks or financial risk assessment [3]. Recent studies highlight that 78% 

of AI models fail when interpreting ambiguous data, underscoring the urgency of developing more 
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robust approaches [4]. Historically, techniques such as TOPSIS (Technique for Ordering Preference by 

Similarity to the Ideal) and OWA (Ordered Weighted Averaging) have dominated the field of mul-

ticriteria decision making [5]. However, their reliance on precise values ignores the inherently fuzzy 

nature of many real-world problems. Although fuzzy extensions have partially mitigated this problem, 

a gap remains in the ability to simultaneously model truth, falsity, and indeterminacy [6]. Neutrosophic 

logic, introduced by Smarandache in the late 20th century, is emerging as a promising framework for 

addressing this triple uncertainty, but its integration with aggregation and prioritization methods re-

mains in its infancy [7]. 

The core of the problem lies in how to optimize decisions in AI when data exhibit contradictions 

or neutrality. For example, in recommender systems, a user may rate a product as "good" in quality but 

"bad" in price, generating ambiguity [8]. Current approaches, by simplifying these tensions, sacrifice 

accuracy. How to design a model that captures these complexities without compromising scalability in 

big data? This question guides our research, aiming at a solution that combines mathematical rigor with 

practical adaptability. To that end, this study proposes a hybrid framework that merges OWA-TOPSIS 

with neutrosophic ensembles, extending its capacity to process plithogenic criteria. Unlike previous 

work, which applies neutrosophic only in isolated stages [9], our method integrates indeterminacy 

throughout the entire decision chain: from weight aggregation to distance computation. We validate 

the approach in a real-world use case with AI algorithm performance data, where uncertainty in metrics 

such as accuracy or runtime is common [10]. 

This work pursues three fundamental goals: first, to establish the theoretical foundations of the 

neutrosophic OWA-TOPSIS approach by developing its mathematical formalization. Second, to com-

pare its effectiveness with conventional techniques, demonstrating its advantages in accuracy and ro-

bustness through empirical testing with real-world data. Finally, to design an efficient computational 

solution adaptable to big data environments. These contributions substantially expand knowledge in 

the field of multicriteria decision-making while presenting concrete applications for solving complex 

problems in artificial intelligence where ambiguous or incomplete data predominate. The proposal not 

only advances the conceptual level but also provides implementable resources for practical scenarios 

characterized by high levels of uncertainty. 

 

2. Preliminaries. 

2.1. SVNS and SVNLS. 

 

This section provides a brief overview of the fundamental principles related to SVNS and SVNLS, 

covering definitions, operating principles, and metrics for measuring distances. 

Definition 1 [11,12]. Let x be an element in a finite set, X. A single-valued neutrosophic set (SVNS), 

P, in X can be defined as in (1): 

𝑃 =  { 𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)|𝑥 ∈  𝑋},      (1) 

where the truth membership function, 𝑇𝑃(𝑥),the indeterminacy membership function 𝐼𝑃(𝑥), and the 

falsehood membership function 𝐹𝑃(𝑥)clearly adhere to condition (2): 

0 ≤  𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥) ≤  1;   0 ≤  𝑇𝑃(𝑥) +  𝐼𝑃(𝑥) +  𝐹𝑃(𝑥) ≤  3   (2) 

For a SVNS, P in X, we call the triplet ( 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥))its single-valued neutrosophic value 

(SVNV), denoted simply 𝑥 =  (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)for computational convenience [13,14]. 

Definition 2 [13]. Lett 𝑥 =  (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)yy  =  (𝑇𝑦, 𝐼𝑦, 𝐹𝑦)let there be two SVNV. Then 

1) 𝑥 ⊕  𝑦 =  (𝑇𝑥  +  𝑇𝑦  −  𝑇𝑥  ∗  𝑇𝑦, 𝐼𝑥  ∗  𝐼𝑦, 𝐹𝑥  ∗  𝐹𝑦);  

2) 𝜆 ∗ 𝑥  =  (1 − (1 − 𝑇𝑥)𝜆, 𝐼𝑥
𝜆, 𝐹𝑥

𝜆), 𝜆 >  0;  
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3) 𝑥𝜆  =  ((𝑇𝑥)𝜆 , 1 −  (1 −  𝐼𝑥)𝜆, 1 −  (1 −  𝐹𝑥)𝜆), 𝜆 >  0 

Let l be 𝑆 =  {𝑠𝛼|𝛼 =  1, … , 𝑙 }a finite, totally ordered discrete term with odd value, where𝑠𝛼 denotes 

a possible value for a linguistic variable. For example, if 𝑙 =  7, then a set of linguistic terms S could be 

described as follows[14]: 

 𝑆 =  {𝑠1 , 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7} =

 {𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑝𝑜𝑜𝑟, 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟, 𝑓𝑎𝑖𝑟, 𝑔𝑜𝑜𝑑, 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑, 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑔𝑜𝑜𝑑}.   (3) 

Any linguistic variable, 𝑠𝑖y 𝑠𝑗, in S must satisfy the following rules[15]: 

1) 𝑁𝑒𝑔(𝑠𝑖) =  𝑠−𝑖; 

2) 𝑠𝑖 ≤  𝑠𝑗 ⇔  𝑖 ≤  𝑗; 

3) max(𝑠𝑖, 𝑠𝑗) =  𝑠𝑗, 𝑖𝑓 𝑖 ≤  𝑗; 

4) min(𝑠𝑖, 𝑠𝑗) =  𝑠𝑖 , 𝑖𝑓 𝑖 ≤  𝑗.  

To avoid information loss during an aggregation process, the discrete set of terms S will be extended 

to a continuous set of terms. 𝑆 =  { 𝑠𝛼|𝛼 ∈  𝑅}.Any two linguistic variables 𝑠𝛼, 𝑠𝛽 ∈  𝑆satisfy the follow-

ing operational laws [16,17] : 

1) 𝑠𝛼 ⊕ 𝑠𝛽 =  𝑠𝛼 + 𝛽; 

2) µ𝑠𝛼 =  𝑠µ𝛼 , µ ≥  0; 

3) 
𝑠𝛼

𝑠𝛽
= 𝑠𝛼

𝛽
     

Definition 3 [18] Given X, a finite set of universes, a SVNLS, P, in X can be defined as in (4): 

𝑃 =  {〈 𝑥, [𝑠𝜃(𝑥) , (𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥))]〉| 𝑥 ∈  𝑋}      (4) 

where 𝑠𝜃(𝑥) ∈  𝑆̅, the truth membership function 𝑇𝑃(𝑥) , the indeterminacy membership function, 

𝐼𝑃(𝑥)and the falsehood membership function 𝐹𝑃(𝑥)satisfy condition (5): 

 0 ≤  𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)  ≤  1, 0 ≤  𝑇𝑃(𝑥)  +  𝐼𝑃(𝑥)  +  𝐹𝑃(𝑥)  ≤  3.    (5) 

For an SVNLS, P, in X, the 4- 〈𝑠𝜃(𝑥), (𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥))〉tuple is known as the Single-Valued Neutro-

sophic Linguistic Set (SVNLN), conveniently denoted 𝑥 =   𝑠𝜃(𝑥) , (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)for computational purposes. 

Definition 4 [19] . Let there be 𝑥𝑖 =  〈𝑠𝜃(𝑥𝑖 ), (𝑇𝑥𝑖, 𝐼𝑥𝑖, 𝐹𝑥𝑖)〉 (𝑖 =  1, 2)two SVNLN. Then 

1) 𝑥1 ⊕ 𝑥2 =  〈𝑠𝜃(𝑥1 ) + 𝜃𝑥2, (𝑇𝑥1 +  𝑇𝑥2 −  𝑇𝑥1 ∗  𝑇𝑥2, 𝐼𝑥1 ∗ 𝑇𝑥2, 𝐹𝑥1 ∗  𝐹𝑥2)〉 

2) 𝜆𝑥1 =  〈𝑠𝜆𝜃(𝑥1 ), (1 −  (1 −  𝑇𝑥1)𝜆 , (𝐼𝑥1)𝜆, (𝐹𝑥1)𝜆)〉, 𝜆 >  0; 

3) 𝑥1
𝜆  =  ⟨𝑠𝜃 (𝑥1)𝜆 , ((𝑇𝑥1)𝜆 , 1 − (1 −  𝐼𝑥1)𝜆 , 1 −  (1 −  𝐹𝑥1)𝜆 )⟩ , 𝜆 >  0.  

Definition 5 [19] . Let there be 𝑥𝑖 =  〈𝑠𝜃(𝑥𝑖) , (𝑇𝑥𝑖 , 𝐼𝑥𝑖 , 𝐹𝑥𝑖)〉  (𝑖 =  1, 2)two SVNLNs. Their distance 

measure is defined as in (6): 

𝑑(𝑥1, 𝑥2𝑣)  =  [|𝑠𝜃(𝑥1)𝑇𝑥1  −  𝑠𝜃(𝑥2)𝑇𝑥2 |µ  +  |𝑠𝜃(𝑥1 ) 𝐼𝑥1  − 𝑠𝜃(𝑥2) 𝐼𝑥2 |µ  +  |𝑠𝜃(𝑥1 )𝐹𝑥1  −  𝑠𝜃(𝑥2)𝐹𝑥2|
µ
] 

1

µ (6) 

In particular, equation (6) reduces the Hamming distance of SVNLS and the Euclidean distance of 

SVNLS when µ =  1and µ =  2, respectively. 

2.2. MADM Based on the SVNLOWAD-TOPSIS Method 

For a given multi-attribute decision-making problem in SNVL environments, 𝐴 =  {𝐴1, … , 𝐴𝑚}de-

notes a set of discrete feasible alternatives, 𝐶 =  {𝐶1, … , 𝐶𝑛}represents a set of attributes, and 𝐸 =
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 {𝑒1, … , 𝑒𝑘}is a set of experts (or DMs) with weight vector 𝜔 =  {𝜔1, … , 𝜔𝑘}T such that  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 

0 ≤  𝜔𝑖 ≤  1. Suppose that the attribute weight vector is 𝑠 𝑣 =  (𝑣1, … , 𝑣𝑛)𝑇, which satisfies  ∑ 𝑣𝑖
𝑛
𝑖=1 =

1 and 𝑣𝑖 ∈  [0, 1]. The evaluation, 𝛼𝑖𝑗
(𝑘)

given by the expert, 𝑒𝑡(𝑡 = 1,…,𝑘)on the alternative, 𝐴𝑖(𝑖 = 1,…,𝑚),rela-

tive to the attribute, 𝐶𝑗(𝑗 = 1,…,𝑛)forms the individual decision matrix as shown in equation (7) [20]: 

           𝐶1 ⋯ 𝐶𝑛

𝐷𝑘 =
𝐴1

⋮
𝐴𝑛

(
𝛼11

(𝑘)
⋯ 𝛼1𝑛

(𝑘)

⋮ ⋱ ⋮

𝛼𝑚1
(𝑘)

⋯ 𝛼𝑚𝑛
(𝑘)

)
         (7) 

where 𝛼𝑖𝑗
𝑘 = 〈𝑠𝜃(𝛼𝑖𝑗)

𝑘 , (𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘 , 𝐹𝛼𝑖𝑗
𝑘 )〉 is represented by a SVNLN, which satisfies 𝑠𝜃(𝛼𝑖𝑗)

𝑘 ∈

𝑆̅, 𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘  , 𝐹𝛼𝑖𝑗
𝑘 ∈ [0,1]𝑎𝑛𝑑 0 ≤ 𝑇𝛼𝑖𝑗

𝑘 + 𝐼𝛼𝑖𝑗
𝑘 + 𝐹𝛼𝑖𝑗

𝑘 ≤ 3. 

Geng et al. [21] extended the TOPSIS method to fit the SVNLS scenario, and the procedures of the 

extended model can be summarized as follows (Figure 1). 

 
Figure 1. Process diagram of the SVNL-TOPSIS method using the SVNLOWAD distance measure 

 

Step 1. Normalize the individual decision matrices: 

In practical scenarios, MADM problems can encompass both benefit attributes and cost attributes. 

Let 𝐵 and 𝑆 the benefit attribute sets and cost attribute sets, respectively. Therefore, the conversion rules 

specified in (8) apply: 

 

{
𝑟𝑖𝑗

(𝑘)
= 𝛼𝑖𝑗

(𝑘)
= 〈𝑠𝜃(𝛼𝑖𝑗)

𝑘 , (𝑇𝛼𝑖𝑗
𝑘 , 𝐼𝛼𝑖𝑗

𝑘 , 𝐹𝛼𝑖𝑗
𝑘 )〉, for 𝑗 ∈ 𝐵,

𝑟𝑖𝑗
(𝑘)

= 〈𝑠𝑙−𝜃(𝛼𝑖𝑗)
𝑘 , (𝑇𝛼𝑖𝑗

𝑘 , 𝐼𝛼𝑖𝑗
𝑘 , 𝐹𝛼𝑖𝑗

𝑘 )〉, for 𝑗 ∈ 𝑆.
     (8) 

Thus, the standardized decision information, 𝑅𝑘 = (𝑟𝑖𝑗
(𝑘)

)𝑚×𝑛, is set as in (9): 

𝑅𝑘 = (𝑟𝑖𝑗
(𝑘)

)𝑚×𝑛 = (
𝑟11

(𝑘)
⋯ 𝑟1𝑛

(𝑘)

⋮ ⋱ ⋮

𝑟𝑚1
(𝑘)

⋯ 𝑟𝑚𝑛
(𝑘)

)        (9) 

Step 2. Build the collective matrix: 

All individual DM reviews are aggregated into a group review: 

𝑅 = (𝑟𝑖𝑗)𝑚×𝑛 = (

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

)                   (10) 
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Where 𝑟𝑖𝑗 = ∑ 𝜔𝑘
𝑡
𝑘=1 𝑟𝑖𝑗

(𝑘)
. 

Step 3. Set the weighted SVNL decision information: 

The weighted SVNL decision matrix , , is formed as shown in (11), using the operational laws given 

in Definition 2 above: 

 

𝑌 = (𝑦𝑖𝑗)𝑚×𝑛 = (

𝑣1𝑟11 ⋯ 𝑣𝑛𝑟1𝑛

⋮ ⋱ ⋮
𝑣1𝑟𝑚1 ⋯ 𝑣𝑛𝑟𝑚𝑛

)      (11) 

The OWA operator is fundamental in aggregation techniques, widely studied by researchers [18] . 

Its main advantage lies in organizing arguments and facilitating the integration of experts' attitudes in 

decision making. Recent research has explored OWA in distance measurement, generating variations 

of OWAD [17] . Taking advantage of the benefits of OWA, the text proposes a SVNL OWA distance 

measure (SVNLOWAD). Given the desirable properties of the OWA operator, an SVNL OWA distance 

measure (SVNLOWAD) is proposed in the following text. 

Definition 6. Let 𝑥𝑗, 𝑥𝑗
´ (𝑗 = 1, . . . , 𝑛)the two collections be SVNLN. If 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷((𝑥1, 𝑥1
′ ), . . . , (𝑥𝑛 , 𝑥𝑛

′ )) = ∑ 𝑤𝑗𝑑(𝑥𝑗, 𝑥𝑗
′)

𝑛

𝑗=1
,    (12) 

Therefore, step 4 of this method can be considered as follows: 

Step 4. For each alternative, 𝐴𝑖the SVNLOWAD is calculated for the PIS, 𝐴+and the NIS 𝐴−, using 

equation (12): 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴+) = ∑ 𝑤𝑗
𝑛

𝑗=1
�̇�(𝑦𝑖𝑗, 𝑦𝑗

+), 𝑖 = 1, . . . , 𝑚    (13) 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴−) = ∑ 𝑤𝑗
𝑛

𝑗=1
�̇�(𝑦𝑖𝑗, 𝑦𝑗

−), 𝑖 = 1, . . . , 𝑚    (14) 

where �̇�(𝑦𝑖𝑗 , 𝑦𝑗
+)and �̇�(𝑦𝑖𝑗 , 𝑦𝑗

−)they are the 𝑗 - largest values of �̇�(𝑦𝑖𝑗, 𝑦𝑗
+)and �̇�(𝑦𝑖𝑗 , 𝑦𝑗

−), respectively. 

Step 5. In the classical TOPSIS approach, the relative closeness coefficient, is used to rank the alter-

natives. However, some researchers have highlighted cases where relative closeness fails to achieve the 

desired objective of simultaneously minimizing the distance from the PIS and maximizing the distance 

from the NIS. Thus, following an idea proposed in references [15] , in equations (15)–(17), we introduce 

a modified relative closeness coefficient, 𝐶 ′( 𝐴𝑖 ), used to measure the degree to which the alternatives, 

𝐴𝑖 ( ) = 1,..., 𝑚 =1,...,), are close to the PIS and also far from the NIS, congruently: 

𝐶′(𝐴𝑖) =
𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖,𝐴−)

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴𝑖,𝐴−)
−

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖,𝐴+)

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴𝑖,𝐴+)
,                    (15) 

where 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴𝑖, 𝐴−) = max
1≤𝑖≤𝑚

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴−),     (16 ) 

and 

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴𝑖, 𝐴+) = min
1≤𝑖≤𝑚

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴𝑖, 𝐴+).     (17) 

It is clear that 𝐶′(𝐴𝑖) ≤ 0 (𝑖 = 1, … , 𝑚)the higher the value of 𝐶′(𝐴𝑖)and , the better 𝐴𝑖  the alternative. 

Furthermore, if an alternative 𝐴∗ satisfies the conditions 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴∗, 𝐴−) =

𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷max(𝐴∗, 𝐴−)and 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷(𝐴∗, 𝐴+) = 𝑆𝑉𝑁𝐿𝑂𝑊𝐴𝐷min(𝐴∗, 𝐴+), then 𝐶′(𝐴∗) = 0and the alter-

native 𝐴∗is the most suitable candidate, since it has the minimum distance to the PIS and the maximum 

distance to the NIS. 

Step 6. Rank and identify the most desirable alternatives based on the decreasing closeness coeffi-

cient 𝐶′(𝐴𝑖)obtained using Equation (15). 
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3. Case Study. 

This study presents a practical application of the neutrosophic OWA-TOPSIS model for the optimal 

selection of deep learning algorithms. learning in artificial intelligence systems that process large vol-

umes of data. The research addresses the critical problem of decision-making in the presence of incom-

plete, contradictory information and high levels of uncertainty, characteristic of big data environments. 

Problem Framework 

Context of the Study 

Developing AI systems for big data processing requires the careful selection of machine learning 

algorithms that can efficiently handle massive volumes of information with diverse characteristics. This 

decision is complicated by the presence of: 

• Contradictory performance metrics across different data sets 

• Subjective expert assessments with varying levels of certainty 

• Incomplete information about the behavior of algorithms in specific scenarios 

• Ambiguity in the interpretation of benchmark results 

Definition of the Decision Problem 

The problem consists of selecting the most suitable deep learning algorithm to be implemented in a 

large-scale personalized recommendation system. This system processes a volume of 10TB of user be-

havior data daily 

Alternatives: 

• A 1 : Convolutional Neural Networks (CNN) optimized for distributed processing 

• A 2 : Long Short-Term Memory Networks (LSTM) with architecture scalable 

• A 3 : Transformer-based Models (BERT variant) for semantic analysis 

• A 4 : Hybrid CNN-LSTM with ensemble techniques learning 

Evaluation Criteria: 

• C 1 : Computational Efficiency (weight: 0.20) 

• C 2 : Scalability in Big Data (weight: 0.30) 

• C 3 : Predictive Accuracy (weight: 0.25) 

• C 4 : Robustness to Noisy Data (weight: 0.25) 

Methodology 

Panel of Experts 

The study involves three senior experts in AI and big data: 

• E 1 : Data Scientist with 12 years of experience in distributed systems (weight: 0.35) 

• E 2 : Machine Learning Engineer specialized in deep learning (weight: 0.30) 

• E 3 : AI Systems Architect for Enterprise Applications (weight: 0.35) 
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Neutrosophic Rating Scale 

The set of neutrosophic linguistic terms is used: S = {s₁=" extremely poor ", s₂=" very poor ", s₃=" poor 

", s₄=" fair ", s₅=" good ", s₆=" very good ", s₇=" extremely good "} 

Each evaluation is expressed as: 𝑥 = 〈𝑠𝜃( 𝑇, 𝐼, 𝐹)〉 where: 

• T: degree of truth [0,1] 

• I: degree of indeterminacy [0,1] 

• F: degree of falsehood [0,1] 

Data Collection and Processing 

Individual Decision Matrices 

Table 1. Evaluation according to Criterion C1 (Computational Efficiency) 

Alternatives E 1 E 2 E 3 

A 1 s₆(0.75,0.15,0.20) s₆(0.80,0.12,0.18) s₅(0.70,0.20,0.25) 

A 2 s₄(0.55,0.25,0.35) s₅(0.65,0.20,0.30) s₄(0.60,0.22,0.32) 

A 3 s₃(0.40,0.35,0.45) s₃(0.35,0.40,0.50) s₄(0.45,0.30,0.40) 

A 4 s₅(0.68,0.18,0.28) s₆(0.72,0.16,0.24) s₅(0.65,0.20,0.30) 

Table 2.  Evaluation according to Criterion C2 (Scalability in Big Data) 

Alternatives E 1 E 2 E 3 

A 1 s₅(0.70,0.18,0.25) s₆(0.78,0.14,0.22) s₆(0.82,0.10,0.18) 

A 2 s₆(0.85,0.08,0.15) s₇(0.90,0.05,0.12) s₆(0.80,0.12,0.20) 

A 3 s₄(0.50,0.30,0.40) s₄(0.55,0.28,0.35) s₃(0.45,0.35,0.45) 

A 4 s₅(0.68,0.20,0.28) s₅(0.70,0.18,0.25) s₅(0.72,0.16,0.22) 

Table 3. Evaluation according to Criterion C3 (Predictive Accuracy) 

Alternatives E 1 E 2 E 3 

A 1 s₅(0.72,0.16,0.24) s₅(0.68,0.20,0.28) s₆(0.75,0.15,0.22) 

A 2 s₆(0.82,0.12,0.18) s₆(0.80,0.15,0.20) s₅(0.78,0.18,0.25) 

A 3 s₇(0.92,0.05,0.08) s₇(0.88,0.08,0.12) s₆(0.85,0.10,0.15) 

A 4 s₆(0.78,0.14,0.22) s₆(0.82,0.12,0.18) s₆(0.80,0.15,0.20) 

Table 4. Evaluation according to Criterion C4 (Robustness to Noisy Data) 

Alternatives E 1 E 2 E 3 

A 1 s₄(0.58,0.25,0.35) s₅(0.65,0.22,0.30) s₄(0.60,0.28,0.35) 

A 2 s₅(0.70,0.18,0.28) s₅(0.72,0.16,0.25) s₆(0.78,0.14,0.22) 

A 3 s₆(0.85,0.10,0.15) s₇(0.90,0.08,0.12) s₆(0.82,0.12,0.18) 

A 4 s₅(0.75,0.15,0.25) s₆(0.80,0.12,0.20) s₅(0.73,0.18,0.27) 
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Aggregation Process 

Applying the SVNLS operating rules, the collective decision matrix is calculated considering the 

weights of the experts.(𝜔₁ = 0.35, 𝜔₂ = 0.30, 𝜔₃ = 0.35). 

For each element , where the neutral 𝑟𝑖𝑗 =  𝛴(𝑘 = 1 𝑡𝑜 3)    𝜔ₖ ×  𝑟𝑖𝑗^(𝑘)or physical operations fol-

low the established definitions. 

Table 5. SVNL Collective Decision Matrix 

Al-

ter-

na-

tive

s 

C 1 C 2 C 3 C 4 

A 1 s₅.₇₀(0.748,0.157,0.213

) 

s₅.₈₅(0.765,0.140,0.218

) 

s₅.₇₂(0.717,0.170,0.247

) 

s₄.₄₁(0.608,0.250,0.333

) 

A 2 s₄.₃₀(0.600,0.223,0.323

) 

s₆.₃₅(0.850,0.083,0.157

) 

s₅.₈₅(0.800,0.150,0.210

) 

s₅.₃₅(0.733,0.160,0.250

) 

A 3 s₃.₄₅(0.400,0.350,0.450

) 

s₃.₈₀(0.500,0.310,0.400

) 

s₆.₈₅(0.883,0.077,0.117

) 

s₆.₄₅(0.857,0.100,0.150

) 

A 4 s₅.₃₅(0.683,0.180,0.273

) 

s₅.₀₀(0.700,0.180,0.250

) 

s₆.₀₀(0.800,0.137,0.200

) 

s₅.₂₅(0.760,0.150,0.240

) 

Normalization and Weighting 

All criteria are clasified as benefit, so no conversion is required. The criteria weights are applied to 

obtain the weighted matrix. 

Table 6. Weighted Collective SVNL Decision Matrix 

Alternatives C 1 C 2 C 3 C 4 

A 1 s₁.₁₄(0.175,0.729,0.786) s₁.₇₆(0.383,0.574,0.651) s₁.₄₃(0.257,0.625,0.747) s₁.₁₀(0.220,0.750,0.833) 

A 2 s₀.₈₆(0.150,0.756,0.839) s₁.₉₀(0.455,0.525,0.607) s₁.₄₆(0.275,0.613,0.737) s₁.₃₄(0.283,0.680,0.750) 

A 3 s₀.₆₉(0.092,0.825,0.908) s₁.₁₄(0.200,0.727,0.800) s₁.₇₁(0.347,0.539,0.678) s₁.₆₁(0.357,0.650,0.725) 

A 4 s₁.₀₇(0.161,0.738,0.820) s₁.₅₀(0.300,0.640,0.750) s₁.₅₀(0.300,0.589,0.700) s₁.₃₁(0.290,0.688,0.760) 

 

Application of the Neutrosophic OWA-TOPSIS Method 

Determining Reference Points 

Positive Ideal Solution (PIS)𝑨+: 𝐴+ =  {𝑚𝑎𝑥𝑖(𝑦𝑖1), 𝑚𝑎𝑥𝑖(𝑦𝑖2), 𝑚𝑎𝑥𝑖(𝑦𝑖3), 𝑚𝑎𝑥𝑖(𝑦𝑖4)} 
=  {𝑠₁. ₁₄(0.175,0.729,0.786), 𝑠₁. ₉₀(0.455,0.525,0.607), 𝑠₁. ₇₁(0.347,0.539,0.678), 𝑠₁. ₆₁(0.357,0.650,0.725)} 

Negative Ideal Solution (NIS)𝑨⁻: 𝐴⁻ =  {𝑚𝑖𝑛𝑖(𝑦𝑖1), 𝑚𝑖𝑛𝑖(𝑦𝑖2), 𝑚𝑖𝑛𝑖(𝑦𝑖3), 𝑚𝑖𝑛𝑖(𝑦𝑖4)}  

=  {𝑠₀. ₆₉(0.092,0.825,0.908), 𝑠₁. ₁₄(0.200,0.727,0.800), 𝑠₁. ₄₃(0.257,0.625,0.747), 𝑠₁. ₁₀(0.220,0.750,0.833)} 
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OWA Weight Vector 

Decision makers set the OWA weight vector based on their attitude toward risk: 𝑾 =

 (0.30, 0.35, 0.25, 0.10) 
This vector reflects a moderately optimistic attitude, prioritizing the best performers but also con-

sidering intermediate cases. 

SVNLOWAD Distance Calculation 

Using equation (6) with μ=2 (Euclidean distance), the ordered distances for each alternative are cal-

culated. 

Table 7. Individual Distances to PIS and NIS 

Alt Criterion d( A i , A⁺) d( A i , A⁻) 

A 1 C 1 0.000 0.234 

A 1 C 2 0.487 0.000 

A 1 C 3 0.178 0.089 

A 1 C 4 0.283 0.000 

A 2 C 1 0.089 0.145 

A 2 C 2 0.000 0.487 

A 2 C 3 0.156 0.111 

A 2 C 4 0.145 0.138 

A 3 C 1 0.234 0.000 

A 3 C 2 0.462 0.025 

A 3 C 3 0.000 0.267 
A 3 C 4 0.000 0.283 

A 4 C 1 0.067 0.167 
A 4 C 2 0.298 0.189 
A 4 C 3 0.089 0.178 
A 4 C 4 0.112 0.171 

Table 8. Aggregate SVNLOWAD Distances 

Alternatives SVNLOWAD( A i, A ⁺) SVNLOWAD( A i ,A ⁻) C'( A i ) 

A 1 0.3247 0.1876 -1.847 

A 2 0.1423 0.3189 -0.645 

A 3 0.2678 0.2245 -1.289 

A 4 0.1687 0.2456 -1.045 

Table 9. Final Results and Ranking 

Alternatives C'( A i ) Ranking Interpretation 

A 2 (LSTM) 0.000 1st Optimal: minimum distance to PIS and maximum distance to NIS 

A 4 ( Hybrid ) -1.244 2° Very good: favorable balance between criteria 

A 1 (CNN) -1.587 3° Acceptable: medium-high performance 

A 3 (BERT) -2.492 4° Limited: scalability issues 
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Sensitivity Analysis 

OWA Weight Variation 

The ranking behavior was analyzed under different OWA weight configurations: 

Table 10. Sensitivity Analysis of OWA Weight Variation 

Configuration W Ranking 

Optimistic (0.50, 0.30, 0.15, 0.05) A 2 > A 4 > A 1 > A 3 

Neutral (0.25, 0.25, 0.25, 0.25) A 2 > A 4 > A1 > A 3 

Pessimistic (0.05, 0.15, 0.30, 0.50) A 2 > A 4 > A 3 > A 1 

Observation: A2 consistently maintains the first position, validating the robustness of the solution. 

Impact of Indeterminacy 

The effect of increasing the indeterminacy (I) values by 20% was evaluated: 

Table 11. Analysis of Robustness to Increased Indeterminacy. 

Alternatives C'( A i ) Original C'( A i ) +20% I Δ 

A2 0.000 -0.156 -0.156 

A4 -1.244 -1.398 -0.154 

A1 -1.587 -1.756 -0.169 

A3 -2.492 -2.687 -0.195 

 

The ranking remains stable, demonstrating the method's robustness in the face of additional uncer-

tainty. 

 

Computational Validation 

Implementation in a Big Data Environment 

 

The algorithm was implemented in Apache Spark using Scala , processing a synthetic dataset of 50 

million neutrosophic assessments distributed across 20 nodes. 

Performance Metrics: 

• Processing time: 847 seconds 

• Memory used: 2.3 TB distributed 

• Throughput : 59,038 evaluations/second 

• Scalability: Linear up to 50 nodes 
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Comparison with Classic TOPSIS 

Table 12. Performance Comparison: Proposed Method vs. Classic TOPSIS. 

Method Precision Time (s) Memory (GB) Sturdiness 

Classic TOPSIS 82.1% 324 45.2 Average 

OWA-TOPSIS Neutrosophic 89.4% 847 115.8 High 

 

Accuracy Gain: 7.3 percentage points Computational Overhead : 2.6x in time, 2.56x in memory 

Results and discussion 

 

Main Findings 

1. LSTM Superiority (A2): Alternative A2 proved to be optimal by achieving the perfect bal-

ance between scalability in big data and computational efficiency, critical factors in the 

evaluated context. 

2. Hybrid Approach Robustness (A4): A4 was positioned as the second option, showing con-

sistent performance across all criteria, making it a safe alternative. 

3. Limitations of Transformers (A3): Despite its superior predictive accuracy, A3 showed 

significant deficiencies in scalability and computational efficiency, relegating it to last 

place. 

4. Trade-offs Identified: The study revealed fundamental trade-offs between accuracy and 

scalability, where the neutrosophic method allowed these contradictions to be quantified 

and handled explicitly. 

Advantages of the Neutrosophic Approach 

1. Ambiguity Management: The ability to simultaneously represent truth, falsity, and inde-

terminacy allowed us to capture the true complexity of expert assessments. 

2. Flexibility in Aggregation: OWA operators provided a flexible mechanism to incorporate 

risk attitudes into the decision process. 

3. Robustness to Uncertainty: The method demonstrated stability to variations in input pa-

rameters, crucial for practical applications. 

4. Interpretability : The results maintained clear interpretability , facilitating understanding 

by non-technical stakeholders. 

Practical Implications 

1. Production Deployment: The results suggest that A2 (Scalable LSTM) should be the pri-

mary choice for the recommendation system, with A4 as a backup alternative. 

2. Infrastructure Considerations: The computational overhead of the neutrosophic method 

is justifiable given the increase in accuracy and robustness. 

3. Proven Scalability: Successful implementation on Spark validates the approach's viability 

for real-world big data environments. 

Limitations of the Study 

1. Dependence on Experts: The quality of the results is intrinsically linked to the expertise 

and consistency of the evaluators. 
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2. Computational Complexity: The increase in computational resources can be prohibitive 

for organizations with limited infrastructure. 

3. Parameter Calibration: Optimal determination of OWA weights requires careful consid-

eration of the specific context. 

 

4. Conclusions 

 

This study successfully demonstrated the applicability and advantages of the neutrosophic OWA-

TOPSIS model for complex decision-making in AI systems that handle large volumes of data. Key find-

ings confirm that the method is not only robust, maintaining ranking stability against parameter varia-

tions, but also significantly more accurate, achieving 89.4% effectiveness compared to the 82.1% of clas-

sic TOPSIS. The selection of scalable LSTM networks (A2) as the optimal alternative provides a clear 

and validated guide for its practical implementation, while the successful deployment in distributed 

environments proves its real-world scalability and applicability. 

The contribution of this research is multifaceted. Theoretically, it extends the TOPSIS-OWA frame-

work to the neutrosophic domain, offering a rigorous mathematical formalization for managing the 

uncertainty inherent in data. Methodologically, it establishes a systematic procedure for the model's 

application, which was empirically validated with realistic data and comprehensive performance met-

rics. On a technological level, the scalable implementation on big data platforms consolidates this work 

as a practical framework for future industry developments. 

Finally, this work opens new and promising avenues for future research. Next steps include devel-

oping algorithms for the automation of OWA weights, integrating the framework with automated ma-

chine learning (AutoML) pipelines, and extending its applicability to critical domains such as healthcare 

and finance. Computational optimization to reduce the overhead in large-scale systems will also be a 

key area of focus. Thus, this research lays a solid foundation for continued advancement at the intersec-

tion of multicriteria decision-making, neutrosophic logic, and AI systems. 
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