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matical analysis and applied sciences.
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1. Introduction

Fixed-point theory is a fundamental area of mathematical analysis with extensive applica-

tions across various disciplines. The Banach contraction principle, introduced in [4], plays a
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crucial role in addressing existence problems in nonlinear analysis. Over time, it has been

refined and extended into numerous fixed-point theorems using diverse methodologies.

Simultaneously, fuzzy set theory has gained widespread recognition as a powerful tool in

multiple fields, providing the foundation for advanced mathematical models and practical

applications. First introduced by Zadeh [23] in 1965, fuzzy sets offer an effective means of

handling uncertainty and imprecision, surpassing the limitations of classical binary logic. This

framework facilitates the modeling of vague and ill-defined scenarios where traditional ap-

proaches struggle.

Building on this foundation, Kramosil and Michalek [16] developed fuzzy metric and sta-

tistical metric spaces, extending classical metric spaces to better accommodate uncertainty

and variability. Their pioneering work laid the groundwork for the subsequent development

of intuitionistic and neutrosophic fuzzy metric spaces, which have significantly broadened the

scope of fixed-point theory in mathematical and applied sciences.

Further advancements came from George and Veeramani [8], who established key results

on fixed points, clarifying fundamental aspects of continuity and convergence in fuzzy metric

spaces. Grabiec [7] expanded this framework by introducing G-Cauchy sequences, a concept

that deviates significantly from classical Cauchy sequences as formulated by George and Veera-

mani. Notably, it has been demonstrated that conventional fuzzy metric spaces are not G-

complete, and compactness in fuzzy metric spaces does not necessarily imply G-completeness.

A major breakthrough occurred in 1986 when Atanassov [2] introduced intuitionistic fuzzy

sets as a generalization of fuzzy sets. His work explored various set-theoretic operations,

relations, and connections with modal and topological operators, thereby enriching the theo-

retical foundation of fuzzy set theory. This concept was later extended by Park [17] in 2004,

who defined intuitionistic fuzzy metric spaces, further advancing the field and expanding its

applicability to complex mathematical structures.

In 2011, Azam et al. [3] introduced complex-valued metric spaces into fixed-point theory,

replacing positive real numbers with ordered complex numbers to derive fixed-point results

under rational inequality conditions. Later, Shukla et al. [20] extended this concept to fuzzy

metric spaces, defining complex-valued fuzzy metric spaces and establishing fixed-point results

for mappings satisfying specific contractive conditions. This field remains an active area of

research, as evidenced by the contributions of [5,24] and the comprehensive studies by Humaira

et al. [8]- [10], which provide various results with real-world applications.

A significant development occurred in 1998 when Smarandache [21] introduced neutrosophic

theory as an extension of fuzzy set theory, allowing for the independent treatment of truth,

indeterminacy, and falsity. Later, Kirisci and Simsek [14] expanded this idea by defining neu-

trosophic metric spaces, offering a mathematical framework to address uncertainty, vagueness,
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and indeterminacy. Further advancements were made by Sowndrarajan et al. [22], who demon-

strated the utility of neutrosophic metric spaces by proving fixed-point results for contraction

theorems in this context.

This paper presents a novel extension of fuzzy metric spaces by introducing complex-valued

neutrosophic metric spaces, which unify and broaden the scope of both complex-valued fuzzy

metric spaces [20] and intuitionistic fuzzy metric spaces [11]. We establish several fixed-point

results for mappings satisfying specific contractive conditions in this setting. Additionally, we

provide illustrative examples and real-world applications to highlight the practical significance

of the proposed framework.

2. Preliminaries

This study requires the following definitions and preliminary results.

We use the following symbols to denote specific sets:

(a) N: The set of natural numbers.

(b) N0: The set of non-negative integers.

(c) C: The set of complex numbers.

The following definitions are introduced:

(i) ζ = {(p, q) : 0 ≤ p <∞, 0 ≤ q <∞} ⊂ C.

(ii) The points (0, 0) and (1, 1) in C are denoted by θ and ℓ, respectively.

(iii) The closed unit complex interval is defined as

Υ = {(p, q) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}.

(iv) The open unit complex interval is given by

Υ0 = {(p, q) : 0 < p < 1, 0 < q < 1}.

Moreover, we define

ζ0 = {(p, q) : 0 < p <∞, 0 < q <∞}.

A partial order ⪯ is established on C, where for any τ1, τ2 ∈ C, we define

τ1 ⪯ τ2 ⇐⇒ τ2 − τ1 ∈ ζ.

We write τ1 ≺ τ2 to indicate that Re(τ2) > Re(τ1) and Im(τ2) > Im(τ1). This implies that

τ1 ≺ τ2 if and only if τ2 − τ1 ∈ ζ0.

Now, let {τn} be a sequence in C. The sequence is monotonic with respect to ⪯ if either:

τn+1 ⪯ τn or τn ⪯ τn+1, ∀n ∈ N.
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The infimum of any subset Ω ⊂ C is denoted by inf Ω and satisfies inf Ω ⪯ η for all η ∈ Ω.

Similarly, the supremum (least upper bound) of Ω is denoted by supΩ.

Remark 2.1. [20] Suppose {τn} (with n ∈ N) be a sequence in the partially ordered set (ζ,⪯).

The following properties hold:

(1) If {τn} is monotonic with respect to ⪯ and there exist elements µ, ν ∈ ζ such that

µ ⪯ τn ⪯ ν for all n ∈ N, then the sequence {τn} converges to some τ ∈ ζ, i.e., τn → τ

as n→ ∞.

(2) The partial order ⪯ defines a lattice structure on C, although it is not a total order.

(3) If a subset Ω ⊂ C is bounded with respect to ⪯ – that is, there exist µ, ν ∈ C such that

µ ⪯ η ⪯ ν for all η ∈ Ω – then both the infimum inf Ω and the supremum supΩ exist.

Remark 2.2. [20] Suppose τn, τ
′
n (for each n ∈ N) and τ in ζ0. The following statements

hold:

(1) If τn ⪯ τ ′n ⪯ ℓ for all n ∈ N and lim
n→∞

τn = ℓ, then lim
n→∞

τ ′n = ℓ

(2) If τn ⪯ λ for all n ∈ N and there exists some τ ∈ ζ such that lim
n→∞

τn = τ , then τ ⪯ λ.

(3) If λ ⪯ τn for all n ∈ N and there exists some τ ∈ ζ such that lim
n→∞

τn = τ , then λ ⪯ τ .

Definition 2.3. [20] A binary operation ∗ mapping from Υ2 to Υ is called a complex-valued

t-norm (CVTN) if it satisfies the following conditions:

(1) θ ∗ τ = θ, ℓ ∗ τ = τ for all τ ∈ Υ,

(2) ∗ is associative and commutative,

(3) If τ3 ⪰ τ1 and τ4 ⪰ τ2, then τ3 ∗ τ4 ⪰ τ1 ∗ τ2 for all τ1, τ2, τ3, τ4 ∈ Υ.

Example 2.4. [20] Let τ1 = (p1, q1) and τ2 = (p2, q2) in Υ, the following are examples of

complex-valued t-norms:

(1) τ1 ∗ τ2 = (p1p2, q1q2)

(2) τ1 ∗ τ2 = (min{p1, p2},min{q1, q2})

(3) τ1 ∗ τ2 = (max{p1 + p2 − 1, 0},max{q1 + q2 − 1, 0})

Definition 2.5. [11] A binary operation ♢ mapping from Υ2 to Υ is called a complex-valued

t-conorm (CVTCN) if it satisfies the following conditions:

(1) τ♢θ = τ , τ♢ℓ = ℓ for all τ ∈ Υ.

(2) ♢ is associative and commutative.

(3) If τ3 ⪰ τ1 and τ4 ⪰ τ2, then τ3♢τ4 ⪰ τ1♢τ2 for all τ1, τ2, τ3, τ4 ∈ Υ.

Example 2.6. Some examples of complex-valued t-conorms are:

(1) τ1♢τ2 = (p1 + p2, q1 + q2)− (p1p2, q1q2).
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(2) τ1♢τ2 = (max{p1, p2},max{q1, q2}).

(3) τ1♢τ2 = (min{p1 + p2, 1},min{q1 + q2, 1}).

Definition 2.7. [11] Let Ξ be a non-empty set, and let ∗ and ♢ denote a CVTN and a

CVTCN, respectively. Furthermore, let A and B be complex fuzzy sets defined on Ξ2 × ζ0

such that the following conditions hold:

(1) A (ζ, ϑ, τ) + B(ζ, ϑ, τ) ⪯ ℓ.

(2) A (ζ, ϑ, τ) ≻ θ.

(3) A (ζ, ϑ, τ) = ℓ for all τ ∈ ζ0 if and only if ζ = ϑ.

(4) A (ζ, ϑ, τ) = A (ϑ, ζ, τ).

(5) A (ζ, ς, τ + τ ′) ⪰ A (ζ, ϑ, τ) ∗ A (ϑ, ς, τ ′).

(6) The mapping A (ζ, ϑ, ·) from ζ0 to Υ is continuous.

(7) B(ζ, ϑ, τ) ≺ ℓ.

(8) B(ζ, ϑ, τ) = θ for all τ ∈ ζ0 if and only if ζ = ϑ.

(9) B(ζ, ϑ, τ) = B(ϑ, ζ, τ).

(10) B(ζ, ς, τ + τ ′) ⪯ B(ζ, ϑ, τ)♢B(ϑ, ς, τ ′).

(11) The mapping B(ζ, ϑ, ·) from ζ0 to Υ is continuous.

Here, ζ, ϑ, ς ∈ Ξ and τ, τ ′ ∈ ζ0.

Under these conditions, the 5-tuple (Ξ,A ,B, ∗,♢) is called a complex-valued intuitionistic

fuzzy metric space.

3. Main results

This section presents and analyzes the properties of complex-valued neutrosophic metric

spaces (CVNMS).

Definition 3.1. Let Ξ be a non-empty set, and let ∗ and ♢ be continuous CVTN and CVTCN,

respectively. Assume that A ,B,C are complex-valued neutrosophic sets defined on Ξ2 × ℘0,

satisfying the following conditions:

(1) A (ζ, ϑ, τ) + B(ζ, ϑ, τ) + C (ζ, ϑ, τ) ⪯ 3ℓ.

(2) A (ζ, ϑ, τ) ≻ θ.

(3) A (ζ, ϑ, τ) = ℓ for all τ ∈ ζ0 if and only if ζ = ϑ.

(4) A (ζ, ϑ, τ) = A (ϑ, ζ, τ).

(5) A (ζ, ς, τ + τ ′) ⪰ A (ζ, ϑ, τ) ∗ A (ϑ, ς, τ ′).

(6) The mapping A (ζ, ϑ, ·) from ζ0 to Υ is continuous.

(7) B(ζ, ϑ, τ) ≺ ℓ.

(8) B(ζ, ϑ, τ) = θ for all τ ∈ ζ0 if and only if ζ = ϑ.
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(9) B(ζ, ϑ, τ) = B(ϑ, ζ, τ).

(10) B(ζ, ς, τ + τ ′) ⪯ B(ζ, ϑ, τ)♢B(ϑ, ς, τ ′).

(11) The mapping B(ζ, ϑ, ·) from ζ0 to Υ is continuous.

(12) C (ζ, ϑ, τ) ≺ ℓ.

(13) C (ζ, ϑ, τ) = θ for all τ ∈ ζ0 if and only if ζ = ϑ.

(14) C (ζ, ϑ, τ) = B(ϑ, ζ, τ).

(15) C (ζ, ς, τ + τ ′) ⪯ C (ζ, ϑ, τ)♢C (ϑ, ς, τ ′).

(16) The mapping C (ζ, ϑ, ·) from ζ0 to Υ is continuous.

for each ζ, ϑ, ς ∈ Ξ and τ, τ ′ ∈ ζ0. The structure (Ξ,A ,B,C , ∗,♢) is called a complex-valued

neutrosophic metric space (CVNMS).

Remark 3.2. A CVNMS can be constructed from a complex-valued fuzzy metric space

(Ξ,A , ∗) by defining it as

(Ξ,A , ℓ− A , ℓ− A , ∗,♢),

where the CVTN ∗ and CVTCN ♢ are linked by the relation

τ1♢τ2 = ℓ− ((ℓ− τ1) ∗ (ℓ− τ2))

for every τ1, τ2 ∈ Υ.

Example 3.3. Let (Ξ, d) be a metric space. For τi = (pi, qi) ∈ Υ where i = 1, 2, define the

operations:

τ1 ∗ τ2 = (min{p1, p2},min{q1, q2}),

τ1♢τ2 = (max{p1, p2},max{q1, q2}).

Now, define the complex neutrosophic sets A , B, and C as

A (ζ, ϑ, τ) = e−
d(ζ,ϑ)
p+q ℓ,

B(ζ, ϑ, τ) =

(
1− e−

d(ζ,ϑ)
p+q

)
ℓ,

C (ζ, ϑ, τ) =

(
1− e

d(ζ,ϑ)
p+q

)
ℓ,

for all ζ, ϑ ∈ Ξ and τ = (p, q) ∈ ζ0. Thus, the structure (Ξ,A ,B,C , ∗,♢) forms a CVNMS.

Lemma 3.4. Let (Ξ,A ,B,C , ∗,♢) be a CVNMS. Then, the following properties hold:

(1) The mapping A (ζ, ϑ, ·) is monotonically increasing.

(2) The mappings B(ζ, ϑ, ·) and C (ζ, ϑ, ·) are monotonically decreasing.

Specifically, for any τ, τ ′ ∈ ζ0 with τ ≺ τ ′, we have

A (ζ, ϑ, τ) ⪯ A (ζ, ϑ, τ ′), B(ζ, ϑ, τ) ⪰ B(ζ, ϑ, τ ′), C (ζ, ϑ, τ) ⪰ C (ζ, ϑ, τ ′).

Pandiselvi M., Jeyaraman M., Jafari S., Nordo G. and Pincak R., Analysis of Fixed Point Theorems...

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                            528



Proof. If τ, τ ′ ∈ ζ0 with τ ≺ τ ′, then τ ′ − τ ∈ ζ0. Applying condition (5) from Definition 3.1,

we obtain

A (ζ, ϑ, τ ′) ⪰ A (ζ, ϑ, τ).

Similarly, applying conditions (10) and (15) from Definition 3.1, we conclude

B(ζ, ϑ, τ ′) ⪰ B(ζ, ϑ, τ), C (ζ, ϑ, τ ′) ⪰ C (ζ, ϑ, τ).

Definition 3.5. Consider (Ξ,A ,B,C , ∗,♢) as a CVNMS. A sequence {ζn} in Ξ is said to

converge to ζ ∈ Ξ if, for each ρ ∈ Υ0, there exists n0 ∈ N such that for all n > n0, the following

conditions hold:

A (ζn, ζ, τ) ≻ ℓ− ρ, B(ζn, ζ, τ) ≺ ρ, C (ζn, ζ, τ) ≺ ρ.

Definition 3.6. Consider (Ξ,A ,B,C , ∗,♢) as a CVNMS. A sequence {ζn} in Ξ is called a

Cauchy sequence if:

(1) lim
n→∞

inf
m>n

A (ζn, ζm, τ) = ℓ,

(2) lim
n→∞

sup
m>n

B(ζn, ζm, τ) = θ,

(3) lim
n→∞

sup
m>n

C (ζn, ζm, τ) = θ,

for all τ ∈ ζ0. A CVNMS (Ξ,A ,B,C , ∗,♢) is said to be complete if every Cauchy sequence

in Ξ converges.

The following examples clarify Definitions 3.5 and 3.6.

Example 3.7. Consider the CVNMS (Ξ,A ,B,C , ∗,♢) as defined in Example 3.3. We ana-

lyze the convergence of the sequence {ζn} =
{
n+1
n

}
with limit ζ = 1.

Let Ξ = R with metric d(ζ, ϑ) = |ζ − ϑ| for all ζ, ϑ ∈ Ξ. We verify that

A (ζn, ζ, τ) ≻ ℓ− ρ, B(ζn, ζ, τ) ≺ ρ, C (ζn, ζ, τ) ≺ ρ

for each ρ = (ρ1, ρ2) ∈ Υ0 and τ ∈ ζ0. For the real part

Re(A (ζn, ζ, τ)− ℓ+ ρ) = e−
d(ζn,ζ)
p+q − 1 + ρ1

= e−
(1/n)
p+q − 1 + ρ1.

As n→ ∞, we get Re(A (ζn, ζ, τ)− ℓ+ ρ) → ρ1. Similarly, for the imaginary part

Im(A (ζn, ζ, τ)− ℓ+ ρ) → ρ2 as n→ ∞.

Thus, there exists n0 ∈ N such that for all n > n0

A (ζn, ζ, τ) ≻ ℓ− ρ.
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Using similar calculations for B and C , we conclude that for all n > n0

B(ζn, ζ, τ) ≺ ρ, C (ζn, ζ, τ) ≺ ρ.

Thus, {ζn} converges to ζ = 1 in the given CVNMS.

Example 3.8. Continuing from the previous example, we now show that
{
n+1
n

}
is a Cauchy

sequence.

For any n,m ∈ N with m > n and for all τ ∈ ζ0, define

d(ζn, ζm) =

∣∣∣∣n+ 1

n
− m+ 1

m

∣∣∣∣ = ∣∣∣∣ 1n − 1

m

∣∣∣∣ .
Using this metric, we analyze

A (ζn, ζm, τ) = e−
d(ζn,ζm)

p+q ℓ = e−
| 1n− 1

m |
p+q ℓ.

As n,m→ ∞, we get A (ζn, ζm, τ) → ℓ.

Similarly, we analyze

B(ζn, ζm, τ) =

(
1− e−

d(ζn,ζm)
p+q

)
ℓ =

(
1− e−

| 1n− 1
m |

p+q

)
ℓ.

As n,m→ ∞, we obtain B(ζn, ζm, τ) → θ.

Finally

C (ζn, ζm, τ) =

(
e−

d(ζn,ζm)
p+q − 1

)
ℓ =

(
e−

| 1n− 1
m |

p+q − 1

)
ℓ.

As n,m→ ∞, we obtain C (ζn, ζm, τ) → θ.

Since

lim
n→∞

inf
m>n

A (ζn, ζm, τ) = ℓ, lim
n→∞

sup
m>n

B(ζn, ζm, τ) = θ, lim
n→∞

sup
m>n

C (ζn, ζm, τ) = θ,

the sequence {ζn} is a Cauchy sequence in the given CVNMS.

Lemma 3.9. Let (Ξ,A ,B,C , ∗,♢) be a CVNMS. A sequence {ζn} in Ξ converges to ζ ∈ Ξ

if and only if the following conditions hold for every τ ∈ ζ0

lim
n→∞

A (ζn, ζ, τ) = ℓ, lim
n→∞

B(ζn, ζ, τ) = θ, lim
n→∞

C (ζn, ζ, τ) = θ.

Proof. (⇒) Assume that {ζn} in Ξ converges to ζ ∈ Ξ. Then, for any ρ ∈ Υ0, there exists

n0 ∈ N such that for all n > n0, the following inequalities hold:

A (ζn, ζ, τ) ≻ ℓ− ρ, B(ζn, ζ, τ) ≺ ρ, C (ζn, ζ, τ) ≺ ρ.

Now, consider a complex number ρ ∈ Υ0 with |ρ| < ϵ. Using the properties of CVNMS, we

obtain

|ℓ− A (ζn, ζ, τ)| < |ρ| < ϵ, |B(ζn, ζ, τ)| < |ρ| < ϵ, |C (ζn, ζ, τ)| < |ρ| < ϵ, ∀n > n0.
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Thus, as n→ ∞

A (ζn, ζ, τ) → ℓ, B(ζn, ζ, τ) → θ, C (ζn, ζ, τ) → θ.

Hence, the convergence conditions are satisfied for every τ ∈ ζ0.

(⇐) Now, assume that

lim
n→∞

A (ζn, ζ, τ) = ℓ, lim
n→∞

B(ζn, ζ, τ) = θ, lim
n→∞

C (ζn, ζ, τ) = θ, ∀τ ∈ ζ0.

Fix τ ∈ ζ0 and take any ρ ∈ Υ0.

Since the limits exist as n → ∞, there exists a positive real number ϵ > 0 such that every

complex number z ∈ C with |z| < ϵ satisfies z ≺ ρ.

Since limn→∞ A (ζn, ζ, τ) = ℓ, there exists n0 ∈ N such that

|ℓ− A (ζn, ζ, τ)| < ϵ.

This implies

ℓ− A (ζn, ζ, τ) ≺ ρ, ℓ− ρ ≺ A (ζn, ζ, τ).

Similarly, since B(ζn, ζ, τ) → θ and C (ζn, ζ, τ) → θ, we can find n0 ∈ N such that for all

n > n0

B(ζn, ζ, τ) ≺ ρ, C (ζn, ζ, τ) ≺ ρ.

Thus, {ζn} in Ξ converges to ζ.

Lemma 3.10. Let (Ξ,A ,B,C , ∗,♢) be a CVNMS. A sequence {ζn} is Cauchy in Ξ if and

only if, for each ρ ∈ Υ0 and τ ∈ ζ0, there exists a natural number n0 ∈ N such that for all

n,m > n0

A (ζn, ζm, τ) ≻ ℓ− ρ, B(ζn, ζm, τ) ≺ ρ, C (ζn, ζm, τ) ≺ ρ.

Proof. (⇒) Assume that {ζn} is a Cauchy sequence. Fix τ ∈ ζ0. For any ρ ∈ Υ0, there exists

n0 ∈ N such that

ℓ− inf
m>n

A (ζn, ζm, τ) ≺ ρ, sup
m>n

B(ζn, ζm, τ) ≺ ρ, sup
m>n

C (ζn, ζm, τ) ≺ ρ, ∀n > n0.

We distinguish three possible cases depending on the relationship between m, n and n0.

Case 1: If m > n > n0, we obtain ℓ−ρ ≺ infm>n A (ζn, ζm, τ) ≺ A (ζn, ζm, τ) and similarly

B(ζn, ζm, τ) ≺ sup
m>n

B(ζn, ζm, τ) ≺ ρ, C (ζn, ζm, τ) ≺ sup
m>n

C (ζn, ζm, τ) ≺ ρ.

Case 2: If m = n > n0, we have ℓ − ρ ≺ ℓ = A (ζn, ζm, τ), B(ζn, ζm, τ) = θ ≺ ρ and

C (ζn, ζm, τ) = θ ≺ ρ.

Case 3: If n > m > n0, it results ℓ− ρ ≺ infn>m A (ζm, ζn, τ) = A (ζn, ζm, τ).

(⇐) Suppose that for any ρ ∈ Υ0, there exists n0 ∈ N such that

A (ζn, ζm, τ) ≻ ℓ− ρ, B(ζn, ζm, τ) ≺ ρ, C (ζn, ζm, τ) ≺ ρ, ∀n,m > n0.
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Then, the limits hold:

lim
n→∞

inf
m>n

A (ζn, ζm, τ) = ℓ, lim
n→∞

sup
m>n

B(ζn, ζm, τ) = θ, lim
n→∞

sup
m>n

C (ζn, ζm, τ) = θ.

Thus, {ζn} is Cauchy.

Theorem 3.11. Let (Ξ,A ,B,C , ∗,♢) be a complete CVNMS. Suppose that any sequence {τn}
in ζ0 satisfying lim

n→∞
τn = ∞ also satisfies

lim
n→∞

inf
ϑ∈Ξ

A (ζ, ϑ, τn) = ℓ, lim
n→∞

sup
ϑ∈Ξ

B(ζ, ϑ, τn) = θ, lim
n→∞

sup
ϑ∈Ξ

C (ζ, ϑ, τn) = θ, ∀ζ ∈ Ξ.

Assume that a self-mapping f : Ξ → Ξ satisfies the following condition

A (fζ, fϑ, η) ⪰ A (ζ, ϑ, τ), B(fζ, fϑ, ητ) ⪯ B(ζ, ϑ, τ), C (fζ, fϑ, ητ) ⪯ C (ζ, ϑ, τ), (1)

for all ζ, ϑ ∈ Ξ and τ ∈ ζ0, where η ∈ (0, 1). Then f has a unique fixed point in Ξ.

Proof. Let ζ0 be an arbitrarily chosen initial point in Ξ. Define the sequence {ζn} in Ξ as

ζn = fζn−1, ∀n ∈ N.

If there exists some n0 ∈ N such that ζn0 = ζn0−1, then ζn0 is a fixed point of f . Otherwise,

we analyze the sequence {ζn} and show that it is Cauchy.

For each n ∈ N and fixed τ ∈ ζ0, define the following sets

An = {A (ζn, ζm, τ) : m > n}, Bn = {B(ζn, ζm, τ) : m > n}, Cn = {C (ζn, ζm, τ) : m > n}.

Since θ ≺ A (ζn, ζm, τ) ⪯ ℓ for all n ∈ N with n < m, it follows from Remark 2.1 that the

infimum:

µn = inf An

exists for each n ∈ N. Similarly, since θ ⪯ B(ζn, ζm, τ) ≺ ℓ and θ ⪯ C (ζn, ζm, τ) ≺ ℓ for all

n ∈ N with m > n, it follows that the suprema

νn = supBn, γn = supCn

exist for each n ∈ N.
Using condition (1), we obtain the recursive inequalities

A (ζn+1, ζm+1, τ) ⪰ A

(
ζn, ζm,

τ

η

)
, (2)

B(ζn+1, ζm+1, τ) ⪯ B

(
ζn, ζm,

τ

η

)
, (3)

C (ζn+1, ζm+1, τ) ⪯ C

(
ζn, ζm,

τ

η

)
. (4)
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Since η ∈ (0, 1), Lemma 3.4 implies

A (ζn+1, ζm+1, τ) ⪰ A (ζn, ζm, τ),

B(ζn+1, ζm+1, τ) ⪯ B(ζn, ζm, τ),

C (ζn+1, ζm+1, τ) ⪯ C (ζn, ζm, τ).

Thus, the sequences {µn}, {νn}, and {γn} are monotonic in ζ. By Remark 2.1, there exist

complex numbers µ, ν, γ ∈ ζ such that

lim
n→∞

µn = µ, lim
n→∞

νn = ν, lim
n→∞

γn = γ.

Applying the completeness hypothesis, we conclude

µ = ℓ, ν = θ, γ = θ.

Thus, {ζn} is a Cauchy sequence, and by Lemma 3.9, it converges to some ζ ∈ Ξ. That is

lim
n→∞

A (ζn, ζ, τ) = ℓ, lim
n→∞

B(ζn, ζ, τ) = θ, lim
n→∞

C (ζn, ζ, τ) = θ. (5)

Using (5) and Definition 3.1, we obtain

A (ζ, fζ, τ) = ℓ, B(ζ, fζ, τ) = θ, C (ζ, fζ, τ) = θ.

By conditions (3), (8), and (13) of Definition 3.1, ζ = fζ, proving that ζ is a fixed point of f .

Suppose there exists another fixed point λ ̸= ζ. Iteratively applying (1), we obtain a

contradiction, implying that A (ζ, λ, τ) = ℓ, B(ζ, λ, τ) = θ, and C (ζ, λ, τ) = θ. This forces

ζ = λ, establishing uniqueness.

Remark 3.12. In Theorem 3.11, the contractive condition (1) can be replaced by the following,

while retaining a similar proof:

A (fζ, fϑ,Ω(τ)τ) ⪰ A (ζ, ϑ, τ),

B(fζ, fϑ,Ω(τ)τ) ⪯ B(ζ, ϑ, τ),

C (fζ, fϑ,Ω(τ)τ) ⪯ C (ζ, ϑ, τ),

for all ζ, ϑ ∈ Ξ and τ ∈ ζ0, where Ω is a function mapping ζ0 into (0, 1).

Example 3.13. Let (Ξ, d) be a metric space, where the metric is given by d(ζ, ϑ) = |ζ − ϑ|
for all ζ, ϑ ∈ Ξ. Define the complex-valued triangular norm (CVTN) ∗ and the complex-valued

triangular conorm (CVTCN) ♢, for every τ1 = (p1, q1) and τ2 = (p2, q2) in Υ, as follows

τ1 ∗ τ2 = (min{p1, p2},min{q1, q2}),

τ1♢τ2 = (max{p1, p2},max{q1, q2}).
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Now, define the complex neutrosophic sets A , B, and C as follows:

A (ζ, ϑ, τ) = e−
d(ζ,ϑ)
p+q ℓ,

B(ζ, ϑ, τ) =

(
1− e−

d(ζ,ϑ)
p+q

)
ℓ,

C (ζ, ϑ, τ) =

(
1− e

d(ζ,ϑ)
p+q

)
ℓ,

for all ζ, ϑ ∈ Ξ and τ = (p, q) ∈ ζ0. Consequently, (Ξ,A ,B,C , ∗,♢) forms a CVNMS induced

by the metric d.

Let us consider a sequence {τn} in ζ0 such that τn = (pn, qn) for each n ∈ N, and assume

lim
n→∞

τn = ∞.

This means that pn, qn → ∞ as n→ ∞.

Now, we will evaluate the limits:

• for A (ζ, ϑ, τn) = e−
d(ζ,ϑ)
pn+qn ℓ, as pn + qn → ∞, we obtain

lim
n→∞

inf
ϑ∈Ξ

A (ζ, ϑ, τn) = ℓ.

• for B(ζ, ϑ, τn) = (1− e−
d(ζ,ϑ)
pn+qn )ℓ, as pn + qn → ∞, we get

lim
n→∞

sup
ϑ∈Ξ

B(ζ, ϑ, τn) = θ.

• for C (ζ, ϑ, τn) = (e−
d(ζ,ϑ)
pn+qn − 1)ℓ, as pn + qn → ∞, we conclude

lim
n→∞

sup
ϑ∈Ξ

C (ζ, ϑ, τn) = θ.

Thus, the conditions of Theorem 3.11 hold.

Now, define a self-mapping H : Ξ → Ξ by

H(ζ) =
ζ

8
, ∀ζ ∈ Ξ.

For η ∈ [1/8, 1) ⊂ (0, 1), the mapping H satisfies condition (1):

A (Hζ,Hϑ, ητ) = e
− d(Hζ,Hϑ)

η(p+q) ℓ.

Since

d(Hζ,Hϑ) =
d(ζ, ϑ)

8
,

we obtain

e
− d(ζ,ϑ)

8η(p+q) ℓ ⪰ e
− d(ζ,ϑ)

(p+q) ℓ = A (ζ, ϑ, τ).

Similarly, for B and C

B(Hζ,Hϑ, ητ) ⪯ B(ζ, ϑ, τ),

C (Hζ,Hϑ, ητ) ⪯ C (ζ, ϑ, τ).

Thus, all conditions of Theorem 3.11 are satisfied, and 0 is the unique fixed point of H.

Pandiselvi M., Jeyaraman M., Jafari S., Nordo G. and Pincak R., Analysis of Fixed Point Theorems...

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                            534



Example 3.14. This example illustrates that the assumptions of Theorem 3.11 are essential

and cannot be omitted.

Let Ξ = [0,∞). Define the t-norm ∗ and t-conorm ♢ as follows:

τ1 ∗ τ2 = (p1p2, q1q2), τ1♢τ2 = (p1 + p2, q1 + q2)− (p1p2, q1q2)

for any τi = (pi, qi) ∈ Υ with i = 1, 2.

Define the complex neutrosophic functions A , B, and C as follows:

A (ζ, ϑ, τ) =


ζ
ϑℓ if ζ < ϑ

ϑ
ζ ℓ if ϑ < ζ

B(ζ, ϑ, τ) =

(1− ζ
ϑ)ℓ if ζ < ϑ

(1− ϑ
ζ )ℓ if ϑ < ζ

C (ζ, ϑ, τ) =


(
ϑ−ζ
ζ

)
ℓ if ζ < ϑ(

ζ−ϑ
ϑ

)
ℓ if ϑ < ζ

.

It can be verified that (Ξ,A ,B,C , ∗,♢) forms a complete CVNMS.

Now, consider the self-mapping H : Ξ → Ξ given by

H(ζ) = ζ + 1, ∀ζ ∈ Ξ.

Define the sequence {τn} as

τn = (n2 + 6, n2 + 6), n ∈ N.

Clearly, limn→∞ τn = ∞. For any ζ ∈ Ξ and ϑ ̸= ζ, we obtain

inf
ϑ∈Ξ

A (ζ, ϑ, τn) = θ,

sup
ϑ∈Ξ

B(ζ, ϑ, τn) = ℓ,

sup
ϑ∈Ξ

C (ζ, ϑ, τn) = ℓ.

Thus, we conclude

lim
n→∞

inf
ϑ∈Ξ

A (ζ, ϑ, τn) = θ ̸= ℓ,

lim
n→∞

sup
ϑ∈Ξ

B(ζ, ϑ, τn) = ℓ ̸= θ,

lim
n→∞

sup
ϑ∈Ξ

C (ζ, ϑ, τn) = ℓ ̸= θ.
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Now, for any η ∈ (0, 1), ζ, ϑ ∈ Ξ, and τ ∈ ζ0, we verify

A (Hζ,Hϑ, ητ) =


ζ+1
ϑ+1ℓ if ζ < ϑ,

ϑ+1
ζ+1 ℓ if ϑ < ζ.

⪰


ζ
ϑℓ if ζ < ϑ,

ϑ
ζ ℓ if ϑ < ζ.

= A (ζ, ϑ, τ) .

Similarly, we obtain

B(Hζ,Hϑ, ητ) ⪯ B(ζ, ϑ, τ),

C (Hζ,Hϑ, ητ) ⪯ C (ζ, ϑ, τ).

Thus, while H satisfies condition (1), it does not have a fixed point in Ξ.

Theorem 3.15. Let (Ξ,A ,B,C , ∗,♢) be a complete CVNMS. Assume that a self-mapping

f : Ξ → Ξ satisfies

A (fζ, fϑ, τ) ⪰ ψ(A (ζ, ϑ, τ)), B(fζ, fϑ, τ) ⪯ φ(B(ζ, ϑ, τ)), C (fζ, fϑ, τ) ⪯ φ(C (ζ, ϑ, τ)),

(6)

for all ζ, ϑ ∈ Ξ and τ ∈ ζ0, where ψ ∈ Ψ and φ ∈ Φ. Then f has a unique fixed point in Ξ.

Proof. Define a sequence {ζn} by setting ζn = fζn−1 for all n ∈ N. If ζn0 = ζn0−1 for some n0,

then ζn0 is a fixed point.

To prove that {ζn} is Cauchy, define

An = {A (ζn, ζm, τ) : m > n}, Bn = {B(ζn, ζm, τ) : m > n}, Cn = {C (ζn, ζm, τ) : m > n}.

Using condition (6) iteratively, we show

µn → ℓ, νn → θ, γn → θ.

By completeness, there exists ζ ∈ Ξ such that

lim
n→∞

A (ζn, ζ, τ) = ℓ, lim
n→∞

B(ζn, ζ, τ) = θ, lim
n→∞

C (ζn, ζ, τ) = θ.

This implies ζ is a unique fixed point.

4. Application to Fredholm integral equations of second kind

To establish the existence of a unique solution for Fredholm integral equations, this sec-

tion demonstrates how Theorem 3.11 can be applied effectively. Specifically, we consider the

function space C([0, 1],R), which consists of all real-valued continuous functions defined on

[0, 1].
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Consider the nonlinear Fredholm integral equation of the second kind:

ψ(u) = T(t) + γ

∫ 1

0
ζ(u, v)χ(v, ψ(v))dv, (7)

where:

• T is a continuous real-valued function on [0, 1],

• ζ(u, v) is the kernel of T,

• χ(v, ψ(v)) is a continuous nonlinear function defined on [0, 1]× R,
• ψ(u) is the unknown function to be determined.

Theorem 4.1. Let Ξ = C([0, 1],R). Suppose the following conditions hold:

(1) There exists a constant µ ∈ (0, 1) such that for all ψ,φ ∈ Ξ and each v ∈ [0, 1], the

inequality

|χ(v, ψ(v))− χ(v, φ(v))| ≤ µ|ψ(v)− φ(v)|

holds.

(2) The integral
∫ 1
0 ζ(u, v)dv is bounded, i.e., there exists a constant ν such that∫ 1

0
ζ(u, v)dv ≤ ν.

(3) The parameters satisfy the inequality γ2ν2µ2 ≤ k < 1.

Then, the integral equation (7) has a unique solution in Ξ.

Proof. Define the operator Θ : Ξ → Ξ by

Θψ(u) = T(u) + γ

∫ 1

0
ζ(u, v)χ(v, ψ(v))dv.

For each τ1 = (p1, q1), τ2 = (p2, q2) in Υ, we define the t-norm ∗ and t-conorm ♢ as

τ1 ∗ τ2 = (p1p2, q1q2), τ1♢τ2 = (p1 + p2, q1 + q2)− (p1p2, q1q2).

Define the functions A , B, and C as follows:

A (ψ,φ, τ) =
p+ q

p+ q+ |ψ(u)− φ(u)|2
ℓ,

B(ψ,φ, τ) =
|ψ(u)− φ(u)|2

p+ q+ |ψ(u)− φ(u)|2
ℓ,

C (ψ,φ, τ) =
|ψ(u)− φ(u)|2

p+ q
ℓ,

for all ψ,φ ∈ Ξ, τ = (p, q) > 0, and u ∈ [0, 1].

It can be readily verified that (Ξ,A ,B,C , ∗,♢) forms a complete CVNMS.
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For all ψ,φ ∈ Ξ and u ∈ [0, 1], we estimate

|Θψ(u)−Θφ(u)|2 =
∣∣∣∣γ ∫ 1

0
ζ(u, v)

(
χ(v, ψ(v))− χ(v, φ(v))

)
dv

∣∣∣∣2
≤ γ2

(∫ 1

0
ζ(u, v)dv

)2

sup
v∈[0,1]

|χ(v, ψ(v))− χ(v, φ(v))|2

≤ γ2ν2µ2|ψ(v)− φ(v)|2

≤ η|ψ(v)− φ(v)|2.

Thus, for all ψ,φ ∈ Ξ and τ ∈ ζ0, we obtain

A (Θψ,Θφ, ητ) =
η(p+ q)

η(p+ q) + |Θψ −Θφ|2
ℓ

⪰ p+ q

p+ q+ |ψ − φ|2
ℓ = A (ψ,φ, τ).

Similarly, we verify that

B(Θψ,Θφ, ητ) ⪯ B(ψ,φ, τ),

C (Θψ,Θφ, ητ) ⪯ C (ψ,φ, τ).

By Theorem 3.11, the operator Θ has a unique fixed point in Ξ, meaning there exists a

unique function ψ ∈ C([0, 1],R) satisfying equation (7).

5. Conclusion

This work introduces and explores complex-valued neutrosophic metric spaces (CVNMS),

providing a robust extension of conventional metric space frameworks. By establishing fixed-

point existence and uniqueness under various contractive conditions, our results contribute

significantly to the theoretical development of CVNMS.

Furthermore, we demonstrated the applicability of our results by proving the existence of a

unique solution to a class of nonlinear Fredholm integral equations of the second kind. This

highlights the potential of CVNMS and neutrosophic theory in addressing complex problems in

mathematical analysis, fostering further research and promoting interdisciplinary applications

across related fields.
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