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Abstract. When conducting survey sampling, precise population mean estimation is essential, particularly

when additional indeterminate data is available. The intrinsic ambiguity and uncertainty in the study and aux-

iliary variables are handled by using neutrosophic logic, which consists of truth, indeterminacy, and falsehood.

In this paper, we extend the classical estimation techniques by incorporating bivariate auxiliary information

within the neutrosophic framework, offering an optimal neutrosophic framework for population mean estimation

under simple random sampling (SRS). Through simulation experiments and real-life datasets, the effectiveness

of the proposed optimal neutrosophic framework is evaluated and compared with the adapted neutrosophic

frameworks. The outcomes demonstrate that the suggested optimal neutrosophic framework demonstrates re-

duced mean square error (MSE) and enhanced efficiency in comparison to the adapted neutrosophic frameworks.
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—————————————————————————————————————————-

1. Introduction

In survey sampling, auxiliary data is essential since it greatly improves the accuracy and

precision of the population mean estimation. By reducing the variance or MSE of the estima-

tor, auxiliary variables associated with the study variable help to produce more accurate and

efficient results. The estimation methods such as ratio, regression, product, logarithmic, expo-

nential, and their modified versions use supplementary data to reduce the mean square error

(MSE) and elevate the overall effectiveness of the estimation process. Many authors suggested

different estimation procedures for estimating the population parameter based on several aux-

iliary information in survey sampling. [1] estimated the population mean using two auxiliary

variables. Using two auxiliary variables in SRS, [2] created the best regression estimator for

the population mean. [3] used two auxiliary variables to estimate the finite population mean
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in SRS and stratified random sampling. Using multiple auxiliary information, [4] investigated

some new improved classes of estimators. A simulation analysis of the robust regression-ratio-

type estimators of the mean using two auxiliary variables was presented by [5]. Using two

auxiliary variables, [6] evaluated the effectiveness of the general class of ratio-exponential-log

type estimators. [7] used multi-auxiliary information under ranked set sampling to construct

a new class of efficient logarithmic estimators. [8] used two auxiliary variables under two-stage

sampling to estimate the finite population mean by examining an improved generalized class

of estimators. [9] introduced a few enhanced categories of estimators using bivariate auxiliary

information under stratified sampling. With two auxiliary variables, [10] created an improved

population mean estimation with probability proportionate to size sampling. Using multi-

auxiliary data, [11] proposed a few optimal classes of estimators for the population mean.

These classical estimation methods presuppose precise and complete data. In contrast to

this, indeterminate data is ambiguous, incomplete, or unsure; that frequently occurs in real-life

surveys because of inadequate data gathering methods or inconsistent responses from respon-

dents. Although being difficult, but indeterminate data can be managed by applying sophis-

ticated techniques like fuzzy logic or neutrosophic theory, which include uncertainty into the

analysis to generate more adaptable and realistic estimations. [12] developed the mathematical

modeling and fuzzy availability analysis of stainless steel utensil manufacturing unit in steady

state. [13] investigated shadowed type 2 fuzzy-based Markov model to predict shortest path

with optimized waiting time. For handling indeterminate data, the survey sampling literature

offers a few estimation techniques employing single auxiliary information. [14] presented the

neutrosophic ratio-type estimators for population mean under SRS. [15] developed a general-

ized neutrosophic sampling strategy for enhanced population mean estimation. With the use

of auxiliary data, [16] introduced the neutrosophic factor-type exponential estimators for im-

proved population mean estimation. A neutrosophic robust ratio-type estimator was proposed

by [17] for the estimation of the finite population mean. To estimate the neutrosophic finite me-

dian, [18] recommended employing robust parameters of the auxiliary variable. [19] determined

the population mean using neutrosophic exponential-type estimator. [20] suggested the gen-

eralized robust-type neutrosophic ratio estimators of pharmaceutical daily stock prices. [21]

proposed the ratio-type estimator for estimating the neutrosophic population mean in SRS

under intuitionistic fuzzy cost function. [22] developed the neutrosophic regression cum ratio

estimators for the population mean. [23] suggested the neutrosophic estimators in two-phase

survey sampling. [24] constructed an almost unbiased estimator for population mean using

neutrosophic theory. [25] computed the separate ratio and regression estimator under neu-

trosophic stratified sampling and provided an application of the methods using climate data.

Under neutrosophic ranked set sampling (NRSS), [26] suggested the generalized estimator for
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computing the population mean. Later on, [27] suggested the generalized regressed expo-

nential estimator for estimating the mean. Recently, [28] investigated the NRSS scheme for

estimating the imprecise population mean. However, for estimating the imprecise population

mean, some new modifications of ranked set sampling were suggested and demonstrated using

demographic data by [29]. [30] suggested the new comprehensive imprecise mean estimation

method using regression-cum-exponential type estimator. [31] estimated the population mean

using the neutrosophic exponential estimators with real data application. [32] designed the

neutrosophic mean estimators in the presence of extreme indeterminate observations.

In survey sampling, it is well-known that employing auxiliary information enhances the

efficiency of the estimator. Often, data on multiple auxiliary variables are available, providing

additional opportunities for improved estimation. Recently, [33] combined the two auxiliary

variables for efficiently estimating the finite population mean under neutrosophic structure.

This article introduces the following:

(1) Develops the methodology and notations consisting of bivariate auxiliary information

under neutrosophic setup.

(2) Adapts some fundamental neutrosophic estimators under SRS based on bivariate aux-

iliary information. Additionally, considers the existing neutrosophic estimators based

on bivariate auxiliary information under SRS.

(3) Proposes an optimal neutrosophic framework for the population mean estimation em-

ploying bivariate auxiliary information under SRS. This approach addresses challenges

associated with vague, indeterminate, and uncertain data.

(4) Discusses the efficiency of the proposed optimal neutrosophic estimators using simula-

tion study and a real-life application based on neutrosophic data.

1.1. Notations under neutrosophic setup

The statistical literature contains different kinds of neutrosophic data, including quantitative

neutrosophic data which is based on a number existing in an unknown interval [p, q]. This

unknown interval [p, q] based on neutrosophic numbers can be expressed in different forms.

In this paper, we have taken the neutrosophic interval values as WN = WL +WUIN such that

IN ∈ [IL, IU ]. This shows that the notations utilized for neutrosophic data are in an interval

form WN ∈ [p, q], where p and q represent the lower and upper values of the neutrosophic

data, respectively. For more deep study about neutrosophic notations, the reader may see [34].

Let a finite population (U=U1, U2,...,UN ) be based on N identifiable units from which a

neutrosophic sample of size nN ∈ [nL, nU ] is randomly selected. Let yN (i) be the ith unit

observation of the sample for the neutrosophic study variable yN expressed as yN (i) ∈ [yL,

yU ], whereas corresponding to the neutrosophic study variable, data on neutrosophic auxiliary
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variables xN and zN are expressed as xN (i) ∈ [xL, xU ] and zN (i) ∈ [zL, zU ], respectively.

Let ȳN (i) ∈ [ȳL, ȳU ], x̄N (i) ∈ [x̄L, x̄U ], and z̄N (i) ∈ [z̄L, z̄U ] be the neutrosophic sample

means corresponding to the neutrosophic population means ȲN ∈ [ ȲL, ȲU ], X̄N ∈ [X̄L, X̄U ],

and Z̄N ∈ [Z̄L, Z̄U ] for the neutrosophic study variable yN and auxiliary variables xN and

zN , respectively. The neutrosophic variation coefficients of variables yN , xN , and zN are

denoted as CyN ∈ [CyL , CyU ], CxN ∈ [CxL , CxU ], and CzN ∈ [CzL , CzU ], respectively. The

neutrosophic correlation coefficients between the neutrosophic variables (xN , yN ), (yN , zN ),

and (xN , zN ) are denoted by ρxyN ∈ [ρxyL , ρxyU ], ρyzN ∈ [ρyzL , ρyzU ], and ρxzN ∈ [ρxzL ,

ρxzU ], respectively. The neutrosophic skewness and kurtosis coefficients of xN are denoted by

β1(xN ) ∈ [β1(xL), β1(xU )] and β2(xN ) ∈ [β2(xL), β2(xU )], respectively, while the neutrosophic

skewness and kurtosis coefficients of zN are denoted by β1(zN ) ∈ [β1(zL), β1(zU )] and β2(zN ) ∈
[β2(zL), β2(zU )], respectively.

To obtain neutrosophic BiasN ∈ [BiasL, BiasU ] and neutrosophic MSEN ∈
[MSEL, MSEU ] of the neutrosophic estimators, we take neutrosophic errors ε0N = (ȳN −
ȲN )/ȲN , ε1N = (x̄N − X̄N )/X̄N , and ε2N = (z̄N − Z̄N )/Z̄N such that ε0N ∈ [ε0L, ε0U ],

ε1N ∈ [ε1L, ε1U ], and ε2N ∈ [ε2L, ε2U ] together with their expectations given as:

E(ε0N ) = E(ε1N ) = E(ε2N ) = 0,

E(ε20N ) = ϕNC
2
yN
,

E(ε21N ) = ϕNC
2
xN
,

E(ε22N ) = ϕNC
2
zN
,

E(ε0N ε1N ) = ϕNρxyNCxNCyN ,

E(ε0N ε2N ) = ϕNρyzNCyNCzN ,

and E(ε1N ε2N ) = ϕNρxzNCxNCzN ,



(1)

where ϕN = 1/nN , nN ∈ [nL, nU ], CyN = σyN /ȲN , CxN = σxN /X̄N , CzN = σzN /Z̄N ,

σ2
xN
∈ [σ2

xL
, σ2

xU
], σ2

yN
∈ [σ2

yL
, σ2

yU
], and σxyN ∈ [σxyL , σxyU ].

The next section provides some adapted neutrosophic estimators based on bivarite auxiliary

information with their characteristics. The proposed optimal neutrosophic estimators, their

characteristics, and the conditions under which they dominate the adapted neutrosophic es-

timators are established in Section 3. A simulation study based on a hypothetically drawn

normal population is presented in Section 4. In Section 5, the seasonal temperature data is

used to illustrate the application of the proposed and adapted neutrosophic estimators. The

article ends with the conclusions in Section 6.

Anoop Kumar, Priya, and Vrijesh Tripathi, Optimal neutrosophic framework for population
mean estimation under simple random sampling

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                              692



2. Adapted neutrosophic estimators

This section adapts some well-known neutrosophic estimators for the population mean es-

timation under SRS employing bivariate auxiliary information.

If the auxiliary information is not available, then the neutrosophic mean per unit estimator

is the obvious choice for the neutrosophic population mean ȲN given by

tm = ȳN .

Theorem 2.1. The variance of the estimator tm is given by

V (tm) = ϕN Ȳ
2
NC

2
yN
.

Proof. Consider the estimator tm given as

tm = ȳN .

Utilizing notations of (1), we rewrite tm as follows:

tm = ȲN (1 + ε0N ),

tm − ȲN = ȲN ε0N . (2)

Taking expectation both side to (2), we get

Bias(tm) = 0.

This shows that the neutrosophic mean per unit estimator tm is unbiased.

Again, squaring and taking expectation both sides of (2), we get

V (tm) = ϕN Ȳ
2
NC

2
yN
.

The neutrosophic generalized ratio estimator of population mean ȲN under SRS employing

bivariate auxiliary information is given by

tgr = ȳN

(
aNX̄N + bN
aN x̄N + bN

)(
cN Z̄N + dN
cN z̄N + dN

)
,

where aN , bN , cN , and dN are either real values or known parameters of neutrosophic auxiliary

variables xN and zN , namely, neutrosophic mean, neutrosophic standard deviation, neutro-

sophic correlation coefficient, neutrosophic variation coefficient, neutrosophic skewness coeffi-

cient, neutrosophic kurtosis coefficient, etc. A few members of the neutrosophic generalized

ratio estimator tgr based on bivariate auxiliary information are compiled in Table 1 for ready

reference.
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Table 1. Some sub-classes of the neutrosophic generalized ratio estimator tgr

based on bivariate auxiliary information

aN bN cN dN Some sub-classes of the estimator tgr

1 0 1 0 t1gr=ȳN

(
X̄N
x̄N

)(
Z̄N
z̄N

)
1 CxN 1 CzN t2gr=ȳN

(
X̄N+CxN
x̄N+CxN

)(
Z̄N+CzN
z̄N+CzN

)
CxN β2(xN ) CzN β2(zN ) t3gr = ȳN

(
CxN

X̄N+β2(xN )

CxN
x̄N+β2(xN )

)(
CzN

Z̄N+β2(zN )

CzN
z̄N+β2(zN )

)
β2(xN ) CxN β2(zN ) CzN t4gr = ȳN

(
β2(xN )X̄N+CxN
β2(xN )x̄N+CxN

)(
β2(zN )Z̄N+CzN
β2(zN )z̄N+CzN

)
1 ρxyN 1 ρyzN t5gr = ȳN

(
X̄N+ρxyN
x̄N+ρxyN

)(
Z̄N+ρyzN
z̄N+ρyzN

)
1 β2(xN ) 1 β2(zN ) t6gr = ȳN

(
X̄N+β2(xN )
x̄N+β2(xN )

)(
Z̄N+β2(zN )
z̄N+β2(xN )

)
1 β1(xN ) 1 β1(zN ) t7gr = ȳN

(
X̄N+β1(xN )
x̄N+β1(xN )

)(
Z̄N+β1(zN )
z̄N+β1(zN )

)
Theorem 2.2. The bias and MSE of the neutrosophic generalized ratio estimator tgr using

bivariate auxiliary information are presented below as

Bias(tgr) =ȲNϕN

(
Ψ2
NC

2
xN

+Π2
NC

2
zN
− ΨNρxyNCxNCyN −ΠNρyzNCyNCzN

+ΨNΠNρxzNCxNCzN

)
,

MSE(tgr) =Ȳ 2
NϕN

(
C2
yN

+ Ψ2
NC

2
xN

+Π2
NC

2
zN
− 2ΨNρxyNCxNCyN − 2ΠNρyzNCzNCyN

+2ΨNΠNρxzNCxNCzN

)
,

where

ΨN =

(
aNX̄N

aNX̄N + bN

)
and ΠN =

(
cN Z̄N

cN Z̄N + dN

)
.

Proof. Consider the estimator tgr as

tgr = ȳN

(
aNX̄N + bN
aN x̄N + bN

)(
cN Z̄N + dN
cN z̄N + dN

)
.

Utilizing notations given in (1), we get

tgr =ȲN (1 + ε0N )

(
aNX̄N + bN

aNX̄N (1 + ε1N ) + bN

)(
cN Z̄N + dN

cN Z̄N (1 + ε2N ) + dN

)
,

=ȲN (1 + ε0N )

(
aNX̄N + bN

aNX̄N + aNX̄N ε1N + bN

)(
cN Z̄N + dN

cN Z̄N + cN Z̄N ε2N + dN

)
,

=ȲN (1 + ε0N )(1 + ΨN ε1N )−1(1 +ΠN ε2N )−1.

Using Taylor series expansion, multiplying right hand side terms and excluding error terms

having power more than two, we get

tgr =ȲN

(
1 + ε0N − ΨN ε1N −ΠN ε2N + Ψ2

N ε
2
1N +Π2

N ε
2
2N − ΨN ε0N ε1N −ΠN ε0N ε2N

+ΨNΠN ε1N ε2N

)
.
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Subtracting ȲN both sides of the above expression, we get

tgr − ȲN =ȲN

(
ε0N − ΨN ε1N −ΠN ε2N + Ψ2

N ε
2
1N +Π2

N ε
2
2N − ΨN ε0N ε1N −ΠN ε0N ε2N

+ΨNΠN ε1N ε2N

)
.

(3)

Taking expectation both sides of (3), we get

Bias(tgr) =ȲNϕN

(
Ψ2
NC

2
xN

+Π2
NC

2
zN
− ΨNρxyNCxNCyN −ΠNρyzNCyNCzN

+ΨNΠNρxzNCxNCzN

)
.

Squaring and taking expectation both sides of (3), we get

MSE(tgr) =Ȳ 2
NϕN

(
C2
yN

+ Ψ2
NC

2
xN

+Π2
NC

2
zN
− 2ΨNρxyNCxNCyN − 2ΠNρyzNCyNCzN

+2ΨNΠNρxzNCxNCzN

)
.

The neutrosophic generalized power ratio estimator tpr for population mean under SRS

employing bivariate auxiliary information is given by

tpr =ȳN

(
aNX̄N + bN
aN x̄N + bN

)θ1N (cN Z̄N + dN
cN z̄N + dN

)θ2N
,

where θ1N and θ2N are suitably chosen scalars. Some sub-classes of the estimator tpr are given

in Table 2 for ready reference.

Table 2. Some sub-classes of the neutrosophic generalized power ratio esti-

mator tpr based on bivariate auxiliary information

aN bN cN dN Some sub-classes of the estimator tpr

1 0 1 0 t1pr=ȳN

(
X̄N
x̄N

)θ1N ( Z̄N
z̄N

)θ2N
1 CxN 1 CzN t2pr=ȳN

(
X̄N+CxN
x̄N+CxN

)θ1N ( Z̄N+CzN
z̄N+CzN

)θ2N
CxN β2(xN ) CzN β2(zN ) t3pr = ȳN

(
CxN

X̄N+β2(xN )

CxN
x̄N+β2(xN )

)θ1N (CzN
Z̄N+β2(zN )

CzN
z̄N+β2(zN )

)θ2N
β2(xN ) CxN β2(zN ) CzN t4pr = ȳN

(
β2(xN )X̄N+CxN
β2(xN )x̄N+CxN

)θ1N (β2(zN )Z̄N+CzN
β2(zN )z̄N+CzN

)θ2N
1 ρxyN 1 ρyzN t5pr = ȳN

(
X̄N+ρxyN
x̄N+ρxyN

)θ1N ( Z̄N+ρyzN
z̄N+ρyzN

)θ2N
1 β2(xN ) 1 β2(zN ) t6pr = ȳN

(
X̄N+β2(xN )
x̄N+β2(xN )

)θ1N ( Z̄N+β2(zN )
z̄N+β2(xN )

)θ2N
1 β1(xN ) 1 β1(zN ) t7pr = ȳN

(
X̄N+β1(xN )
x̄N+β1(xN )

)θ1N ( Z̄N+β1(zN )
z̄N+β1(zN )

)θ2N
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Theorem 2.3. The bias, MSE, and minimum MSE of the neutrosophic generalized power

ratio estimator tpr are given by

Bias(tpr) = ȲNϕN

(
θ1N (θ1N+1)

2 Ψ2
NC

2
xN

+ θ2N (θ2N+1)
2 Π2

NC
2
zN
− θ1NΨNρxyNCxNCyN

−θ2NΠNρyzNCyNCzN + ΨNΠNθ1Nθ2NρxzNCxNCzN

)
,

MSE(tpr) = Ȳ 2
NϕN

(
C2
yN

+ θ2
1NΨ

2
NC

2
xN

+ θ2
2NΠ

2
NC

2
zN
− 2θ1NΨNρxyNCxNCyN

−2θ2NΠNρyzNCyNCzN + 2θ1Nθ2NΨNΠNρxzNCxNCzN

)
,

and min.MSE(tpr) = Ȳ 2
NϕNC

2
yN

(1−R2
y.xzN

),

where R2
y.xzN

= (ρ2
xyN

+ρ2
yzN
−2ρxyNρyzNρxzN )/(1−ρ2

xzN
) is the multiple correlation coefficient.

Proof. Consider the estimator tpr as

tpr =ȳN

(
aNX̄N + bN
aN x̄N + bN

)θ1N (cN Z̄N + dN
cN z̄N + dN

)θ2N
.

Using notations given in (1), we can rewrite the estimator tpr as

tpr = ȲN (1 + ε0N )

(
aNX̄N + bN

aNX̄N (1 + ε1N ) + bN

)θ1N ( cN Z̄N + dN
cN Z̄N (1 + ε2N ) + dN

)θ2N
,

= ȲN (1 + ε0N )(1 + ΨN ε1N )−θ1N (1 +ΠN ε2N )−θ2N .

Using Taylor series expansion, multiplying right hand side terms, and excluding error terms

having power more than two, we get

tpr =ȲN

(
1 + ε0N − θ1NΨN ε1N − θ2NΠN ε2N + θ1N (θ1N+1)

2 Ψ2
N ε

2
1N + θ2N (θ2N+1)

2 Π2
N ε

2
2N

−θ1NΨN ε0N ε1N − θ2NΠN ε0N ε1N + θ1Nθ2NΨNΠN ε1N ε2N

)
.

(4)

Subtracting ȲN both sides of (4), we get

tpr − ȲN = ȲN

(
ε0N − θ1NΨN ε1N − θ2NΠN ε2N + θ1N (θ1N+1)

2 Ψ2
N ε

2
1N + θ2N (θ2N+1)

2 Π2
N ε

2
2N

−θ1NΨN ε0N ε1N − θ2NΠN ε0N ε1N + θ1Nθ2NΨNΠN ε1N ε2N

)
.

(5)

Taking expectation both sides of (5), we get

Bias(tpr) =ȲNϕN

(
θ1N (θ1N+1)

2 Ψ2
NC

2
xN

+ θ2N (θ2N+1)
2 Π2

NC
2
zN
− ΨNθ1NρxyNCxNCyN

−ΠNθ2NρyzNCyNCzN + θ1Nθ2NΨNΠNρxzNCxNCzN

)
.

Squaring and taking expectation both sides of (5), we have

MSE(tpr) =Ȳ 2
NϕN

(
C2
yN

+ θ2
1NΨ

2
NC

2
xN

+ θ2
2NΠ

2
NC

2
zN
− 2θ1NΨNρxyNCxNCyN

−2θ2NΠNρyzNCyNCzN + 2θ1Nθ2NΠNΨNρxzNCxNCzN

)
. (6)

The optimum values of θ1N and θ2N can be calculated by minimizing (6) as

θ1N =
CyN
CxN

(ρxyN − ρyzNρxzN )

(1− ρ2
xzN

)
and θ2N =

CyN
CzN

(ρyzN − ρxyNρxzN )

(1− ρ2
xzN

)
.
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Putting optimum values of θ1N and θ2N in (6), we get minimum MSE of tpr as

min.MSE(tpr) = Ȳ 2
NϕNC

2
yN

(1−R2
y.xz).

Remark 2.4. Note that the minimum MSE of the estimator tpr is independent of the values

ΨN and ΠN which depend on different known parameters of auxiliary variables xN and zN .

This shows that the MSE of the members tipr, i = 1, 2, ..., 7 will be the same.

Combining the two auxiliary variables, [33] suggested a ratio-cum-product exponential type

estimator of the finite population mean under neutrosophy as

tsg = ȳN exp

(
X̄N − t̄1N
X̄N + t̄1N

)
exp

(
t̄2N − Z̄N
t̄2N + Z̄N

)
,

In the estimator tsg, t̄1N = x̄N +∆N (X̄N − x̄N ) and t̄2N = z̄N +ΛN (Z̄N − z̄N ), where ∆N and

ΛN are suitably chosen constants.

Theorem 2.5. The bias, MSE, and minimum MSE of the neutrosophic estimator tsg are

given by

Bias(tsg) =ȲNϕN

[
3
8(1−∆N )2C2

xN
− 1

8(1− ΛN )2C2
zN
− (1−∆N )(1−ΛN )

4 ρxzNCxNCzN

− (1−∆N )
2 ρxyNCxNCyN + (1−ΛN )

2 ρyzNCzNCyN

]
,

MSE(tsg) =Ȳ 2
NϕN

[
C2
yN

+ (1−∆N )2

4 C2
xN

+ (1−ΛN )2

4 C2
zN
− (1−∆N )(1−ΛN )

2 ρxzNCxNCz2N

+(1− ΛN )ρyzNCzNCyN − (1−∆N )ρxyNCxNCyN

]
,

where, ∆N = 1−
[

2CyN
ρxzN

CxN
(1−ρ2xzN )

(ρxyN − ρyzN ) + 2ρxyN
CyN
CxN

]
and ΛN = 1−

[
2CyN

ρxzN
CxN

(1−ρ2xzN )
(ρxyN − ρyzN )

]
.

Proof. Consider the estimator tsg as

tsg = ȳN exp

(
X̄N − t̄1N
X̄N + t̄1N

)
exp

(
t̄2N − Z̄N
t̄2N + Z̄N

)
.

Using the notations given in (1), we can rewrite the estimator tsg as

tsg = ȲN (1 + ε0N ) exp

[
X̄N −

(
X̄N (1 + ε1N (1−∆N ))

)
X̄N +

(
X̄N (1 + ε1N (1−∆N ))

)] exp

[
Z̄N (1 + ε2N (1− ΛN ))− Z̄N
Z̄N (1 + ε2N (1− ΛN )) + Z̄N

]
,

=ȲN (1 + ε0N ) exp

[
− ε1N (1−∆N )

2
(
1 + ε1N

2 (1−∆N )
)] exp

[
ε2N (1− ΛN )

2
(
1 + ε2N

2 (1− ΛN )
)] .

Using Taylor series expansion, multiplying right hand side terms and excluding error terms

having power more than two, we get

tsg = ȲN

 1− ε1N
2 (1−∆N ) + 3

8ε
2
1N (1−∆N )2 + ε2N

2 (1− ΛN )

− ε1N ε2N
4 (1−∆N )(1− ΛN )− ε22N

(1−ΛN )2

8

+ε0N − ε0N ε1N
2 (1−∆N ) + ε0N ε2N

2 (1− ΛN )

 .
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Subtracting ȲN both sides of the above expression, we get

tsg − ȲN =ȲN

 1− ε1N
2 (1−∆N ) + 3

8ε
2
1N (1−∆N )2 + ε2N

2 (1− ΛN )

− ε1N ε2N
4 (1−∆N )(1− ΛN )− ε22N

(1−ΛN )2

8

+ε0N − ε0N ε1N
2 (1−∆N ) + ε0N ε2N

2 (1− ΛN )

 . (7)

Taking expectation both sides of (7), we get

Bias(tsg) =ȲNϕN

[
1− 3

8(1−∆N )2C2
xN
− 1

8(1− ΛN )2C2
zN
− (1−∆N )

2 ρxyNCxNCyN

−1
4(1−∆N )(1− ΛN )ρxzNCxNCzN + (1−ΛN )

2 ρyzNCyNCZN

]
.

Squaring and taking expectation both sides of (7), we have

MSE(tsg) =Ȳ 2
NϕN

[
C2
yN

+ (1−∆N )2

4 C2
xN

+ (1−ΛN )2

4 C2
zN
− (1−∆N )(1−ΛN )

2 ρxzNCxNCzN

+(1− ΛN )ρyzNCzNCyN − (1−∆N )ρxyNCxNCyN

]
. (8)

The optimum values of ∆N and ΛN can be obtained by minimizing (8) as

∆∗
N(opt) = 1−

[
2CyNρxzN

CxN (1− ρ2
xzN

)
(ρxyN − ρyzN ) + 2ρxyN

CyN
CxN

]
(9)

and Λ∗
N(opt) = 1−

[
2CyNρxzN

CxN (1− ρ2
xzN

)
(ρxyN − ρyzN )

]
. (10)

Putting these optimum values in (8), we get minimum MSE as

min.MSE(tsg) =Ȳ 2
NϕN


C2
yN

+
(1−∆∗

N(opt)
)2

4 C2
xN

+
(1−Λ∗

N(opt)
)2

4 C2
zN

−
(1−∆∗

N(opt)
)(1−Λ∗

N(opt)
)

2 ρxzNCxNCzN

+(1− Λ∗
N(opt))ρyzNCzNCyN − (1−∆∗

N(opt))ρxyNCxNCyN

 .

3. Proposed optimal neutrosophic estimators

The suggested optimal neutrosophic estimators are important because they improve the

accuracy and reliability of statistical analysis under ambiguity, vagueness, and indeterminacy.

These estimators are more successful than the conventional ones in dealing with imprecise, par-

tial, or inconsistent data because they use neutrosophic sets. This strategy facilitates improved

decision-making in real-world challenges including uncertainty. The optimal neutrosophic class

of estimators tk for population mean under SRS employing bivariate auxiliary information is

given by

tk =αN ȳN

(
aNX̄N + bN
aN x̄N + bN

)θ1N (cN Z̄N + dN
cN z̄N + dN

)θ2N
,

where αN , θ1N , and θ2N are suitably chosen scalars. Some sub-classes of the proposed estimator

tk are reported in Table 3 for ready reference.
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Table 3. Some sub-classes of the optimal neutrosophic ratio type estimator

tk based on bivariate auxiliary information

aN bN cN dN Sub-classes of the proposed estimator tk

1 0 1 0 t1k=αN ȳN

(
X̄N
x̄N

)θ1N ( Z̄N
z̄N

)θ2N
1 CxN 1 CzN t2k=αN ȳN

(
X̄N+CxN
x̄N+CxN

)θ1N ( Z̄N+CzN
z̄N+CzN

)θ2N
CxN β2(xN ) CzN β2(zN ) t3k = αN ȳN

(
CxN

X̄N+β2(xN )

CxN
x̄N+β2(xN )

)θ1N (CzN
Z̄N+β2(zN )

CzN
z̄N+β2(zN )

)θ2N
β2(xN ) CxN β2(zN ) CzN t4k = αN ȳN

(
β2(xN )X̄N+CxN
β2(xN )x̄N+CxN

)θ1N (β2(zN )Z̄N+CzN
β2(zN )z̄N+CzN

)θ2N
1 ρxyN 1 ρyzN t5k = αN ȳN

(
X̄N+ρxyN
x̄N+ρxyN

)θ1N ( Z̄N+ρyzN
z̄N+ρyzN

)θ2N
1 β2(xN ) 1 β2(zN ) t6k = αN ȳN

(
X̄N+β2(xN )
x̄N+β2(xN )

)θ1N ( Z̄N+β2(zN )
z̄N+β2(xN )

)θ2N
1 β1(xN ) 1 β1(zN ) t7k = αN ȳN

(
X̄N+β1(xN )
x̄N+β1(xN )

)θ1N ( Z̄N+β1(zN )
z̄N+β1(zN )

)θ2N

Theorem 3.1. The bias, MSE, and minimum MSE of the proposed optimal neutrosophic

estimator tk are given by

Bias(tk) =ȲN

αN


1 + θ1N (θ1N+1)
2 Ψ2

NϕNC
2
xN

+ θ2N (θ2N+1)
2 Π2

NϕNC
2
zN

−θ1NΨNρxyNCxNCyN − θ2NΠNρyzNCyNCzN

+θ1Nθ2NΠNΨNρxzNCxNCzN

− 1

 ,

MSE(tk) =Ȳ 2
N



1 + α2
N

 1 + ϕNC
2
yN

+ 2θ2
1NΨ

2
NϕNC

2
xN

+ 2θ2
2NΠ

2
NϕNC

2
zN

+θ1NΨ
2
NϕNC

2
xN

+ θ2NΠ
2
NϕNC

2
zN
− 4θ1NΨNρxyNCxNCyN

−4θ2NΠNϕNρyzNCyNCzN + 4θ1Nθ2NΨNΠNϕNρxzNCxNCzN


−2αN


1 + θ1N (θ1N+1)

2 Ψ2
NϕNC

2
xN

+ θ2N (θ2N+1)
2 Π2

NϕNC
2
zN

−θ1NΨNρxyNCxNCyN − θ2NΠNρyzNCyNCzN

+θ1Nθ2NΠNΨNρxzNCxNCzN




,

min.MSE(tk) = Ȳ 2
N

(
1−

B2
N

AN

)
.

Proof. Consider the estimator tk as

tk =αN ȳN

(
aNX̄N + bN
aN x̄N + bN

)θ1N (cN Z̄N + dN
cN z̄N + dN

)θ2N
.

Using notations given in (1), we get

tk =αN ȲN (1 + ε0N )

(
aNX̄N + bN

aNX̄N (1 + ε1N ) + bN

)θ1N ( cN Z̄N + dN
cN Z̄N (1 + ε2N ) + dN

)θ2N
=αN ȲN (1 + ε0N )(1 + ΨN ε1N )−θ1N (1 +ΠN ε2N )−θ2N .
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Using Taylor series expansion, multiplying right hand terms and excluding error terms having

power more than two, we get

tk =αN ȲN

(
1 + ε0N − θ1NΨN ε1N − θ2NΠN ε2N + θ1N (θ1N+1)

2 Ψ2
N ε

2
1N + θ2N (θ2N+1)

2 Π2
N ε

2
2N

−ΨNθ1N ε0N ε1N −ΠNθ2N ε0N ε1N + ΨNΠNθ1Nθ2N ε1N ε2N

)
.

Subtracting ȲN both sides of the above expression, we get

tk − ȲN =ȲN

 αN

 1 + ε0N − θ1NΨN ε1N − θ2NΠN ε2N + θ1N (θ1N+1)
2 Ψ2

N ε
2
1N

+ θ2N (θ2N+1)
2 Π2

N ε
2
2N − θ1NΨN ε0N ε1N − θ2NΠN ε0N ε1N

+θ1Nθ2NΨNΠN ε1N ε2N

− 1

 . (11)

Taking expectation both sides of (11), we get

Bias(tk) =ȲN

αN


1 + θ1N (θ1N+1)
2 Ψ2

NϕNC
2
xN

+ θ2N (θ2N+1)
2 Π2

NϕNC
2
zN

−θ1NΨNρxyNCxNCyN − θ2NΠNρyzNCyNCzN

+θ1Nθ2NΠNΨNρxzNCxNCzN

− 1

 .
Squaring and taking expectation both sides of (11), we get

MSE(tk) =Ȳ 2
N



1 + α2
N

 1 + ϕNC
2
yN

+ 2θ2
1NΨ

2
NϕNC

2
xN

+ 2θ2
2NΠ

2
NϕNC

2
zN

+θ1NΨ
2
NϕNC

2
xN

+ θ2NΠ
2
NϕNC

2
zN
− 4θ1NΨNρxyNCxNCyN

−4θ2NΠNϕNρyzNCyNCzN + 4θ1Nθ2NΨNΠNϕNρxzNCxNCzN


−2αN


1 + θ1N (θ1N+1)

2 Ψ2
NϕNC

2
xN

+ θ2N (θ2N+1)
2 Π2

NϕNC
2
zN

−θ1NΨNρxyNCxNCyN − θ2NΠNρyzNCyNCzN

+θ1Nθ2NΠNΨNρxzNCxNCzN




,

=Ȳ 2
N (1 + α2

NAN − 2αNBN ). (12)

where,

AN =

(
1 + ϕNC

2
yN

+ 2θ2
1NΨ

2
NϕNC

2
xN

+ 2θ2
2NΠ

2
NϕNC

2
zN

+ θ1NΨ
2
NϕNC

2
xN

+ θ2NΠ
2
NϕNC

2
zN

−4θ1NΨNρxyNCxNCyN − 4θ2NΠNϕNρyzNCyNCzN + 4θ1Nθ2NΨNΠNϕNρxzNCxNCzN

)
,

BN =

{
1 + θ1N (θ1N+1)

2 Ψ2
NϕNC

2
xN

+ θ2N (θ2N+1)
2 Π2

NϕNC
2
zN
− θ1NΨNρxyNCxNCyN

−θ2NΠNρyzNCyNCzN + θ1Nθ2NΠNΨNρxzNCxNCzN

}
.

Minimizing (12) with respect to αN , we get

αN(opt) =
B2
N

AN
. (13)

Putting αN(opt) in (12), we get

min.MSE(tk) = Ȳ 2
N

(
1−

B2
N

AN

)
.

It is remarkable that the simultaneous optimization of αN , θ1N , and θ2N is not possible. The

optimum values of θ1N , and θ2N can be obtained by putting αN = 1 in the estimator tk and
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optimizing the MSE. The optimum values of θ1N , and θ2N are given as follows:

θ1N =
CyN
CxN

(ρxyN − ρyzNρxzN )

(1− ρ2
xzN

)
and θ2N =

CyN
CzN

(ρyzN − ρxyNρxzN )

(1− ρ2
xzN

)
.

The efficiency comparison of proposed and adapted estimators in survey sampling is critical

for determining which estimator produces more exact and trustworthy estimates with the

least variance or MSE. It assures that the new estimator outperforms existing estimators by

decreasing MSE and enhancing accuracy. Such comparisons offer a foundation for using more

effective estimators, which improves the overall quality of data gathering and decision-making

processes in research and practice.

• Comparison of the proposed optimal neutrosophic ratio type estimator tk with the

neutrosophic sample mean ȳN .

min.MSE(tk) < V (ȳN )

Ȳ 2
N

(
1−

B2
N

AN

)
< Ȳ 2

NϕNC
2
yN

1−
B2
N

AN
< ϕNC

2
yN

B2
N

AN
> 1− ϕNC2

yN

• Comparison of the proposed optimal neutrosophic ratio type estimator tk with the

neutrosophic generalized ratio estimator tgr.

min.MSE(tk) < MSE(tgr)

Ȳ 2
N

(
1−

B2
N

AN

)
< Ȳ 2

NϕN

(
C2
yN

+ Ψ2
NC

2
xN

+Π2
NC

2
zN
− 2ΨNρxyNCxNCyN

−2ΠNρyzNCyNCzN + 2ΨNΠNρxzNCxNCzN

)
B2
N

AN
> 1− ϕN

(
C2
yN

+ Ψ2
NC

2
xN

+Π2
NC

2
zN
− 2ΨNρxyNCxNCyN

−2ΠNρyzNCyNCzN + 2ΨNΠNρxzNCxNCzN

)

• Comparison of the proposed optimal neutrosophic ratio type estimator tk with the

neutrosophic generalized power ratio estimator tpr.

min.MSE(tk) < min.MSE(tpr)

Ȳ 2
N

(
1−

B2
N

AN

)
< Ȳ 2

NϕNC
2
yN

(1−R2
y.xz)

B2
N

AN
> 1− ϕNC2

yN
(1−R2

y.xz)
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• Comparison of the proposed optimal neutrosophic ratio type estimator tk with the

neutrosophic ratio-cum-product exponential type estimator tsg.

min.MSE(tk) < min.MSE(tsg)

Ȳ 2
N

(
1−

B2
N

AN

)
< Ȳ 2

NϕN


C2
yN

+
(1−∆∗

N(opt)
)2

4 C2
xN

+
(1−Λ∗

N(opt)
)2

4 C2
zN

−
(1−∆∗

N(opt)
)(1−Λ∗

N(opt)
)

2 ρxzNCxNCzN

+(1− Λ∗
N(opt))ρyzNCzNCyN − (1−∆∗

N(opt))ρxyNCxNCyN


B2
N

AN
> 1− ϕN


C2
yN

+
(1−∆∗

N(opt)
)2

4 C2
xN

+
(1−Λ∗

N(opt)
)2

4 C2
zN

−
(1−∆∗

N(opt)
)(1−Λ∗

N(opt)
)

2 ρxzNCxNCzN

+(1− Λ∗
N(opt))ρyzNCzNCyN − (1−∆∗

N(opt))ρxyNCxNCyN


4. Simulation study

A simulation study is essential for evaluating the effectiveness of the suggested estimators

in controlled conditions, as it allows researchers to test numerous situations and measure

flexibility. It reveals insights into estimators behaviour when real-world data is unavailable

or unsuitable. Therefore, we conduct a simulation study to examine the performance of the

adapted and suggested neutrosophic estimators using an artificially created normal population.

The trivariate normal population of size N = 500 is generated from R software using the

parameters ȲN ∈ [10, 20], X̄N ∈ [15, 25], Z̄N ∈ [20, 30], σyN ∈ [24, 26], σxN ∈ [25, 28],

σzN ∈ [26, 30], and different values of correlation coefficients ρxyN , ρyzN , and ρxzN . Based on

15,000 iterations, the bias, MSE, and PRE are computed using the following formulas:

Bias(t∗) =
1

15, 000

15,000∑
i=1

(t∗ − ȲN ), where t∗ = tm, tgr, tpr, and tk, (14)

MSE(t∗) =
1

15, 000

15,000∑
i=1

(t∗ − ȲN )2, (15)

and PRE(tm, t
∗) =

MSE(tm)

MSE(t∗)
× 100. (16)

Utilizing the necessary parameters of the neutrosophic normal population and for different

values of correlation coefficients, the bias, MSE, and PRE results are obtained and compiled

in Table 4, Table 5, and Table 6, respectively.

From the bias results of Table 4, it can be observed that the members tik, i = 1, 2, ..., 7

of the proposed optimal neutrosophic estimator tk are negatively biased for each combina-

tion of correlation coefficients. From Table 5, it can be seen that the MSE of the members

tik, i = 1, 2, ..., 7 of the proposed optimal neutrosophic estimator tk is less than the mean per

unit estimator tm, the members tigr of the generalized ratio estimator tgr, and the members tipr

of the neutrosophic generalized power ratio estimator tpr for every combination of correlation
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coefficients. The PRE results of Table 6 indicate that the members tik, i = 1, 2, ..., 7 of the

proposed optimal neutrosophic estimator tk outperform the mean per unit estimator tm, the

members tigr of the generalized ratio estimator tgr, and the members tipr of the neutrosophic

generalized power ratio estimator tpr for every combination of correlation coefficients. More-

over, it is also observed that the MSE and PRE of each member of the proposed estimator

decrease and increase as the values of correlation coefficients increase.

Table 4. BiasN ∈ [BiasL, BiasU ] of neutrosophic estimators using neutro-

sophic normal population

ρxyN
0.3 0.5 0.7 0.9

ρyzN 0.3 0.5 0.7 0.9

ρxzN 0.3 0.5 0.7 0.9

Estimators

ȳN (0, 0) (0, 0) (0, 0) (0, 0)

t1gr (0.3014, 0.3867) (0.1737, 0.3106) (0.0622, 0.2337) (-0.0071, 0.15482)

t2gr (0.2131, 0.3446) (0.0970, 0.2697) (0.0239, 0.1940) (-0.0429, 0.1164)

t3gr (0.2225, 0.2605) (0.1184, 0.1659) (0.0167, 0.0710) (-0.0640, -0.0257)

t4gr (0.2951, 0.3806) (0.1717, 0.3051) (0.0625, 0.2288) (-0.0058, 0.1507)

t5gr (0.2988, 0.3832) (0.1716, 0.3047) (0.0605, 0.2261) (-0.0075, 0.1461)

t6gr (0.1766, 0.3832) (0.0653, 0.2214) (-0.0039, 0.1477) (-0.0696, 0.0728)

t7gr (0.2985, 0.3832) (0.1716, 0.3095) (0.0628, 0.2327) (-0.0064, 0.1539)

tsg (0.0117, 0.0003) (-0.0713, -0.0030) (-0.0371, -0.0140) (-0.0866, -0.0373)

tipr, i = 1, 2, ..., 7 (0.0274, 0.0359) (0.0002, 0.0344) (-0.0324, 0.0148) (-0.0755, -0.0179)

t1k (-0.0830, -0.0441) (-0.1868, -0.0976) (-0.2618, -0.1644) (-0.3481, -0.2411)

t2k (-0.0830, -0.0441) (-0.1871, -0.0976) (-0.2620, -0.1645) (-0.3485, -0.2412)

t3k (-0.0830, -0.0441) (-0.1871, -0.09763) (-0.2620, -0.1645) (-0.3485, -0.2412)

t4k (-0.0830, -0.0441) (-0.1869, -0.0976) (-0.2619, -0.1644) (-0.3483, -0.2411)

t5k (-0.0830, -0.0441) (-0.1869, -0.0976) (-0.2619, -0.1644) (-0.3483, -0.2411)

t6k (-0.0831, -0.0441) (-0.1872, -0.0976) (-0.2621, -0.1645) (-0.3487, -0.2412)

t7k (-0.0830, -0.0441) (-0.1868, -0.0976) (-0.2618, -0.1644) (-0.3481, -0.2411)

5. Real data applications

In March 2012, the Indian Government has published the national data sharing and

accessibility policy (NDSAP). The national policy is expected to increase the accessibil-

ity and easier sharing of non-sensitive data amongst the registered users and their avail-

ability for scientific, economic and social developmental purposes. Over the years, var-

ious data holding organizations of Central and State Governments have published their
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Table 5. MSEN ∈ [MSEL, MSEU ] of neutrosophic estimators using neu-

trosophic normal population

ρxyN
0.3 0.5 0.7 0.9

ρyzN 0.3 0.5 0.7 0.9

ρxzN 0.3 0.5 0.7 0.9

Estimators

ȳN (5.3664, 6.3157) (5.3439, 6.2731) (6.0146, 6.2923) (5.8616, 6.3965)

t1gr (6.9095, 11.8385) (4.9639, 9.0733) (3.3643, 6.3644) (1.4265, 3.6615)

t2gr (6.2520, 11.1024) (4.4883, 8.3975) (3.0891, 5.7489) (1.2091, 3.1069)

t3gr (6.3071, 10.4377) (4.5119, 7.7881) (2.9753, 5.1977) (1.1023, 2.6169)

t4gr (6.6440, 11.5662) (4.7695, 8.8249) (3.2481, 6.1379) (1.3338, 3.4549)

t5gr (6.7967, 11.6679) (4.8149, 8.7922) (3.2097, 5.9970) (1.2645, 3.2319)

t6gr (5.9734, 10.2322) (4.2882, 7.6031) (2.8972, 5.0373) (1.0580, 2.4856)

t7gr (6.8853, 11.8154) (4.948, 9.0530) (3.3694, 6.3482) (1.4326, 3.6487)

tsg (4.9010, 5.7798) (4.0440, 4.7580) (3.035, 3.2601) (1.1136, 1.2367)

tipr, i = 1, 2, ..., 7 (4.6688, 5.5090) (3.6444, 4.2911) (2.4857, 2.7518) (0.8542, 0.9699)

t1k (4.2008, 5.3831) (3.3626, 4.2100) (2.4431, 2.7206) (0.8531, 0.9682)

t2k (4.2111, 5.3850) (3.3757, 4.2124) (2.4469, 2.7226) (0.8528, 0.9687)

t3k (4.2098, 5.3868) (3.3739, 4.2145) (2.4482, 2.7243) (0.8528, 0.9691)

t4k (4.2047, 5.3838) (3.3676, 4.2108) (2.4446, 2.7213) (0.8530, 0.9684)

t5k (4.2027, 5.3836) (3.3664, 4.2110) (2.4451, 2.7218) (0.8530, 0.9686)

t6k (4.2158, 5.3874) (3.3815, 4.2153) (2.4498, 2.7249) (0.8525, 0.9683)

t7k (4.2009, 5.3831) (3.3628, 4.2100) (2.4431, 2.7207) (0.8531, 0.9795)

non-sensitive data, keeping in view, the broad guidelines delineated in the right to in-

formation (RTI) Act 2005. Under NDSAP, in January, 2023, the India Meteorolog-

ical Department (IMD) also published the data which is based on Seasonal and An-

nual Minimum/Maximum Temperature series for the period 1901-2021. This data can

be assessed from the publicly available website https://www.data.gov.in/resource/

seasonal-and-annual-minimum-maximum-temperature-series-period-1901-2021. The

temperature of months October-December during 1901-2021 is taken as neutrosophic study

variable yN , while the temperature of months June-September and March-May during 1901-

2021 is taken as neutrosophic auxiliary variables xN and zN , respectively. The important

characteristics related to this data are compiled in Table 7.

This real dataset is used to examine the performance of the adapted and proposed neutro-

sophic estimators in terms of bias, MSE, and PRE. From the findings of real data compiled in

Table 8, it is observed that the members tik, i = 1, 2, ..., 7 of the proposed optimal neutrosophic

estimator tk are negatively biassed. The findings of Table 8 also show that the members tik

of the proposed neutrosophic estimator tk obtain the least MSE and highest PRE than the
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Table 6. PREN ∈ [PREL, PREU ] of neutrosophic estimators using neutro-

sophic normal population

ρxyN
0.3 0.5 0.7 0.9

ρyzN 0.3 0.5 0.7 0.9

ρxzN 0.3 0.5 0.7 0.9

Estimators

ȳN (100.0000, 100.0000) (100.0000, 100.0009) (100.0000, 100.0000) (100.0000, 100.0000)

t1gr (77.6675, 53.3488) (107.6560, 69.1381) (178.7782, 98.8676) (410.8916, 174.6957)

t2gr (85.8342, 56.8861) (119.0636, 74.7021) (194.7050, 109.4534) (484.7652, 205.8810)

t3gr (85.0846, 60.5086) (118.4403, 80.5473) (202.1504, 121.0606) (531.7292, 244.4284)

t4gr (80.7701, 54.6049) (112.0444, 71.0843) (185.1730, 102.5166) (439.4532, 185.1448)

t5gr (78.9554, 54.1292) (110.9866, 71.3482) (187.3867, 104.9256) (463.5458, 197.9191)

t6gr (89.8383, 61.7242) (124.6201, 82.5068) (207.5966, 124.9151) (553.9966, 257.3452)

t7gr (77.9403, 53.4531) (107.9928, 69.2932) (178.5046, 99.1204) (409.1544, 175.3112)

tsg (109.4961, 109.2726) (132.1436, 131.8424) (198.1643, 193.0072) (526.3398, 517.2179)

tipr, i = 1, 2, ..., 7 (114.9416, 114.6424) (146.6347, 146.1879) (241.9613, 228.6578) (686.2144, 659.4919)

t1k (127.7474, 117.3239) (158.9198, 149.0046) (246.1812, 231.2789) (687.0395, 660.6028)

t2k (127.4350, 117.2824) (158.3024, 161.5663) (245.8035, 231.1135) (687.3027, 660.2914)

t3k (127.4736, 117.2443) (158.3891, 148.8429) (245.6697, 230.9710) (687.2713, 660.0523)

t4k (127.6288, 117.3089) (158.685, 148.9740) (246.0303, 231.2194) (687.1212, 660.4837)

t5k (127.6887, 117.3128) (158.7405, 148.9688) (245.9860, 231.1831) (687.1460, 660.3635)

t6k (127.2924, 117.2308) (158.0313, 148.8145) (245.5129, 230.9163) (687.5282, 659.9868)

t7k (127.7447, 117.3239) (158.9115, 149.0036) (246.1845, 231.2762) (687.0472, 660.5961)

members tigr of the generalized ratio estimator tgr, and the members tipr of the neutrosophic

generalized power ratio estimator tpr.

Table 9 displays bias, MSE, and PRE for the classical data. The members of the suggested

estimator tk are the most efficient among all estimators, with the lowest MSE and highest

PRE. When comparing neutrosophic findings in Table 8 with classical findings in Table 9, we

can conclude that in situations where data are not clear and crisp, instead of relying on a single

value in the case of classical estimators, we have an interval to rely on for better results, as

we can accept the output if it falls in between these values, because we are handling uncertain

data.

Anoop Kumar, Priya, and Vrijesh Tripathi, Optimal neutrosophic framework for population
mean estimation under simple random sampling

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                              705



Table 7. Descriptive values of neutrosophic and classical parameters for real

dataset

Neutrosophic parameter Neutrosophic values Classical parameter Classical values

NN 121 N 121

nN (30, 30) n 30

ȲN (17.431, 28.478) Ȳ 22.954

X̄N (24.092, 31.684) X̄ 27.888

Z̄N (21.747, 33.209) Z̄ 27.478

CyN (0.028, 0.019) Cy 0.020

CxN (0.009, 0.013) Cx 0.010

CzN (0.019, 0.012) Cz 0.016

ρxyN (0.452, 0.694) ρxy 0.649

ρxzN (0.427, 0.357) ρxz 0.314

ρyzN (0.247, 0.405) ρyz 0.317

β1(xN ) (3.121, 2.997) β1(x) 0.239

β2(xN ) (-0.122, 0.074) β2(x) 2.975

β1(zN ) (2.828, 3.136) β1(z) 0.030

β2(zN ) (0.183, -0.163) β2(z) 3.132

Table 8. BiasN ∈ [BiasL, BiasU ], MSEN ∈ [MSEL, MSEU ], and

PREN ∈ [PREL, PREU ] of the neutrosophic estimators for real data set

Estimators (BiasL, BiasU ) (MSEL, MSEU ) (PREL, PREU )

ȳN (0, 0) (0.0079, 0.0103) (100.0000, 100.0000)

t1gr (0.00016, 0.00008) (0.0091, 0.0074) (87.0250, 139.0112)

t2gr (0.00016, 0.00008) (0.0091, 0.0074) (87.0844, 139.0788)

t3gr (0.00019, 0.00002) (0.0093, 0.0126) (84.7288, 82.0142)

t4gr (0.00016, 0.00008) (0.0090, 0.0074) (87.3052, 139.0359)

t5gr (0.00016, 0.00007) (0.0090, 0.0073) (87.8766, 141.5893)

t6gr (0.00016, 0.00008) (0.0090, 0.0074) (87.5085, 138.5515)

t7gr (0.00016, 0.00006) (0.0089, 0.0072) (88.3912, 142.5806)

tsg (-0.00001, -0.00001) (0.0066, 0.0050) (119.5000, 153.2665)

tipr (0.00001, -0.00009) (0.0064, 0.0053) (122.7051, 192.8389)

t1k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2444, 204.3487)

t2k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2444, 204.3487)

t3k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2449, 204.3487)

t4k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2444, 204.3487)

t5k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2444, 204.3487)

t6k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2444, 204.3487)

t7k (-0.00009, -0.00012) (0.0062, 0.0038) (126.2443, 204.3486)
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Table 9. Bias, MSE, and PRE of estimators under classical data

Estimators Bias MSE PRE

ȳ 0.0000 0.0070 100.0000

t1gr 0.0001 0.0069 101.5228

t2gr 0.0001 0.0069 101.5880

t3gr -0.000009 0.0062 111.5913

t4gr 0.0001 0.0069 101.5437

t5gr 0.0001 0.0068 102.9575

t6gr 0.00009 0.0061 113.3949

t7gr 0.00009 0.0062 112.8295

tsg -0.000006 0.0051 137.4965

tipr, i = 1, 2, ..., 7 -0.00001 0.0040 172.4487

t1k -0.0001 0.0039 177.1242

t2k -0.0001 0.0039 177.1242

t3k -0.0001 0.0039 177.1235

t4k -0.0001 0.0039 177.1242

t5k -0.0001 0.0039 177.1242

t6k -0.0001 0.0039 177.1241

t7k -0.0001 0.0039 177.1242

6. Conclusions

In this paper, we presented an optimal neutrosophic framework for estimating the population

mean under SRS by employing bivariate auxiliary information. The use of neutrosophic sets

enabled us to account for the uncertainty, indeterminacy, and imprecision inherent in real-

world survey data. By incorporating neutrosophic logic into classical sampling theory, we

created an optimal neutrosophic estimation method that outperforms the adapted neutrosophic

estimation methods in cases with high uncertainty. A simulation study is undertaken on an

artificially generated normal population. The simulation findings reveal that the suggested

neutrosophic estimator outperforms the adapted neutrosophic estimators, with lower MSE

and higher PRE. In addition, the suggested neutrosophic framework outperformed the adapted

ones in terms of accuracy as well as reliability when applied to real-life temperature data. This

demonstrates the practical application of the suggested neutrosophic estimators in statistical

estimating procedures, which provide considerable benefits in uncertain contexts.

In future studies, we may look at expanding this study to more complex sampling designs,

including stratified and double sampling. Furthermore, real-life case studies would help to

evaluate the efficiency of the neutrosophic framework and broaden its applicability in a variety

of survey research and data analysis fields.
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