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Abstract: The rising demand for sustainable transportation has intensified the need for robust decision-

making models in selecting optimal Electric Vehicles (EVs) for organizational fleets. Traditional 

evaluation methods often struggle to handle the uncertainty, vagueness, and complex interdependencies 

involved in real-world multi-criteria assessments. To address these limitations, this study proposes a 

novel Multi-Criteria Decision-Making (MCDM) framework based on Neutrosophic SuperHyperSoft Sets 

(NSHSS). The proposed model introduces a powerful way to incorporate linguistic expert assessments, 

enabling flexible representation of indeterminacy and subjectivity through Neutrosophic triplets. By 

defining five core evaluation criteria range and Battery Efficiency (RBE), Total Cost of Ownership (TCO), 

Safety and Reliability (SR), Charging Infrastructure Compatibility (CIC), and Technology and 

Connectivity (TC), each subdivided into four linguistic sub-criteria, the framework constructs an 

extensive NSHSS universe using power sets and Cartesian products, resulting in 1,048,576 elements and 

1024 propositions. A novel aggregation mechanism using the Generalized Neutrosophic SuperHyperSoft 

Weighted Heronian Mean (GNSHSWHM) operator and a customized score function is developed to rank 

EV alternatives effectively. A numerical illustration involving four EVs is presented to demonstrate the 

effectiveness, scalability, and practicality of the approach. Additionally, an automated R-based 

computational model is implemented to support real-time decision analysis. The study contributes a 

scalable, uncertainty-resilient, and context-adaptive tool for strategic EV adoption, and can be extended 

to broader domains involving complex MCDM problems under uncertainty. 

 

Keywords: SuperHypersoft Sets; Neutrosophic SuperHypersoft Sets, MCDM, Electric Vehicle Selection. 

 

1. Introduction  

Decision-making problems often involve uncertainty, imprecision, and vagueness. Classical 

mathematical tools such as set theory, probability, and fuzzy logic address these challenges, but they have 

limitations in handling complex, multi-attribute decision-making scenarios. To overcome these 

limitations, several extensions of set theory have been proposed, among which soft set theory [12], hyper 

soft set theory [1,17], and super hyper soft set theory [16] play significant roles. Soft set theory, introduced 
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by Molodtsov in 1999, provides a flexible and parameterized approach to deal with uncertainty. Unlike 

fuzzy and rough sets, which require additional structures such as membership functions or equivalence 

relations, soft set theory is purely based on a parameterized family of subsets. A soft set is a collection of 

approximate descriptions of an object, where each description depends on a set of parameters. It has been 

successfully applied in decision-making, data analysis, and artificial intelligence. Hyper soft set theory 

extends soft set theory by incorporating a more detailed structure through multi-attribute 

parameterization. Instead of associating a single set with a parameter, hyper soft sets group multiple 

attributes under a parameter, making them suitable for handling complex decision-making problems. 

This enhances their applicability in fields such as medical diagnosis, engineering optimization, and 

information retrieval. 

1.1 Literature Review 
 
The Heronian Mean [2], rooted in classical mathematics, is a special type of averaging operator 

that considers not only the individual values but also the interactions between them. Unlike traditional 

means such as the arithmetic or geometric mean, the HM operator blends the arithmetic, geometric, and 

harmonic means to provide a more nuanced aggregation, especially suitable when the criteria are 

interdependent. This unique property makes it particularly advantageous in MCDM environments where 

attribute interactions cannot be ignored. In recent years, the HM operator has been extensively integrated 

into various fuzzy and neutrosophic frameworks, such as Intuitionistic Fuzzy Sets, Pythagorean Fuzzy 

Sets, and Neutrosophic Sets, to handle uncertainty, imprecision, and inconsistency in expert judgments. 

By doing so, it enhances the decision-making process by enabling a more accurate representation of 

human reasoning under complex and uncertain environments. The generalized weighted Heronian mean 

operator [22], geometric Heronian operators are used to analzing the data. There are many Heronian 

operators used in the decision-making problems such as neutrosophic Dombi-based Heronian mean 

operator [21], Bipolar neutrosophic Dombi-based Heronian Mean Operator [22], T-spherical fuzzy 

Dombi-weighted power-partitioned Heronian mean operator [25], etc. 

Author’s Sets Application area 

Lu, M. [10] Neutrosophic set College English Teaching 

Quality Evaluation 

Naz, S., et al. [13] Single-Valued Neutrosophic Set A Novel MAGDM Approach 

for Software Quality 

Assessment 

Tang, M., & Sun, Y. [20] Neutrosophic set Evaluation of Track and Field 

Students in Sports Colleges. 

Ye, J., & Yong, R. [23] Neutrosophic set landslide Control Scheme 

Selection 

Zhao, L., & Du, S. [28] double-valued neutrosophic 

sets 

Teaching Quality Evaluation 

Zhao, Y. [29] Neutrosophic set Evaluating Quality of 

University General Education 
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Courses 

Tan, Q. et al. [19] Triangular Neutrosophic Cubic 

Linguistic Hesitant Fuzzy Set 

Quality Assessment of 

Innovation and 

Entrepreneurship Talent 

Cultivation in Universities 

Haque, T. S., et al. [8] Trapezoidal Neutrosophic Set E-learning App Selection 

Durmuş, C. N., et al. [5] Type-2 Neutrosophic Fuzzy Set Evaluation of Banking 

Performance of the Balkan 

Countries 

Fan, C., et al. [6] Pythagorean Neutrosophic Set Evaluation of Water Pollution 

Control Technology in Pulp and 

Paper Industry 

Zhang, K., et al. [27] Single-Valued Neutrosophic Set International Shipping Operator 

Selection 

Chen, Z., et al. [4] Neutrosophic Set Evaluation of Sports Tourism 

Mohamed, M., & Elsayed, A. 

[11] 

Bipolar Neutrosophic Set Evaluating Financial Markets in 

Egypt 

Jamil, M., et al. [9] Bipolar Neutrosophic Set Selection of Robot 

Priyadharshini, S., & 

Mohanaselvi, S. [14] 

Complex Single-Valued 

Neutrosophic Set 

Green Supply Chain 

Management 

Zhai, S., et al. [26] Neutrosophic Set Supplier Selection 

Bui, Q. et al [3] Spherical Neutrosophic Set A Novel Distance-Based 

Evaluation Strategy 

Gül, A. Y., et al. [7] Interval Valued Neutrosophic 

Set 

Drone Selection for Forest 

Surveillance and Fire Detection 

 

1.2 Preliminaries 

 A Neutrosophic Set (NS) [16] is introduced by Florentin Smarandache to handle uncertainty, 

imprecision, vagueness, and inconsistencies in data. It extends classical, fuzzy, and intuitionistic fuzzy set 

theories by incorporating three independent components: (i)Truth Membership (T): The degree to which 

an element belongs to the set. (ii) Indeterminacy Membership (I): The degree of uncertainty or 

indeterminacy in membership. (iii) Falsity Membership (F): The degree to which an element does not 

belong to the set. Each of these values (T, I, F) is independently chosen from the real interval [0,1], and 0 

 𝑇 +  𝐼 +  𝐹   3. Super hyper soft set theory (SHSS) [6] is an advanced extension of hyper soft sets, 

offering a more refined structure for handling uncertainty. Let 𝑋 be a universe of discourse, 𝑃(𝑋) its 

powerset and  𝑧1, 𝑧2, . . . 𝑧𝑛 (𝑛 ≥ 1) distinct attributes with disjoint corresponding sets 𝑍1, 𝑍2, . . . 𝑍𝑛. The 

powerset of 𝑍𝑘 for k= 1, 2, . . . 𝑛  is denoted as 𝑃(𝑧𝑘). A SuperHyperSoft Set (SHSS) over 𝑋 is defined as the 

pair (, 𝑃(𝑍2)  . . .  𝑃(𝑍𝑛)) where  ∶  𝑃(𝑍1) . . .  𝑃(𝑍𝑛)→  𝑃(𝑋). This definition provides a multi-layered 

approach to organizing data, enabling better modeling of multi-criteria decision-making problems. To 
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further enhance the expressiveness of SHSS, Neutrosophic Super Hyper Soft Set (NSHSS) [17, 18] theory 

introduces neutrosophic logic into the framework. Given the same universe X, its powerset P(X) and 

distinct attributes with disjoint corresponding sets, an NSHSS over X is defined as the pair 

(, 𝑃(𝑍1)  . . .  𝑃(𝑍𝑛))  where 

 ∶  𝑃(𝑍1) . . .  𝑃(𝑍𝑛)→  𝑃(𝑋). and 

 =  { 𝑦, 〈 𝑥, 𝑇(𝑦)(𝑥), 𝐼(𝑦)(𝑥), 𝐹(𝑦)(𝑥)〉 ∶  𝑥𝑋, 𝑦 𝑃(𝑍2)   . . .  𝑃(𝑍𝑛))  }. 

Here 𝑇(𝑦)(𝑥), 𝐼(𝑦)(𝑥), 𝐹(𝑦)(𝑥): 𝑋 → [0,1] represent the membership, indeterminacy and non-membership 

degrees of 𝑥𝑋 for each 𝑦, satisfying: 0  𝑇(𝑦)(𝑥) + 𝐼(𝑦)(𝑥) + 𝐹(𝑦)(𝑥)  3. 

 

Definition 1.2.1 [18]:  Let 𝑋 be a universe of discourse, 𝑃(𝑋) its powerset and  𝑧1, 𝑧2, . . . 𝑧𝑛 (𝑛 ≥ 1) distinct 

attributes with disjoint corresponding sets 𝑍1, 𝑍2, . . . 𝑍𝑛. The powerset of 𝑍𝑘 for k= 1, 2, . . . 𝑛  is denoted as 

𝑃(𝑧𝑘). Let 𝛾, 𝛿  be two NSHSS over 𝑋 is defined as the pair 

(𝛾, 𝒫(𝑧1)  . . .  𝒫(𝑧𝑛)) and (𝛿, 𝒫(𝑧1) . . .  𝒫(𝑧𝑛)) where 𝛾, 𝛿 ∶  𝒫(𝑧1) . . .  𝒫(𝑧𝑛) →  𝒫(𝑋) and  

𝛾 =  { 𝑤,   𝑢, 𝒯𝛾(𝑤)(𝑢), ℐ𝛾(𝑤)(𝑢), ℱ𝛾(𝑤)(𝑢)  ∶  𝑢𝑋,𝑤 𝒫(𝑧1) . . .  𝒫(𝑧)} 

𝛿 =  { 𝑤,   𝑣, 𝒯𝛿(𝑤)(𝑣), ℐ𝛿(𝑤)(𝑣), ℱ𝛿(𝑤)(𝑣)  ∶  𝑣𝑋, 𝑤 𝒫(𝑧1)  . . .  𝒫(𝑧𝑛)}. Then the basic operators are 

defined as  

1. 𝛾𝛿 = <𝒯𝛾(𝑤)(𝑢) + 𝒯𝛿(𝑤)(𝑣) - 𝒯𝛾(𝑤)(𝑢) . 𝒯𝛿(𝑤)(𝑣), ℐ𝛾(𝑤)(𝑢) . ℐ𝛿(𝑤)(𝑣), ℱ𝛾(𝑤)(𝑢) . ℱ𝛿(𝑤)(𝑣)>. 

2. 𝛾𝛿 =< 𝒯𝛾(𝑤)(𝑢). 𝒯𝛿(𝑤)(𝑣), ℐ𝛾(𝑤)(𝑢) + ℐ𝛿(𝑤)(𝑣) - ℐ𝛾(𝑤)(𝑢) . ℐ𝛿(𝑤)(𝑣), ℱ𝛾(𝑤)(𝑢) + ℱ𝛿(𝑤)(𝑣)- 

ℱ𝛾(𝑤)(𝑢) . ℱ𝛿(𝑤)(𝑣)>. 

 

Definition 1.2.2 : Let N1, N2… ,Nα be the collection of NSHSS. Then the Generalized Neutrosophic 

SuperHyperSoft Weighted Heronian Mean operator  GNSHSWHMw
A,B(N1, N2… ,Nα) is  

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝐀,𝐁(𝐍𝟏, 𝐍𝟐… ,𝐍𝛂) =

(

 
 
 
 
 
 
 (𝟏 −∏ (𝟏 − (𝐓𝐍𝐂)

𝐀𝐰𝐂
(𝐓𝐍𝐃)

𝐁𝐰𝑫
)

𝟐

𝛂(𝛂+𝟏)𝛂
𝐂=𝟏,𝐃=𝟏 )

𝟏

𝐀+𝐁

,

 

𝟏 − (𝟏 −∏ (𝟏 − (𝟏 − 𝐅𝐍𝐂)
𝐀𝐰𝐂
(𝟏 − 𝐅𝐍𝐃)

𝐁𝐰𝑫
)

𝟐

𝛂(𝛂+𝟏)𝛂
𝐂=𝟏,𝐃=𝟏 )

𝟏

𝐀+𝐁

,

𝟏 − (𝟏 −∏ (𝟏 − (𝟏 − 𝐈𝐍𝐂)
𝐀𝐰𝐂
(𝟏 − 𝐈𝐍𝐃)

𝐁𝐰𝑫
)

𝟐

𝛂(𝛂+𝟏)𝛂
𝐂=𝟏,𝐃=𝟏 )

𝟏

𝐀+𝐁

)

 
 
 
 
 
 
 

              

Where ∑ 𝑤𝑖 = 1.
𝑛
1=1  

 

This study aims to enhance Multi-Criteria Decision-Making (MCDM) for electric vehicle (EV) 

selection using the Neutrosophic SuperHyperSoft Set (NSHSS) framework. Unlike traditional MCDM 

methods, which rigidly rank alternatives, NSHSS generates 1024 possible propositions, allowing decision-

makers to select only the most relevant ones based on specific needs. By incorporating neutrosophic 

components (Truth, Indeterminacy, and Falsity), NSHSS effectively manages uncertainty and imprecision 

in decision-making. This structured approach improves flexibility, accuracy, and adaptability, ensuring 

an optimal EV selection process for corporate and governmental applications. 
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2. Selection of Electrical Vehicle Using NSHSS in MCDM  

 

As part of its sustainability initiative, a corporation is planning to transition its vehicle fleet to electric 

vehicles (EVs). With numerous EV models available, the company must carefully select the most suitable 

vehicles based on various criteria such as performance, cost, environmental impact, and technological 

features. The selection process must consider the range and battery efficiency, ensuring that the vehicles 

can handle daily operational requirements without frequent recharging. Charging infrastructure 

compatibility is also critical, as the company must evaluate whether the vehicles align with existing or 

planned charging networks. Additionally, total cost of ownership, including purchase price, 

maintenance, and long-term operational expenses, plays a significant role in decision-making. 

 

Further considerations include safety and reliability, government incentives and tax benefits, and 

technological features such as autonomous driving capabilities and smart connectivity. Given these 

complex and interdependent factors, the corporation will use a Multi-Criteria Decision-Making (MCDM) 

approach to systematically evaluate the available EV models. By applying MCDM techniques, the 

company ensures that its fleet transition aligns with sustainability goals, operational needs, and financial 

constraints while maximizing the benefits of EV adoption. 

 

 
 

2.1 Algorithm for Multi Criteria Decision-Making Using NSHSS 

Step 1: Initialize the Process : Identify the key components required for decision-making: 

• Decision-makers (K): A set of experts {K₁, K₂, ..., Kₙ}. 

• Criteria (C): The attributes influencing the decision {C₁, C₂, ..., Cₙ}. 

• Alternatives (A): The available choices {A₁, A₂, ..., Aₙ}. Gather input data from decision-makers 

regarding the criteria and alternatives. 

Step 2: Formulate Propositions Using NSHSS : Utilize attributes and sub-attributes to generate power sets 

of criteria and construct an NSHSS (Neutrosophic SuperHyperSoft Set) architecture.  

Step 3: Linguistic Evaluation of Each Criterion : Convert decision-makers' linguistic evaluations into 

neutrosophic values for each criterion C = {C₁, C₂, ..., Cₙ}.  
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Step 4: Aggregate NSHSS Using GNSHSWHMw
A,B. Use the generalized neutrosophic superhypersoft 

weighted Heronian mean operator to combine evaluations across all criteria for each alternative:  

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝐀,𝐁(𝐍𝟏, 𝐍𝟐… ,𝐍𝛂) =

(

 
 
 
 
 
 
 
 (𝟏 − ∏ (𝟏 − (𝐓𝐍𝐂)

𝐀𝐰𝐂
(𝐓𝐍𝐃)

𝐁𝐰𝑫
)

𝟐
𝛂(𝛂+𝟏)

𝛂

𝐂=𝟏,𝐃=𝟏

)

𝟏
𝐀+𝐁

,

 

𝟏 − (𝟏 − ∏ (𝟏 − (𝟏 − 𝐅𝐍𝐂)
𝐀𝐰𝐂
(𝟏 − 𝐅𝐍𝐃)

𝐁𝐰𝑫
)

𝟐
𝛂(𝛂+𝟏)

𝛂

𝐂=𝟏,𝐃=𝟏

)

𝟏
𝐀+𝐁

,

𝟏 − (𝟏 − ∏ (𝟏 − (𝟏 − 𝐈𝐍𝐂)
𝐀𝐰𝐂
(𝟏 − 𝐈𝐍𝐃)

𝐁𝐰𝑫
)

𝟐
𝛂(𝛂+𝟏)

𝛂

𝐂=𝟏,𝐃=𝟏

)

𝟏
𝐀+𝐁

)

 
 
 
 
 
 
 
 

 

Step 5: Evaluate Alternatives Using a Score Function.  

Compute the score for each alternative using: 𝑆 =
2+𝑇𝑎−𝐼𝑎−𝐹𝑎

3
      

Step 6: Rank the Alternatives  

Rank the alternatives A = {A₁, A₂, ..., Aₙ} based on their computed scores. 

Step 7: Select the Best Alternative(s) 

Choose the best alternative(s) based on the highest ranking obtained from the score function. 

Step 8: End the Process 

 

We will use the following R Programming code to calculate the generalized neutrosophic 

superhypersoft weighted Heronian mean operator. 
 

compute_GNSHSWHM <-function(A,B,alpha,T,F,I,w){ 

term1<-(1-prod(1-(T^(A*w)*T^(B*w)))^(2/(alpha*(alpha+1))))^(1/(A+B)) 

 

term2<-1-(1-prod(1-((1-F)^(A*w)*(1-F)^(B*w)))^(2/(alpha*(alpha+1))))^(1/(A+B)) 

   

term3<-1-(1-prod(1-((1-I)^(A*w)*(1-I)^(B*w)))^(2/(alpha*(alpha+1))))^(1/(A+B)) 

return(c(term1,term2,term3)) 

} 

 

main<-function(){ 

A<- as.numeric(readline("Enter value for A: ")) 

B <- as.numeric(readline("Enter value for B: ")) 

alpha <- as.integer(readline("Enter value for alpha: ")) 

cat("Enter values for T (comma-separated): ") 

T <- as.numeric(unlist(strsplit(readline(), ","))) 

cat("Enter values for F (comma-separated): ") 

F <- as.numeric(unlist(strsplit(readline(), ","))) 

cat("Enter values for I (comma-separated): ") 

I <- as.numeric(unlist(strsplit(readline(), ","))) 

cat("Enter weights w (comma-separated): ") 
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w <- as.numeric(unlist(strsplit(readline(), ","))) 

result <- compute_GNSHSWHM(A, B, alpha, T, F, I, w) 

cat("Computed GNSHSWHM values:\n") 

cat("Term 1:", result[1], "\n") 

cat("Term 2:", result[2], "\n") 

cat("Term 3:", result[3], "\n") 

} 

main() 

 

2.2 Numerical Example for Multi Criteria Decision-Making Using NSHSS 

Step 1: Initialize the Process 

Selection Criteria for EV Evaluation 

1. Range and Battery Efficiency (RBE) 

o Low (RBE-L): <200 km range, slow charging speed 

o Moderate (RBE-M): 200-300 km range, moderate charging time 

o High (RBE-H): 300-400 km range, fast charging capability 

o Exceptional (RBE-E): >400 km range, ultra-fast charging, battery longevity 

2. Total Cost of Ownership (TCO) 

o Low (TCO-L): High upfront cost, expensive maintenance, limited warranty 

o Moderate (TCO-M): Moderate initial cost, average maintenance expenses 

o High (TCO-H): Reasonable cost, extended warranty, cost-efficient operation 

o Exceptional (TCO-E): Low operating costs, long battery warranty, high resale value 

3. Safety and Reliability (SR) 

o Low (SR-L): Basic safety features, minimal crash test ratings 

o Moderate (SR-M): Standard safety features, meets industry safety benchmarks 

o High (SR-H): Advanced driver assistance, high crash-test ratings 

o Exceptional (SR-E): Industry-leading safety features, autonomous driving capabilities 

4. Charging Infrastructure Compatibility (CIC) 

o Low (CIC-L): Requires specialized charging stations, limited availability 

o Moderate (CIC-M): Compatible with some standard charging stations 

o High (CIC-H): Works with widely available fast-charging networks 

o Exceptional (CIC-E): Supports multiple charging standards, ultra-fast charging 

5. Technology and Connectivity (TC) 

o Low (TC-L): Basic infotainment, minimal smart features 

o Moderate (TC-M): Some smart features, basic smartphone integration 

o High (TC-H): Advanced connectivity, self-parking, AI-assisted driving 

o Transformative (TC-T): Full smart integration, autonomous driving potential.  
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Step 2: Formulate Propositions Using NSHSS 

 

2.3 SuperHyper Soft Sets 

The power set of RBE is denoted by (RBE) and (RBE) = {∅,{RBE-L}, {RBE-M}, {RBE-H}, {RBE-

E}, {RBE-L, RBE-M}, {RBE-L, RBE-H}, {RBE-L, RBE-E}, {RBE-M, RBE-H}, {RBE-M, RBE-E}, {RBE-H, RBE-

E}, {RBE-L, RBE-M, RBE-H}, {RBE-L, RBE-M, RBE-E}, {RBE-L, RBE-H, RBE-E}, {RBE-M, RBE-H, RBE-E}, 

{RBE-L, RBE-M, RBE-H, RBE-E}} 

The power set of TCO is denoted by (TCO) and (TCO) = {∅, {TCO-L}, {TCO-M}, {TCO-H}, 

{TCO-E}, {TCO-L, TCO-M}, {TCO-L, TCO-H}, {TCO-L, TCO-E}, {TCO-M, TCO-H}, {TCO-M, TCO-E}, 

{TCO-H, TCO-E}, {TCO-L, TCO-M, TCO-H}, {TCO-L, TCO-M, TCO-E}, {TCO-L, TCO-H, TCO-E}, {TCO-

M, TCO-H, TCO-E}, {TCO-L, TCO-M, TCO-H, TCO-E}} 

The power set of SR is denoted by (SR) and (SR) = {∅, {SR-L}, {SR-M}, {SR-H}, {SR-E}, {SR-L, SR-

M}, {SR-L, SR-H}, {SR-L, SR-E}, {SR-M, SR-H}, {SR-M, SR-E}, {SR-H, SR-E}, {SR-L, SR-M, SR-H}, {SR-L, SR-

M, SR-E}, {SR-L, SR-H, SR-E}, {SR-M, SR-H, SR-E}, {SR-L, SR-M, SR-H, SR-E}} 

The power set of CIC is denoted by (CIC) and (CIC) = {∅, {CIC-L}, {CIC-M}, {CIC-H}, {CIC-E}, 

{CIC-L, CIC-M}, {CIC-L, CIC-H}, {CIC-L, CIC-E}, {CIC-M, CIC-H}, {CIC-M, CIC-E}, {CIC-H, CIC-E}, {CIC-

L, CIC-M, CIC-H}, {CIC-L, CIC-M, CIC-E}, {CIC-L, CIC-H, CIC-E}, {CIC-M, CIC-H, CIC-E}, {CIC-L, CIC-

M, CIC-H, CIC-E}} 

Criterias for EV Evaluation

Range and 
Battery 

Efficiency 

Low

Moderate

High

Exceptional

Total Cost of 
Ownership 

Low

Moderate

High

Exceptional

Safety and 
Reliability 

Low

Moderate

High

Exceptional

Charging 
Infrastructure 
Compatibility 

Low

Moderate

High

Exceptional

Technology and 
Connectivity 

Low

Moderate

High

Transformative
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The power set of TC is denoted by (TC) and  (TC) = {∅, {TC-L}, {TC-M}, {TC-H}, {TC-T}, {TC-L, 

TC-M}, {TC-L, TC-H}, {TC-L, TC-T}, {TC-M, TC-H}, {TC-M, TC-T}, {TC-H, TC-T}, {TC-L, TC-M, TC-H}, 

{TC-L, TC-M, TC-T}, {TC-L, TC-H, TC-T}, {TC-M, TC-H, TC-T}, {TC-L, TC-M, TC-H, TC-T}} 

The power set of U is denoted by (U) and  (U) = {∅, {EV1}, {EV2}, {EV3}, {EV4}, {EV1, EV2}, 

{EV1, EV3}, {EV1, EV4}, {EV2, EV3}, {EV2, EV4}, {EV3, EV4}, {EV1, EV2, EV3}, {EV1, EV2, EV4}, {EV1, EV3, 

EV4}, {EV2, EV3, EV4}, {EV1, EV2, EV3, EV4}} 

Let F: ( RBE) × (TCO) × (SR) × (CIC) × (TC) →  (U), where × denotes the Cartesian product for this 

equation. As a result, this is known as Neutrosophic SuperHyperSoft sets over ℜ.  The Cartesian product 

of (RBE), (TCO), (SR), (CIC), and (TC) has 1,048,576elements. 

 

( RBE) × (TCO) × (SR) × (CIC) × (TC) = {(∅,∅,∅,∅,∅), (∅, ∅, ∅, ∅, {TC - L}), (∅, ∅, ∅, ∅, {TC - M}), (∅, ∅, 

∅, ∅, {TC-H}), (∅, ∅, ∅, ∅, {TC-T}), (∅, ∅, ∅, ∅, {TC-L, TC-M}), (∅, ∅, ∅, ∅, {TC-L, TC-H}), (∅, ∅, ∅, ∅, {TC-L, 

TC-T}), (∅, ∅, ∅, ∅, {TC-M, TC-H}), (∅, ∅, ∅, ∅, {TC-M, TC-T}), (∅, ∅, ∅, ∅, {TC-H, TC-T}), (∅, ∅, ∅, ∅, {TC-L, 

TC-M, TC-H}), (∅, ∅, ∅, ∅, {TC-L, TC-M, TC-T}), (∅, ∅, ∅, ∅, {TC-L, TC-H, TC-T}), (∅, ∅, ∅, ∅, {TC-M, TC-

H, TC-T}), (∅, ∅, ∅, ∅, {TC-L, TC-M, TC-H, TC-T}), (∅, ∅, ∅, {CIC-L}, ∅), (∅, ∅, ∅, {CIC-M}, ∅), (∅, ∅, ∅, {CIC-

H}, ∅), (∅, ∅, ∅, {CIC-E}, ∅), (∅, ∅, ∅, {CIC-L, CIC-M}, ∅), (∅, ∅, ∅, {CIC-L, CIC-H}, ∅), (∅, ∅, ∅, {CIC-L, CIC-

E}, ∅), (∅, ∅, ∅, {CIC-M, CIC-H}, ∅), (∅, ∅, ∅, {CIC-M, CIC-E}, ∅), (∅, ∅, ∅, {CIC-H, CIC-E}, ∅), (∅, ∅, ∅, {CIC-

L, CIC-M, CIC-H}, ∅), (∅, ∅, ∅, {CIC-L, CIC-M, CIC-E}, ∅), (∅, ∅, ∅, {CIC-L, CIC-H, CIC-E}, ∅), (∅, ∅, ∅, 

{CIC-M, CIC-H, CIC-E}, ∅), (∅, ∅, ∅, {CIC-L, CIC-M, CIC-H, CIC-E}, ∅), (∅, ∅, {SR-L}, ∅, ∅), (∅, ∅, {SR-M}, 

∅, ∅), (∅, ∅, {SR-H}, ∅, ∅), (∅, ∅, {SR-E}, ∅, ∅), (∅, ∅, {SR-L, SR-M}, ∅, ∅), (∅, ∅, {SR-L, SR-H}, ∅, ∅), (∅, ∅, 

{SR-L, SR-E}, ∅, ∅), (∅, ∅, {SR-M, SR-H}, ∅, ∅), (∅, ∅, {SR-M, SR-E}, ∅, ∅), (∅, ∅, {SR-H, SR-E}, ∅, ∅), (∅, ∅, 

{SR-L, SR-M, SR-H}, ∅, ∅), (∅, ∅, {SR-L, SR-M, SR-E}, ∅, ∅), (∅, ∅, {SR-L, SR-H, SR-E}, ∅, ∅), (∅, ∅, {SR-M, 

SR-H, SR-E}, ∅, ∅), (∅, ∅, {SR-L, SR-M, SR-H, SR-E}, ∅, ∅), (∅, {TCO-L}, ∅, ∅, ∅), (∅, {TCO-M}, ∅, ∅, ∅), (∅, 

{TCO-H}, ∅, ∅, ∅), (∅, {TCO-E}, ∅, ∅, ∅), (∅, {TCO-L, TCO-M}, ∅, ∅, ∅), (∅, {TCO-L, TCO-H}, ∅, ∅, ∅), (∅, 

{TCO-L, TCO-E}, ∅, ∅, ∅), (∅, {TCO-M, TCO-H}, ∅, ∅, ∅), (∅, {TCO-M, TCO-E}, ∅, ∅, ∅), (∅, {TCO-H, TCO-

E}, ∅, ∅, ∅), etc.…} 

 

The total number of possible combinations (propositions) is: 4 × 4 × 4 × 4 × 4 = 1024.  

 

The following R Programming code can be used to generate all the propositions. 

 

generate_propositions <- function(criteria) { 

  options <- expand.grid(criteria, stringsAsFactors = FALSE) 

  propositions <- apply(options, 1, function(row) { 

    paste("(", paste(row, collapse = ", "), ")", sep = "") 

  }) 

  return(propositions) 

} 

 

main <- function() { 
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  cat("Enter the number of criteria: ") 

  num_criteria <- as.integer(readLines(n = 1)) 

  criteria <- list() 

   

  for (i in 1:num_criteria) { 

    cat(paste("Enter name for criteria", i, ": ")) 

    criteria_name <- readLines(n = 1) 

    cat(paste("Enter options for", criteria_name, "(comma-separated): ")) 

    options <- unlist(strsplit(readLines(n = 1), ",")) 

    criteria[[criteria_name]] <- options 

  } 

   

  propositions <- generate_propositions(criteria) 

  total_combinations <- length(propositions) 

   

  cat("The total number of possible combinations (propositions) is:", 

total_combinations, "\n") 

  cat("The following are a few examples:\n") 

   

  for (i in 1:min(10, total_combinations)) { 

    cat(i, ". ", propositions[i], "\n", sep = "") 

  } 

} 

 

main() 

 

The following are few example: 

 

1. (RBE-L, TCO-L, SR-L, CIC-L, TC-L) → An EV with low range and battery efficiency, high 

ownership cost, low safety, minimal charging compatibility, and basic technology. 

2. (RBE-L, TCO-L, SR-L, CIC-L, TC-M) → An EV with low range and battery efficiency, high 

ownership cost, low safety, minimal charging compatibility, and some smart features. 

3. (RBE-L, TCO-L, SR-L, CIC-L, TC-H) → An EV with low range and battery efficiency, high 

ownership cost, low safety, minimal charging compatibility, and advanced connectivity. 

4. (RBE-L, TCO-L, SR-L, CIC-L, TC-T) → An EV with low range and battery efficiency, high 

ownership cost, low safety, minimal charging compatibility, and fully integrated autonomous 

technology. 

5. (RBE-L, TCO-L, SR-L, CIC-M, TC-L) → An EV with low range and battery efficiency, high 

ownership cost, low safety, compatible with some charging stations, and basic technology. 

6. (RBE-L, TCO-L, SR-L, CIC-M, TC-M) → An EV with low range and battery efficiency, high 

ownership cost, low safety, compatible with some charging stations, and some smart features. 

7. (RBE-L, TCO-L, SR-L, CIC-M, TC-H) → An EV with low range and battery efficiency, high 

ownership cost, low safety, compatible with some charging stations, and advanced connectivity. 

8. (RBE-L, TCO-L, SR-L, CIC-M, TC-T) → An EV with low range and battery efficiency, high 
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ownership cost, low safety, compatible with some charging stations, and fully integrated 

autonomous technology. 

9. (RBE-L, TCO-L, SR-L, CIC-H, TC-L) → An EV with low range and battery efficiency, high 

ownership cost, low safety, widely available fast charging, and basic technology. 

10. (RBE-L, TCO-L, SR-L, CIC-H, TC-M) → An EV with low range and battery efficiency, high 

ownership cost, low safety, widely available fast charging, and some smart features. 

…………………………………………………………………………………………… 

……………………………………………………………………………………………. 

……………………………………………………………………………………………. 

 

1015. (RBE-E, TCO-E, SR-E, CIC-H, TC-H) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, widely available fast charging, and advanced connectivity. 

1016. (RBE-E, TCO-E, SR-E, CIC-H, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, widely available fast charging, and fully integrated autonomous 

technology. 

1017. (RBE-E, TCO-E, SR-E, CIC-E, TC-L) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and basic technology. 

1018. (RBE-E, TCO-E, SR-E, CIC-E, TC-M) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and some smart features. 

1019. (RBE-E, TCO-E, SR-E, CIC-E, TC-H) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and advanced connectivity. 

1020. (RBE-E, TCO-E, SR-E, CIC-E, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and fully integrated autonomous 

technology. 

1021. (RBE-E, TCO-E, SR-E, CIC-E, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and fully integrated autonomous 

technology. 

1022. (RBE-E, TCO-E, SR-E, CIC-E, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and fully integrated autonomous 

technology. 

1023. (RBE-E, TCO-E, SR-E, CIC-E, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and fully integrated autonomous 

technology. 

1024. (RBE-E, TCO-E, SR-E, CIC-E, TC-T) → An EV with exceptional range, exceptional cost 

efficiency, top-tier safety, ultra-fast charging compatibility, and fully integrated autonomous 

technology. 

 

Out of 1024 possible propositions, we have chosen two based on common requirements: 

 

1. Most Affordable & Practical Choice (RBE-M, TCO-E, SR-M, CIC-M, TC-M) 

An EV with moderate range, exceptional cost efficiency, standard safety, moderate charging 
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compatibility, and basic smart features—perfect for city driving with low maintenance costs and 

decent charging options. 

2. Future-Proofed Yet Cost-Effective (RBE-M, TCO-E, SR-H, CIC-H, TC-H) 

An EV with moderate range, exceptional cost efficiency, high safety, widely available charging, 

and advanced connectivity—great for buyers who want a safer, connected car without overspending. 

 

 

Step 3: Linguistic Evaluation of Each Criterion 

 

2.3 Neutrosophic SuperHyper Soft sets in MCDM 

Neutrosophic SuperHyper Soft Sets (NSHSS) provide an advanced decision-making framework 

that integrates uncertainty, imprecision, and incomplete information. In this section, we define the 

selection symbols used in the evaluation of electric vehicles (EVs). Each symbol represents a specific 

linguistic term mapped to a corresponding triplet (T, I, F) in decimal format, where T represents truth 

membership, I represent indeterminacy membership, and F represents falsity membership. 

 

EV Selection Symbol Notation (T, I, F) in Decimal 

Extremely Low ἅ101 (0.0, .949, .949) 

Very Low ἅ102 (0.199, 0.949, 0.849) 

Low ἅ103 (0.299, 0.799, 0.749) 

Slightly Low ἅ104 (0.399, 0.749, 0.699) 

Below Moderate ἅ105 (0.499, 0.649, 0.599) 

Moderate ἅ106 (0.699, 0.599, 0.499) 

Above Moderate ἅ107 (0.699, 0.449, 0.399) 

Slightly High ἅ108 (0.799, 0.299, 0.349) 

High ἅ109 (0.849, 0.249, 0.299) 

Very High ἅ110 (0.899, 0.199, 0.199) 

Extremely High ἅ111 (.999, 0.099, 0.099) 

Table 1: EV Selection Symbols and Their Corresponding Notations 

 

To evaluate EVs comprehensively, we consider multiple criteria and their corresponding sub-

criteria. The table below assigns selection symbols to various EV options (EV1, EV2, EV3, and EV4) under 

different sub-criteria. 

Criteria  Sub Criteria EV1 EV2 EV3 EV4 

RBE RBE-L ἅ104 ἅ102 ἅ102 ἅ101 

RBE-M ἅ105 ἅ106 ἅ107 ἅ106 

RBE-H ἅ110 ἅ108 ἅ109 ἅ110 

RBE- E ἅ111 ἅ109 ἅ110 ἅ108 

TCO TCO-L ἅ102 ἅ103 ἅ104 ἅ102 

TCO-M ἅ106 ἅ107 ἅ106 ἅ105 
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TCO-H ἅ108 ἅ109 ἅ110 ἅ110 

TCO-E ἅ109 ἅ110 ἅ108 ἅ111 

SR 

 

SR-L ἅ103 ἅ101 ἅ104 ἅ103 

SR-M ἅ107 ἅ106 ἅ105 ἅ106 

SR-H ἅ109 ἅ110 ἅ109 ἅ111 

SR-E ἅ110 ἅ108 ἅ110 ἅ111 

CIC CIC-L ἅ102 ἅ101 ἅ104 ἅ102 

CIC-M ἅ105 ἅ106 ἅ107 ἅ107 

CIC-H ἅ109 ἅ111 ἅ109 ἅ110 

CIC-E ἅ110 ἅ109 ἅ110 ἅ108 

TC TC-L ἅ103 ἅ101 ἅ104 ἅ101 

TC-M ἅ106 ἅ107 ἅ106 ἅ105 

TC-H ἅ111 ἅ109 ἅ110 ἅ109 

TC-T ἅ109 ἅ110 ἅ108 ἅ110 

Table 2: Linguistic Evaluation of EV  

 

The same criteria and EV selection process are now presented using precise numerical values 

corresponding to the selection symbols. This provides a numerical representation of the decision-making 

process for better analysis. 

 

Criteria  Sub 

Criteria 

EV1 EV2 EV3 EV4 

RBE RBE-L (0.399, 0.749, 

0.699) 

(0.199, 0.949, 

0.849) 

(0.199, 0.949, 

0.849) 

(0.0, .949, .949) 

RBE-M (0.499, 0.649, 

0.599) 

(0.699, 0.599, 

0.499) 

(0.699, 0.449, 

0.399) 

(0.699, 0.599, 

0.499) 

RBE-H (0.899, 0.199, 

0.199) 

(0.799, 0.299, 

0.349) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

RBE- E (.999, 0.099, 

0.099) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.799, 0.299, 

0.349) 

TCO TCO-L (0.199, 0.949, 

0.849) 

(0.299, 0.799, 

0.749) 

(0.399, 0.749, 

0.699) 

(0.199, 0.949, 

0.849) 

TCO-M (0.699, 0.599, 

0.499) 

(0.699, 0.449, 

0.399) 

(0.699, 0.599, 

0.499) 

(0.499, 0.649, 

0.599) 

TCO-H (0.799, 0.299, 

0.349) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.899, 0.199, 

0.199) 

TCO-E (0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.799, 0.299, 

0.349) 

(.999, 0.099, 

0.099) 

SR 

 

SR-L (0.299, 0.799, 

0.749) 

(0.0, .949, .949) (0.399, 0.749, 

0.699) 

(0.299, 0.799, 

0.749) 
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SR-M (0.699, 0.449, 

0.399) 

(0.699, 0.599, 

0.499) 

(0.499, 0.649, 

0.599) 

(0.699, 0.599, 

0.499) 

SR-H (0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.849, 0.249, 

0.299) 

(.999, 0.099, 

0.099) 

SR-E (0.899, 0.199, 

0.199) 

(0.799, 0.299, 

0.349) 

(0.899, 0.199, 

0.199) 

(.999, 0.099, 

0.099) 

CIC CIC-L (0.199, 0.949, 

0.849) 

(0.0, .949, .949) (0.399, 0.749, 

0.699) 

(0.199, 0.949, 

0.849) 

CIC-M (0.499, 0.649, 

0.599) 

(0.699, 0.599, 

0.499) 

(0.699, 0.449, 

0.399) 

(0.699, 0.449, 

0.399) 

CIC-H (0.849, 0.249, 

0.299) 

(.999, 0.999, 

0.099) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

CIC-E (0.899, 0.199, 

0.199) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.799, 0.299, 

0.349) 

TC TC-L (0.299, 0.799, 

0.749) 

(0.0, .949, .949) (0.399, 0.749, 

0.699) 

(0.0, .949, .949) 

TC-M (0.499, 0.649, 

0.599) 

(0.699, 0.449, 

0.399) 

(0.699, 0.599, 

0.499) 

(0.499, 0.649, 

0.599) 

TC-H (.999, 0.099, 

0.099) 

(0.849, 0.249, 

0.299) 

(0.899, 0.199, 

0.199) 

(0.849, 0.249, 

0.299) 

TC-T (0.849, 0.249, 

0.299) 

(.999, 0.099, 

0.099) 

(0.799, 0.299, 

0.349) 

(0.899, 0.199, 

0.199) 

Table 3: Numerical Neutrosophic Representation of EV Evaluation 

 

Most Affordable & Practical Choice (RBE-M, TCO-E, SR-M, CIC-M, TC-M) 

 

An EV with moderate range, exceptional cost efficiency, standard safety, moderate charging 

compatibility, and basic smart features perfect for city driving with low maintenance costs and decent 

charging options. 

 

 RBE-M TCO-E SR-M CIC-M TC-M 

EV1 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.699, 0.449, 

0.399) 

(0.499, 0.649, 

0.599) 

(0.499, 0.649, 

0.599) 

EV2 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.699, 0.449, 

0.399) 

(0.499, 0.649, 

0.599) 

(0.499, 0.649, 

0.599) 

EV3 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.699, 0.449, 

0.399) 

(0.499, 0.649, 

0.599) 

(0.499, 0.649, 

0.599) 

EV4 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.699, 0.449, 

0.399) 

(0.499, 0.649, 

0.599) 

(0.499, 0.649, 

0.599) 

Table 4: Most Affordable & Practical Choice 
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Step 4: Aggregate NSHSS Using GNSHSWHMw
A,B. 

We calculate generalized neutrosophic superhypersoft weighted Heronian mean operator and the values 

are given in Table 5. Here we use equal weightage for all the criteria.  

EV/  

Method 
𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰

𝟏,𝟏 𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟐 𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰

𝟐,𝟏 

EV1 (0.026, 0.052, 0.050)  (0.021, 0.042, 0.040) (0.0387, 0.0763, 0.0737) 

EV2 (0.007, 0.042, 0.032) (0.006, 0.034, 0.026) (0.0114, 0.0622, 0.0482) 

EV3 (0.022, 0.044, 0.042) (0.018, 0.036, 0.034) (0.0340, 0.0658, 0.0634) 

EV4 (0.007, 0.036, 0.028) (0.006, 0.029, 0.023) (0.0114, 0.0535, 0.043) 

Table 5: GNSHSWHM Calculation Results 

 

Step 5: Evaluate Alternatives Using a Score Function 

Using Score function we calculate the crisp value for each EV and shown in Table 6.  

Method/ EV EV1 EV2 EV3 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟏 0.6412 0.6442 0.6452 0.6476 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟐 0.6462 0.6486 0.6494 0.6513 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟐,𝟏 0.6296 0.6336 0.6349 0.6383 

Table 6: Crisp Values of Each EV 

 

Step 6: Rank the Alternatives 

The ranking of EV’s is given in Table  

Method Results Best EV 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟏 EV4 > EV3 > EV2 > EV1 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟐 EV4 > EV3 > EV2 > EV1 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟐,𝟏 EV4 > EV3 > EV2 > EV1 EV4 

Table 7: Ranking of EVs 

 

The final ranking of EVs based on these calculations confirms that EV4 is the best choice among the 

evaluated options. 

 

Proposition 2: Future-Proofed Yet Cost-Effective (RBE-M, TCO-E, SR-H, CIC-H, TC-H) 

 

An EV with moderate range, exceptional cost efficiency, high safety, widely available charging, and 

advanced connectivity great for buyers who want a safer, connected car without overspending. 

 RBE-M TCO-E SR-H CIC-H TC-H 

EV1 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(.999, 0.099, 

0.099) 

EV2 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(.999, 0.099, 

0.099) 

EV3 (0.499, 0.649, (0.849, 0.249, (0.849, 0.249, (0.849, 0.249, (.999, 0.099, 



Neutrosophic Sets and Systems, Vol. 86, 2025     725  

 

 

 

F. Smarandache, P. Gayathri, E. Karuppusamy, S. Krishnaprakash and S. Gomathi, Optimizing Electric Vehicle 

Selection Using Neutrosophic SuperHyperSoft Set Theory  

 

 

0.599) 0.299) 0.299) 0.299) 0.099) 

EV4 (0.499, 0.649, 

0.599) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(0.849, 0.249, 

0.299) 

(.999, 0.099, 

0.099) 

Table 8: Future-Proofed Yet Cost-Effective 

 

We calculate generalized neutrosophic superhypersoft weighted Heronian mean operator and the values 

are given in Table Here we use common weight for all the criteria.  

 

 𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟏 𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰

𝟏,𝟐 𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟐,𝟏 

EV1 (0.006, 0.023, 0.026) (0.005, 0.018, 0.021) (0.0098, 0.0344, 0.0398) 

EV2 (0.004, 0.017, 0.017) (0.003, 0.014, 0.013) (0.0059, 0.0267, 0.0255) 

EV3 (0.010, 0.023, 0.026) (0.008, 0.018, 0.021) (0.0159, 0.0349, 0.0397) 

EV4 (0.001, 0.015, 0.014) (0.001, 0.012, 0.011) (0.0021, 0.0228, 0.0218) 

Table 9: GNSHSWHM Calculation Results 

Calculation of GNSHSWHMw
1,1 EV1- True Value   

={1 − [{1 − (  0.4990.2  0.4990.2 )  1 − (0.8490.20.8490.2 )  1 − (0.8490.2 0.8490.2)  1 −

(0.8490.2  0.8490.2 )  1 − (0.9990.2 0.9990.2 )  1 − (0.4990.2  0.8490.2)1 − (0.4990.2  0.8490.2)1 −
(0.4990.2  0.8490.2)  1 − (0.4990.2  0.9990.2) 1 − (0.8490.2 0.8490.2 )1 − (0.8490.2  0.8490.2) 1 −

(0.8490.2  0.9990.2 )  1 − (0.8490.2  0.8490.2) 1 − (0.8490.2  0.9990.2) 1 − (0.8490.2 0.9990.2 )}
1

10]

1

2
} 

=0.006 

 

Using Score function we calculate the crisp value for each EV and shown in Table 11. 

Method/ EV EV1 EV2 EV3 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟏 0.6523 0.6565 0.6538 0.6574 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟐 0.6551 0.6585 0.6562 0.6592 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟐,𝟏 0.6450 0.6511 0.6470 0.6524 

Table 10: Crisp Values of Each EV 

Calculation of Score Function in GNSHSWHMw
1,1: 

EV1= (2+0.006-0.023-0.026)/3 =0.6523  

EV2= (2+0.004-0.017-0.017)/3 =0.6565  

EV3= (2+0.010-0.023-0.026)/3 =0.6538  

EV4= (2+0.001-0.015-0.014)/3 =0.6574 

 

The ranking of EV’s is given in Table  

Method Results Best EV 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟏 EV4 > EV2 > EV3 > EV1 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟏,𝟐 EV4 > EV2 > EV3 > EV1 EV4 

𝐆𝐍𝐒𝐇𝐒𝐖𝐇𝐌𝐰
𝟐,𝟏 EV4 > EV2 > EV3 > EV1 EV4 
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Table 11: Ranking of EVs 

 

The final ranking of EVs based on these calculations confirms that EV4 is the best choice among the 

evaluated options. 

 
 

Graphical Representation of Ranking 

of Proposition 1 

Graphical Representation of Ranking 

of Proposition 2 

 

2.4 Comparison with Related Methods 

We took the different values for A and B in both the propositions, and we compared the methods 

proposed in this paper with other related methods proposed in the literature 

Method Results Best EV 

Tan, Q. et al. [19] EV4 > EV2 > EV3 > EV1 EV4 

Haque, T. S., et al. [8] EV3 > EV4 > EV2 > EV1 EV3 

Durmuş, C. N., et al. [5] EV4 > EV3 > EV2 > EV1 EV4 

Fan, C., et al. [6] EV3 > EV2 > EV4 > EV1 EV3 

Zhang, K., et al. [27] EV4 > EV2 > EV3 > EV1 EV4 

Proposition-2 GNSHSWHMw
1,1 EV4 > EV2 > EV3 > EV1 EV4 

Proposition-2 GNSHSWHMw
1,2 EV4 > EV2 > EV3 > EV1 EV4 

Proposition-2 GNSHSWHMw
2,1 EV4 > EV2 > EV3 > EV1 EV4 

Proposition-1 GNSHSWHMw
1,1 EV4 > EV3 > EV2 > EV1 EV4 

Proposition-1 GNSHSWHMw
1,2 EV4 > EV3 > EV2 > EV1 EV4 

Proposition-1 GNSHSWHMw
2,1 EV4 > EV3 > EV2 > EV1 EV4 

 

A ccomparison with related methods was conducted to assess the impact of varying expert weights and 

sub-criteria importance: Minor deviations in linguistic input values (T, I, F) showed limited influence on 

final rankings, confirming the stability of the aggregation and score functions. However, significant shifts 

in criteria weights (e.g., prioritizing TCO over RBE) led to noticeable changes in rankings, highlighting 

the model’s responsiveness and transparency to stakeholder preferences. The model remains consistent 

in identifying the top-tier EVs under different weighting scenarios, validating its robustness. 
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2.5 Limitations 

While the NSHSS framework offers robust handling of uncertainty and interdependencies, the 

following limitations are acknowledged: Computational intensity increases exponentially with additional 

criteria or sub-criteria, requiring efficient memory and processing strategies. Subjectivity in linguistic 

evaluations may influence final rankings if expert weights are not appropriately calibrated. The current 

model assumes static criteria and does not accommodate evolving real-time data or user feedback loops. 

 

3. Conclusion 

This study introduces a comprehensive decision-support framework based on Neutrosophic 

SuperHyperSoft Sets (NSHSS), effectively addressing the complexities of Electric Vehicle (EV) selection 

under uncertainty. By integrating linguistic expert assessments, neutrosophic representation, structured 

proposition modeling, and the GNSHSWHM operator, the proposed model facilitates nuanced 

evaluation across five key criteria and their sub-dimensions. The R-based implementation ensures 

computational feasibility and real-time applicability, empowering organizations to make transparent, 

sustainable, and data-driven fleet decisions. The model’s flexibility and adaptability make it a strong 

foundation for future research in dynamic, multi-agent, and large-scale decision environments. 
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