
Neutrosophic Sets and Systems, Vol. 86, 2025

University of New Mexico

Short note of SuperHyperClique-width and Local
Superhypertree-width

Takaaki Fujita1∗ and Talal Ali Al-Hawary2

1∗Independece Researcher; Shinjuku, Shinjuku-ku, Tokyo, Japan; Takaaki.fujita060@gmail.com
2 Department of Mathematics, Yarmouk University, Irbid, Jordan; talalhawary@yahoo.com

Abstract. Tree-width is a fundamental parameter that quantifies how ”tree-like” an undirected graph is,
based on its optimal tree decomposition [32]. Several related concepts, including Hypertree-width [20], Branch-
width [30], Linear-width [5], Local Tree-width [22], and SuperHypertree-width [13], have been extensively
studied. Clique-width, on the other hand, is defined as the minimum number of labels required to construct a
graph using four operations: vertex creation, disjoint union, edge insertion, and relabeling [24]. Local tree-width
is a function mapping radius r to the maximum tree-width among all r-neighborhood induced subgraphs in a
graph. A hypergraph is a generalization of a graph where each edge can connect any number of vertices, not
just two. The concept of a SuperHyperGraph generalizes the classical notion of a hypergraph by introducing
recursive hierarchical structures.

In this paper, we introduce new graph parameters: HyperClique-width, SuperHyperClique-width, Local
Hypertree-width, and Local SuperHypertree-width. We formally define these parameters and provide an initial
mathematical exploration of their structural properties.

Keywords: Hypergraph, Superhypergraph, Tree-width, Clique-width, Local Tree-width
———-

1. Introduction

1.1. Graph Width Parameters

Graphs have been extensively studied in recent years [9, 26], with particular emphasis on
structural parameters that capture how “tree-like” or “path-like” a graph is. Understand-
ing these parameters is essential for designing efficient algorithms in areas such as network
optimization, database theory, and machine learning [20].

Key width parameters include:

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local Superhypertree-
width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 812

• Tree-width [31]: measures the minimum size of the largest bag minus one in a tree
decomposition, quantifying how closely a graph resembles a tree.

• Path-width [25]: similar to tree-width but restricted to path‐like decompositions.
• Clique-width [28]: the minimum number of labels needed to construct the graph

using vertex creation, disjoint union, edge insertion between labels, and relabeling.
• Local Tree-width [8,22]: the function r 7→ maxv∈V tw

(
G[Nr(v)]

)
, where Nr(v) is the

set of vertices at distance at most r from v, capturing the maximum tree-width of all
r-neighborhoods.

• Additional parameters such as cut-width [23], rank-width [29], boolean-width [1], and
bandwidth [7] have also been widely investigated.

These width parameters often correspond to tractable structural decompositions, driving much
of the research on parameterized and approximation algorithms.

1.2. Hypergraph and SuperHyperGraph

A hypergraph generalizes a graph by allowing each edge (hyperedge) to connect any number
of vertices [4]. Hypertree-width [19] and hyperpath-width [27] extend tree- and path-width to
hypergraphs, with important applications in database theory and constraint satisfaction.

More recently, the SuperHyperGraph has been introduced [34] as a further generalization.
In a SuperHyperGraph, each supervertex may be an element, a subset, or a nested subset up to
n levels, and each superedge connects groups of supervertices at possibly different hierarchical
levels. This framework is well suited to modeling hierarchical structures, multi-level networks,
and layered relationships in real-world systems.

1.3. Our Contribution

Although several width parameters have been defined for graphs and hypergraphs, the
study of width parameters in SuperHyperGraphs remains in its infancy [13]. In this paper, we
introduce and investigate four new parameters:

• HyperClique-width: an extension of clique-width to r-uniform hypergraphs, mea-
suring the minimum number of labels needed to construct the hypergraph using hy-
peredge‐insertion operations.

• SuperHyperClique-width: a further generalization of HyperClique-width to n-
SuperHyperGraphs, capturing the label complexity required to build hierarchical su-
pervertices and superedges.

• Local Hypertree-width: the function r 7→ maxv∈V htw
(
H[N r

H(v)]
)
, which records

the maximum hypertree-width among all r-neighborhood subhypergraphs of H.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

• Local
SuperHypertree-width: the analogous local parameter for n-SuperHyperGraphs,
defined by r 7→ maxv∈V n-SHTW

(
S[N r

S(v)]
)
.

We hope that the introduction of the above parameters will promote further research into
the mathematical structure and applications of graph width parameters, stimulate deeper
exploration of hypergraphs and superhypergraphs, and encourage the study of relationships
between these new parameters and other established graph invariants.

1.4. Structure of This Paper

This paper is organized as follows:

• Section 2 provides definitions and examples of hypergraphs, SuperHyperGraphs, tree-
width, hypertree-width, and SuperHypertree-width.

• Section 3 introduces our new parameters: HyperClique-width, SuperHyperClique-
width, Local Hypertree-width, and Local SuperHypertree-width.

• Section 4 concludes the paper and discusses directions for future work.

2. Preliminaries and Definitions

This section presents a structured overview of the fundamental concepts and definitions
essential for understanding the main results of this paper. Throughout this paper, we consider
only concepts that are undirected, finite, and simple.

2.1. Graph and Hypergraph

A hypergraph extends the concept of a graph by allowing edges, known as hyperedges, to
connect multiple vertices rather than just pairs. This generalization provides a more flexible
framework for modeling complex relationships [4, 20]. The fundamental structures of graphs
and hypergraphs are formally defined below.

Definition 2.1 (Complete Graph). A complete graph Kn is a graph with n vertices where
every pair of distinct vertices is connected by an edge. Formally,

E(Kn) = {{u, v} | u, v ∈ V (Kn), u 6= v}.

Definition 2.2 (Hypergraph [4, 6]). A hypergraph H = (V (H), E(H)) is a pair where:

• V (H): A non-empty set of vertices.
• E(H): A set of hyperedges, each of which is a subset of V (H).

This paper focuses exclusively on finite hypergraphs.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 813

Definition 2.3 (Induced Subhypergraph [6]). Let H = (V (H), E(H)) be a hypergraph, and
let X ⊆ V (H) be a subset of its vertices. The subhypergraph induced by X is defined as:

H[X] =
(
X, {e ∩X | e ∈ E(H)}

)
.

The hypergraph obtained by removing X from H is denoted by:

H \X := H[V (H) \X].

Definition 2.4 (Separation in a Hypergraph). Let H = (V (H), E(H)) be a hypergraph. A
separation of H is a pair of subhypergraphs (A,B) that satisfies the following:

• A = H[VA] and B = H[VB], where VA, VB ⊆ V (H) are subsets of the vertex set V (H).
• VA ∪ VB = V (H), ensuring that A and B collectively cover all vertices in H.
• VA∩VB, referred to as the separator, ensures E(A)∩E(B) = ∅, meaning no hyperedge

in H is shared between A and B.

The order of the separation (A,B) is defined as the size of the separator:

|VA ∩ VB|.

2.2. n-SuperHyperGraph

The concept of a SuperHyperGraph generalizes the classical notion of a hypergraph by
introducing recursive hierarchical structures. It has been recently formalized and studied
extensively in the literature [15,16,34]. Below, we present its formal definition.

Definition 2.5 (n-th Powerset). (cf. [17, 35])
The n-th powerset of a set H, denoted Pn(H), is defined iteratively as follows:

P1(H) = P (H), Pn+1(H) = P (Pn(H)), for n ≥ 1,

where P (H) is the standard powerset of H. Similarly, the n-th non-empty powerset, P ∗
n(H),

is defined recursively as:

P ∗
1 (H) = P ∗(H), P ∗

n+1(H) = P ∗(P ∗
n(H)),

with P ∗(H) representing the powerset of H excluding the empty set.

Definition 2.6 (n-SuperHyperGraph). (cf. [16, 33]) Let V0 be a finite base set of vertices.
The n-th iterated powerset of V0 is defined recursively as:

P0(V0) = V0, Pk+1(V0) = P
(
Pk(V0)

)
,

where P(A) denotes the standard powerset of set A.
An n-SuperHyperGraph is an ordered pair H = (V,E), where:

• V ⊆ Pn(V0): The set of supervertices, which are elements of the n-th powerset of V0.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 814

• E ⊆ Pn(V0): The set of superedges, which are also elements of Pn(V0).

Each supervertex v ∈ V can be one of the following:

• A single vertex (v ∈ V0).
• A subset of V0 (v ⊆ V0).
• A nested subset up to n levels (v ∈ Pn(V0)).
• An indeterminate or fuzzy set.
• The null set (v = ∅).

Each superedge e ∈ E connects supervertices, which may reside at different hierarchical
levels up to n.

Example 2.7 (A 2-SuperHyperGraph). Let the base set be

V0 = {a, b}.

Then

P1(V0) =
{
∅, {a}, {b}, {a, b}

}
,

P2(V0) = P
(
P1(V0)

)
,

the powerset of these four subsets. We choose the set of supervertices

V =
{
{a}, {b}, {{a}, {b}}, {{a, b}}

}
⊆ P2(V0),

where for instance {{a}, {b}} is a nested subset of level 2. Let the superedges be

E =
{
e1, e2, e3

}
,

with

e1 =
{
{a}, {{a}, {b}}

}
, e2 =

{
{b}, {{a}, {b}}

}
, e3 =

{
{a, b}, {{a, b}}

}
.

Each superedge ei ∈ E connects two supervertices possibly at different hierarchical levels.

Definition 2.8 (n-SuperHypertree). (cf. [13, 18]) An n-SuperHypertree (n-SHT) is an n-
SuperHyperGraph SHTn = (V,E) that satisfies the following properties:

(1) Host Tree Condition: There exists a tree T = (VT , ET), called the host tree, such that:
• The vertex set of T is VT = V , where V ⊆ Pn(V0).
• Each n-superedge e ∈ E corresponds to a connected subtree Te ⊆ T . Specifically,

for each e ∈ E, there exists a subtree Te such that:⋃
t∈V (Te)

Bt ⊇ e,

where Bt ⊆ V are subsets associated with the nodes of T .
(2) Acyclicity Condition: The host tree T must be acyclic, ensuring that SHTn inherits

the acyclic structure of T .
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 815

(3) Connectedness Condition: For any two n-supervertices v, w ∈ V , there must exist a
sequence of n-superedges e1, e2, . . . , ek ∈ E such that:
(a) v ∈ e1 and w ∈ ek.
(b) ei ∩ ei+1 6= ∅ for all 1 ≤ i < k.

Example 2.9 (A 2-SuperHypertree). Using the same V and E as above, we construct a host
tree

T = (VT , ET), VT = V,

with edges

ET =
{
({a}, {{a}, {b}}), ({b}, {{a}, {b}}), ({a, b}, {{a, b}})

}
.

For each node t ∈ VT we assign the bag Bt = {t}. Then:

• For e1 = {{a}, {{a}, {b}}}, the subtree Te1 is the path {a}–{{a}, {b}}, and⋃
t∈V (Te1)

Bt = { {a}, {{a}, {b}}} = e1.
• Similarly for e2 and e3, each ei is covered by the connected subtree on its two endpoints.
• T is acyclic by construction, and any two supervertices are joined by a path in T , so

the connectedness condition holds.

Hence
(
V,E

)
together with T and the bags Bt form a 2-SuperHypertree.

2.3. n-SuperHypertree-width

Tree-width quantifies how closely a graph resembles a tree by considering the minimum
width of its optimal tree decomposition, where the width is defined as the size of the largest
bag minus one [14,32]. Hypertree-width extends tree-width to hypergraphs by minimizing the
maximum bag size in a hypertree decomposition while ensuring connectivity and full hyperedge
coverage [20]. The concept of SuperHypertree-width has been widely studied in the literature,
including [13]. Below, we formally define Tree-width, Hypertree-width, and SuperHypertree-
width.

Definition 2.10 (Tree-width). [32] Let G = (V,E) be a graph. A tree-decomposition of G is
a pair (T, {Xt | t ∈ V (T)}), where:

• T = (V (T), E(T)) is a tree,
• Xt ⊆ V for each t ∈ V (T) (called bags),

such that:

(1)
⋃

t∈V (T)Xt = V , i.e., every vertex of G appears in at least one bag.
(2) For every edge {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt, ensuring edge

coverage.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 816

(3) For all t1, t2, t3 ∈ V (T), if t2 lies on the path between t1 and t3 in T , then Xt1 ∩Xt3 ⊆
Xt2 , ensuring connectivity.

The width of a tree-decomposition is defined as:

width(T, {Xt}) = max
t∈V (T)

(
|Xt| − 1

)
,

where |Xt| is the number of vertices in the bag Xt. The tree-width of G, denoted tw(G), is the
minimum width over all possible tree-decompositions of G:

tw(G) = min
(T,{Xt})

width(T, {Xt}).

Definition 2.11 (Hypertree-width). [20,21] Let H = (V (H), E(H)) be a hypergraph, where
V (H) is the set of vertices and E(H) is the set of hyperedges. A tree decomposition of H is a
tuple (T, (Bt)t∈V (T)), where:

• T = (V (T), F (T)) is a tree.
• (Bt)t∈V (T) is a family of subsets of V (H), called bags, such that:

(1) For every hyperedge e ∈ E(H), there exists a node t ∈ V (T) such that e ⊆ Bt.
(2) For every vertex v ∈ V (H), the set {t ∈ V (T) | v ∈ Bt} induces a connected

subtree of T .

The width of a tree decomposition (T, (Bt)t∈V (T)) is defined as:

width(T, (Bt)t∈V (T)) = max
t∈V (T)

(|Bt| − 1) .

The hypertree-width of H, denoted by tw(H), is the minimum width over all possible tree
decompositions of H.

Example 2.12 (Hypertree‐width of a Simple Hypergraph). Consider the hypergraph

H = (V,E), V = {v1, v2, v3, v4}, E = {e1, e2},

where
e1 = {v1, v2, v3}, e2 = {v2, v3, v4}.

We construct a tree decomposition (T, {Bt}t∈V (T)) of H as follows:

• The host tree T has two nodes t1 and t2 joined by an edge:

t1 − t2.

• The bags are
Bt1 = {v1, v2, v3}, Bt2 = {v2, v3, v4}.

We verify the decomposition conditions:

(1) Coverage of hyperedges: e1 = {v1, v2, v3} ⊆ Bt1 and e2 = {v2, v3, v4} ⊆ Bt2 .
(2) Connectedness of vertex appearances:

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 817

• v1 appears only in Bt1 , so its index set {t1} is connected.
• v4 appears only in Bt2 , so {t2} is connected.
• v2 and v3 each appear in both Bt1 and Bt2 , and {t1, t2} is connected in T .

The width of this decomposition is

max
{
|Bt1 | − 1, |Bt2 | − 1

}
= max{3− 1, 3− 1} = 2.

Hence the hypertree‐width of H is

htw(H) = 2.

Definition 2.13 (n-SuperHypertree-width). (cf. [12, 13]) Let H = (V,E) be an n-
SuperHyperGraph, where:

• V ⊆ Pn(V0) is the set of n-supervertices.
• E ⊆ Pn(V0) is the set of n-superedges.

An n-SuperHypertree decomposition of H is a tuple (T,B, C), where:

• T = (VT , ET) is a tree.
• B = {Bt | t ∈ VT } is a collection of subsets of V (called bags), satisfying:

(1) For every n-superedge e ∈ E, there exists a node t ∈ VT such that e ⊆ Bt.
(2) For every n-supervertex v ∈ V , the set {t ∈ VT | v ∈ Bt} induces a connected

subtree of T .
• C = {Ct | t ∈ VT } is a collection of subsets of E (called guards), satisfying:

(1) For every node t ∈ VT , Bt ⊆
⋃
Ct, where:⋃

Ct = {v ∈ V | ∃e ∈ Ct such that v ∈ e}.

(2) For every node t ∈ VT , the following holds:

(
⋃

Ct) ∩
⋃
u∈Tt

Bu ⊆ Bt,

where Tt is the subtree of T rooted at t.

The width of an n-SuperHypertree decomposition (T,B, C) is defined as:

width(T,B, C) = max
t∈VT

|Ct|.

The n-SuperHypertree-width of H, denoted n-SHT-width(H), is the minimum width over
all possible n-SuperHypertree decompositions:

n-SHT-width(H) = min
(T,B,C)

width(T,B, C).

Example 2.14 (2-SuperHypertree-width of a 2-SuperHyperGraph). Let V0 = {a, b} and
n = 2. Then

P1(V0) = {{a}, {b}, {a, b}, ∅}, P2(V0) = P
(
P1(V0)

)
.

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 818

Consider the 2-SuperHyperGraph H = (V,E) with

V =
{
{a}, {b}, {{a}, {b}}, {{a, b}}

}
, E = {e1, e2, e3},

where

e1 = {{a}, {{a}, {b}}}, e2 = {{b}, {{a}, {b}}}, e3 = {{a, b}, {{a, b}}}.

A valid 2-SuperHypertree decomposition (T,B, C) is given by:

T : t0 − t3,

Bt0 = {{a}, {b}, {{a}, {b}}}, Ct0 = {e1, e2},

Bt3 = {{a, b}, {{a, b}}}, Ct3 = {e3}.

• e1, e2 ⊆ Bt0 and e3 ⊆ Bt3 .
• For each supervertex v ∈ V , the set { t | v ∈ Bt} induces a connected subtree of T .
• Each bag Bt is covered by its guard:

⋃
Ct0 = e1 ∪ e2 ⊇ Bt0 ,

⋃
Ct3 = e3 ⊇ Bt3 .

Since max{|Ct0 |, |Ct3 |} = 2, the width of this decomposition is 2. Therefore

2-SHT-width(H) = 2.

Example 2.15 (3-SuperHypertree‐width of a 3‐SuperHyperGraph). Let the base set be

V0 = {a, b},

so that P1(V0) = {∅, {a}, {b}, {a, b}}, P2(V0) = P(P1(V0)), and P3(V0) = P(P2(V0)). Choose
four 3‐supervertices in P3(V0):

X =
{
{{a}}

}
, Y =

{
{{b}}

}
, Z =

{
{{a}, {b}}

}
, U =

{
{{a, b}}

}
.

Let
V = {X,Y, Z, U}, E =

{
e1, e2

}
,

where
e1 = {X,Y, Z}, e2 = {Y, Z, U}.

Then H = (V,E) is a 3‐SuperHyperGraph. We now give a 3‐SuperHypertree decomposition
(T,B, C) of H of width 2.

• The host tree T is the path t1 − t2 − t3.
• Bags:

Bt1 = {X,Y, Z}, Bt2 = {Y, Z, U}, Bt3 = {Y, Z, U}.

• Guards:
Ct1 = { e1}, Ct2 = { e1, e2}, Ct3 = { e2}.

Verification:

(1) Each superedge is covered: e1 ⊆ Bt1 , Bt2 and e2 ⊆ Bt2 , Bt3 .
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 819

(2) For each supervertex v ∈ {X,Y, Z, U}, the indices {ti | v ∈ Bti} form a connected
subtree of T .

(3) Each bag Bti is covered by its guard:
⋃
Ct1 = e1 ⊇ Bt1 ,

⋃
Ct2 = e1 ∪ e2 ⊇ Bt2 ,⋃

Ct3 = e2 ⊇ Bt3 .

Since max{|Ct1 |, |Ct2 |, |Ct3 |} = 2, the width of this decomposition is 2. Hence

3-SHT-width(H) = 2.

2.4. Clique-width

Clique-width is the minimum number of labels required to construct a graph using four
operations: vertex creation, disjoint union, edge insertion, and relabeling [21].

Definition 2.16 (Clique-width). [11] Let k be a positive integer. A k-graph is a graph whose
vertices are labeled with integers from {1, 2, . . . , k}. The clique-width of a graph G, denoted
by cwd(G), is the smallest integer k such that G can be constructed using the following four
operations:

(1) Creation: For any label i ∈ {1, . . . , k}, create a new vertex with label i, denoted by
i(v).

(2) Disjoint Union: If G1 and G2 are k-graphs, then their disjoint union G1⊕G2 is also
a k-graph.

(3) Edge Insertion: For any two distinct labels i and j, the operation ηi,j adds an edge
between every vertex labeled i and every vertex labeled j.

(4) Relabeling: For any labels i, j ∈ {1, . . . , k}, the operation ρi→j changes every vertex
with label i to label j.

A k-expression is an algebraic term built from these operations that constructs the graph G.
Hence, cwd(G) is the minimum number k for which there exists a k-expression that defines G.

Example 2.17 (Clique-width of a Complete Graph). Consider the complete graph K4 with
vertex set {u, v, w, x}. One possible 2-expression constructing K4 is:

ρ2→1

(
η1,2

(
ρ2→1

(
η1,2

(
ρ2→1

(
η1,2

(
2(u)⊕ 1(v)

))
⊕ 2(w)

))
⊕ 2(x)

))
.

This expression shows that K4 can be constructed using only 2 labels, so cwd(K4) ≤ 2. In
fact, every complete graph on at least two vertices has clique-width exactly 2.

2.5. Local Tree-width

Local tree-width measures the maximum tree-width of an r-neighborhood in a graph, cap-
turing localized structural complexity within distance r [10].
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 820

Definition 2.18 (Local Tree-width). [8, 22] Let G = (V,E) be a graph. For each vertex
v ∈ V and each r ∈ N, define the r-neighborhood of v by

N r
G(v) = {w ∈ V | dG(v, w) ≤ r},

and let G[N r
G(v)] be the subgraph of G induced by N r

G(v). Then the local tree-width of G is
the function

ltwG : N → N, ltwG(r) = max
v∈V

tw
(
G[N r

G(v)]
)
,

where tw(H) denotes the tree-width of a graph H.

Example 2.19 (Local Tree-width of a Tree). Let T be a tree. Since every tree has tree-width
1 and every induced subgraph of a tree is a forest (hence of tree-width at most 1), it follows
that

ltwT (r) = 1 for all r ∈ N.

3. Results

This section presents the main results of this paper.

3.1. HyperClique-width

HyperClique-width measures the complexity of constructing an r-uniform hypergraph using
a fixed number of labels and operations such as creation, union, relabeling, and hyperedge
insertion.

Definition 3.1 (HyperClique-width). Let r ≥ 2 be an integer and let H = (V,E) be an
r-uniform hypergraph (i.e., every hyperedge in E contains exactly r vertices). A k-hypergraph
expression is defined by extending the clique-width operations to hypergraphs as follows. Each
vertex carries a label from {1, 2, . . . , k} and the allowed operations are:

(1) Creation: For any label i ∈ {1, . . . , k}, create an isolated vertex with label i, denoted
by i(v).

(2) Disjoint Union: If H1 and H2 are labeled hypergraphs, then their disjoint union
H1 ⊕H2 is also a labeled hypergraph.

(3) Relabeling: For any labels i, j ∈ {1, . . . , k}, the operation ρi→j changes every vertex
with label i to label j.

(4) Hyperedge Insertion: For any r-tuple of distinct labels (i1, i2, . . . , ir), the operation

ηi1,i2,...,ir

adds, for every r-tuple of vertices (v1, v2, . . . , vr) such that vj has label ij (for 1 ≤
j ≤ r), the hyperedge {v1, v2, . . . , vr} to the hypergraph. (Existing hyperedges are not
duplicated.)

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 821

The hyperClique-width of the r-uniform hypergraph H, denoted by hcwd(H), is the smallest
integer k such that there exists a k-hypergraph expression that constructs H.

Example 3.2 (HyperClique-width of a 3-uniform Hypergraph). Consider the 3-uniform hy-
pergraph H with vertex set

V = {a, b, c, d},

and hyperedge set

E =
{
{a, b, c}, {a, b, d}

}
.

We show that H can be constructed using 3 labels, so that hcwd(H) ≤ 3.
A possible 3-hypergraph expression for H is as follows:

(1) Creation: Create vertices with initial labels:

1(a), 2(b), 3(c).

(2) Union and Hyperedge Insertion: Form the disjoint union

H1 = 1(a)⊕ 2(b)⊕ 3(c),

and then apply η1,2,3 to insert the hyperedge {a, b, c}.
(3) Add an Additional Vertex: Create the vertex

1(d).

Form the new hypergraph

H2 = H1 ⊕ 1(d).

(4) Relabeling and Hyperedge Insertion: In order to insert the hyperedge {a, b, d},
we require the labels on a, b, and d to be 1, 2, and 3, respectively. Currently, a is
labeled 1, b is labeled 2, and d is labeled 1. Hence, apply the relabeling operation
ρ1→3 to change the label of d from 1 to 3. Finally, apply η1,2,3 to insert the hyperedge
{a, b, d}.

This construction produces the hypergraph H with the desired hyperedges, showing that
hcwd(H) ≤ 3. (In this framework, one may also show that at least 3 labels are necessary.)

Theorem 3.3 (HyperClique-width of Complete Hypergraphs). Let Kr
n be the complete r-

uniform hypergraph on n ≥ r vertices. Then

hcwd(Kr
n) = r.

Proof. (Lower bound): Observe that in any hypergraph expression constructing Kr
n, every

hyperedge insertion operation ηi1,i2,...,ir requires an r-tuple of distinct labels. Since Kr
n contains

at least one hyperedge (in fact, every r-subset of vertices is a hyperedge), the construction
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 822

must at some point produce an r-tuple of vertices with pairwise distinct labels. Hence, at least
r labels are required, so

hcwd(Kr
n) ≥ r.

(Upper bound): We now show that r labels suffice to construct Kr
n by induction on n.

Base case: For n = r, create r vertices with distinct labels 1, 2, . . . , r using the creation op-
eration. Then, applying the hyperedge insertion operation η1,2,...,r inserts the single hyperedge
consisting of all r vertices. Thus, Kr

r is constructed with r labels.
Inductive step: Assume that for some n ≥ r the complete r-uniform hypergraph Kr

n can be
constructed with r labels. We now construct Kr

n+1.

(1) Vertex Addition: Create a new vertex v with an arbitrary label, say label 1.
(2) Hyperedge Insertions: For each (r − 1)-subset S of the n existing vertices, con-

sider the r-subset S ∪ {v}. Since Kr
n was constructed using r labels, by appropriate

(temporary) relabeling of the vertices in S if necessary, we can ensure that the ver-
tices in S ∪ {v} receive r distinct labels. Then, apply η1,2,...,r to insert the hyperedge
corresponding to S ∪ {v}.

(3) Idempotence: Note that inserting a hyperedge more than once does not affect the
hypergraph.

By processing all (r−1)-subsets of the original vertex set, we insert every hyperedge containing
v. Since the previous hyperedges of Kr

n remain intact, we have constructed Kr
n+1 using only

r labels. Therefore,

hcwd(Kr
n+1) ≤ r.

Combining the lower and upper bounds, we conclude that

hcwd(Kr
n) = r.

Theorem 3.4 (Disjoint Union). Let H1 and H2 be two r-uniform hypergraphs such that

hcwd(H1) ≤ k and hcwd(H2) ≤ k.

Then the disjoint union H1 ⊕H2 satisfies

hcwd(H1 ⊕H2) ≤ k.

Proof. A k-hypergraph expression for H1 uses at most k labels, and similarly for H2. The
disjoint union operation ⊕ simply takes the union of the two expressions without requiring
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 823

any new labels. Hence, a k-expression for H1 ⊕H2 is obtained by taking the disjoint union of
the expressions for H1 and H2. Therefore,

hcwd(H1 ⊕H2) ≤ k.

Theorem 3.5 (Monotonicity). If H ′ is a subhypergraph of an r-uniform hypergraph H, then

hcwd(H ′) ≤ hcwd(H).

Proof. Let H ′ be a subhypergraph of H. Suppose that H is constructed by a k-hypergraph
expression using hcwd(H) = k labels. Then, by simply restricting the construction (i.e.,
removing those vertices and hyperedges not in H ′), we obtain a valid k-expression for H ′.
Hence, it follows that

hcwd(H ′) ≤ k = hcwd(H).

Theorem 3.6 (Idempotence). Let H be an r-uniform hypergraph and let ηi1,i2,...,ir be a hy-
peredge insertion operation. Then applying ηi1,i2,...,ir repeatedly (on vertices with appropriate
labels) does not change H after the first insertion; that is, hyperedge insertion is idempotent.

Proof. By definition, the hyperedge insertion operation ηi1,i2,...,ir adds a hyperedge among ev-
ery r-tuple of vertices that currently have labels i1, i2, . . . , ir, respectively. Once the hyperedge
e = {v1, v2, . . . , vr} is inserted, any further application of ηi1,i2,...,ir will attempt to insert the
same hyperedge e again. Since the hyperedge set E of a hypergraph is a set (or a multiset
where repeated insertions do not change the outcome), repeated insertion does not alter E.
Hence, the operation is idempotent.

3.2. SuperhyperClique-width

SuperhyperClique-width measures the complexity of constructing an n-SuperHyperGraph
using a fixed number of labels and operations like creation, union, relabeling, and superedge
insertion.

Definition 3.7 (SuperhyperClique-width). Let H = (V,E) be an n-SuperHyperGraph, where

V ⊆ Pn(V0)

for some finite base set V0, and
E ⊆ Pn(V0).

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 824

An SHC-expression (SuperhyperClique-width expression) is an algebraic term that constructs
H using a fixed set of labels from {1, 2, . . . , k} and the following operations:

(1) Creation: For any label i ∈ {1, . . . , k}, create a new n-supervertex with label i,
denoted by i(v). (Here, v ∈ Pn(V0) is chosen as the new supervertex.)

(2) Disjoint Union: If H1 and H2 are n-SuperHyperGraphs constructed by SHC-
expressions, then their disjoint union, denoted by H1 ⊕ H2, is also an n-
SuperHyperGraph.

(3) Superedge Insertion: For any tuple of distinct labels (i1, i2, . . . , ir) (with r chosen
according to the uniformity of the superhypergraph), the operation

ηi1,i2,...,ir

adds, for every r-tuple of n-supervertices (v1, v2, . . . , vr) such that for every j ∈
{1, . . . , r} the vertex vj is currently labeled ij , a superedge connecting them; that
is, it inserts the superedge

{v1, v2, . . . , vr}.

(If an edge already exists, it is not duplicated.)
(4) Relabeling: For any labels i, j ∈ {1, . . . , k}, the operation

ρi→j

changes every supervertex with label i to have label j.

The superhyperClique-width of H, denoted by shcwd(H), is the minimum integer k for which
there exists an SHC-expression using at most k distinct labels that constructs H.

Example 3.8 (SuperhyperClique-width of a Simple 1-SuperHyperGraph). Let V0 = {a, b}
and choose n = 1, so that P1(V0) = P(V0). Consider the 1-SuperHyperGraph

H = (V,E),

with

V = { {a}, {b}, {a, b}},

and superedges

E = {e1, e2},

where we interpret e1 as connecting {a} to {a, b} and e2 as connecting {b} to {a, b}.
A possible SHC-expression constructing H using only 2 labels is as follows:

(1) Creation: Create the following supervertices:

1({a}), 2({b}), 1({a, b}).
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 825

(2) Disjoint Union: Form the disjoint union

H1 = 1({a})⊕ 2({b})⊕ 1({a, b}).

(3) Superedge Insertion: To insert the superedge corresponding to e1, apply the oper-
ation η1,2 to insert a superedge connecting the vertex with label 1 (i.e. {a}) and the
vertex with label 2 (temporarily, we consider {a, b} as having label 1; see next step).
Next, to “prepare” for the second edge, relabel the vertex {a, b} from 1 to 2 using
ρ1→2, so that it now carries label 2. Then apply η1,2 again to insert the superedge cor-
responding to e2, which connects the vertex with label 1 (i.e., {a} or {b}, as required)
and the vertex with label 2.

This construction shows that shcwd(H) ≤ 2, and one may further argue that at least 2 labels
are necessary.

Example 3.9 (2-SuperhyperClique-width of a 2-SuperHyperGraph). Let the base set be

V0 = {a, b},

so that

P1(V0) = {∅, {a}, {b}, {a, b}}, P2(V0) = P
(
P1(V0)

)
.

Define four supervertices in P2(V0) by

X = {{a}}, Y = {{b}}, Z = {{a}, {b}}, W = {{a, b}},

and let

V = {X,Y, Z,W}.

Choose three superedges connecting these supervertices:

e1 = {X,Z}, e2 = {Y, Z}, e3 = {Z,W},

so that E = {e1, e2, e3} and H = (V,E) is a 2-SuperHyperGraph.
We will construct H using an SHC-expression with just two labels, showing shcwd(H) = 2.

Denote by i(v) the creation of supervertex v with label i, and by η1,2 the superedge-insertion
between every label-1 and label-2 vertex. Then:

H = η1,2

(
1(X) ⊕ 1(Y) ⊕ 2(Z) ⊕ 1(W)

)
.

• Creation: 1(X) ⊕ 1(Y) ⊕ 2(Z) ⊕ 1(W) creates the four supervertices with labels in
{1, 2}.

• Superedge Insertion: Applying η1,2 inserts every superedge between each label-1 and
each label-2 vertex, namely {1(X), 2(Z)} = e1, {1(Y), 2(Z)} = e2, and {1(W), 2(Z)} =

e3.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 826

No relabeling is needed, and two labels suffice because a single label cannot distinguish both
ends of these superedges. Hence

shcwd(H) = 2.

Theorem 3.10 (Generalization Theorem). Let H be an r-uniform hypergraph. Consider H

as a 0-SuperHyperGraph (i.e. with n = 0, so that P0(V0) = V0). Then the hyperClique-width
of H, denoted by hcwd(H), is equal to the superhyperClique-width of H, i.e.,

hcwd(H) = shcwd(H).

Proof. When n = 0, the construction model for an n-SuperHyperGraph coincides with that of
a standard hypergraph. In this case, every vertex of H is simply an element of V0, and the op-
erations used in a k-hypergraph expression (creation, disjoint union, hyperedge insertion, and
relabeling) are identical to those defined for SHC-expressions. Thus, any expression that con-
structs H as a hypergraph (and so demonstrates hcwd(H) ≤ k) is also a valid SHC-expression
constructing H. Conversely, any SHC-expression in the 0-super setting is a hypergraph ex-
pression. Therefore,

hcwd(H) = shcwd(H).

Theorem 3.11 (Extension Theorem). Let H be an n-SuperHyperGraph with n ≥ 1, and let H ′

be the hypergraph obtained by “flattening” the hierarchical structure of H (i.e., by considering
only the base elements in V0). Then there exists a constant c(n), depending only on n, such
that

shcwd(H) ≤ hcwd(H ′) + c(n).

Proof. We prove the theorem by induction on n.
Base Case (n = 1): A 1-SuperHyperGraph has vertices belonging to P(V0) (the usual

powerset). One can “flatten” such a hypergraph by mapping each supervertex (a subset of
V0) to an element in a hypergraph H ′ whose vertices are these subsets. The operations in a
hyperClique-width expression for H ′ can be simulated in the 1-super setting using an additional
fixed number of labels to encode the extra structure. Hence, there exists a constant c(1) such
that

shcwd(H) ≤ hcwd(H ′) + c(1).

Inductive Step: Assume the statement holds for all m-SuperHyperGraphs with m < n.
Let H be an n-SuperHyperGraph. Its vertices lie in Pn(V0) and possess an inherent hierarchical
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 827

structure with n levels. One may “flatten” one level to obtain an (n − 1)-SuperHyperGraph
H ′′. By the induction hypothesis,

shcwd(H ′′) ≤ hcwd(H ′′′) + c(n− 1),

where H ′′′ is the hypergraph obtained by fully flattening H ′′. To recover the original n-level
structure, one must encode the additional hierarchical information. This encoding requires
only a fixed number d of extra labels (depending solely on n), so that

shcwd(H) ≤ shcwd(H ′′) + d.

Thus,

shcwd(H) ≤ hcwd(H ′′′) + c(n− 1) + d.

Defining c(n) = c(n− 1) + d completes the inductive step.

3.3. Local Hypertree-width and Local n-SuperHypertree-width

The definitions of Local Hypertree-width and Local n-SuperHypertree-width are provided
below.

Definition 3.12 (Local Hypertree-width). Let H = (V,E) be a hypergraph and suppose that
a notion of distance dH(v, w) is defined on H (for instance, via the length of the shortest
hyperpath between v and w). For each v ∈ V and r ∈ N, define the r-neighborhood of v in H

by

N r
H(v) = {w ∈ V | dH(v, w) ≤ r},

and let H[N r
H(v)] denote the subhypergraph induced on N r

H(v). Then the local hypertree-width
of H is the function

lhtwH : N → N, lhtwH(r) = max
v∈V

htw
(
H[N r

H(v)]
)
,

where htw(·) denotes the hypertree-width of a hypergraph.

Example 3.13 (Local Hypertree-width of an Acyclic Hypergraph). If H is an acyclic hyper-
graph, then htw(H) = 1. Since every induced subhypergraph of an acyclic hypergraph is also
acyclic, for every v ∈ V and every r ∈ N we have

htw
(
H[N r

H(v)]
)
= 1.

Thus,

lhtwH(r) = 1 for all r ∈ N.

We can define the local n-superhypertree-width as follows.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 828

Definition 3.14 (Local n-SuperHypertree-width). Let S = (V,E) be an n-SuperHyperGraph.
For each v ∈ V and r ∈ N, define the r-neighborhood of v by

N r
S(v) = {w ∈ V | dS(v, w) ≤ r},

and let S[N r
S(v)] denote the substructure of S induced on N r

S(v) (viewed as an n-
SuperHyperGraph). Then the local n-superhypertree-width of S is the function

lshtwS : N → N, lshtwS(r) = max
v∈V

n-SHTW
(
S[N r

S(v)]
)
,

where n-SHTW(H) denotes the n-superhypertree-width of an n-SuperHyperGraph H.

Example 3.15 (Local 1-SuperHypertree-width of a Simple 1-SuperHyperGraph). Consider a
1-SuperHyperGraph S with base set V0 = {a, b} so that

V = { {a}, {b}, {a, b}}.

Suppose that S has an overall 1-superhypertree-width 1-SHTW(S) = 2 and assume that every
vertex is within distance 1 of every other vertex. Then

lshtwS(1) = max
v∈V

1-SHTW
(
S[N1

S(v)]
)
= 2.

Example 3.16 (Local 2-SuperHypertree‐width of a Simple 2-SuperHyperGraph). Let V0 =

{a, b} and n = 2. As before, set

V = {X,Y, Z,W}, X = {{a}}, Y = {{b}}, Z = {{a}, {b}}, W = {{a, b}},

and superedges

e1 = {X,Z}, e2 = {Y, Z}, e3 = {Z,W}.

Then S = (V,E) with E = {e1, e2, e3} is a 2-SuperHyperGraph of 2-SHT-width 2.
For radius r = 1, the 1-neighborhoods are

N1
S(X) = {X,Z}, N1

S(Y) = {Y, Z}, N1
S(Z) = {X,Y, Z,W}, N1

S(W) = {Z,W}.

Consider the induced subgraphs SX = S[N1
S(X)], SY , SZ , and SW . Each of SX , SY , and SW

contains a single superedge (e1, e2, or e3 respectively), so each has 2-SHT-width 1. Meanwhile
SZ is the whole graph S and thus has 2-SHT-width 2. Therefore

lshtwS(1) = max
{
2-SHTW(SX), 2-SHTW(SY), 2-SHTW(SZ), 2-SHTW(SW)

}
= max{1, 1, 2, 1} = 2.

Theorem 3.17 (Local Hypertree‐width in Acyclic Hypergraphs). Let H = (V,E) be an acyclic
hypergraph, so that by definition htw(H) = 1. Then for every radius r ∈ N,

lhtwH(r) = max
v∈V

htw
(
H[N r

H(v)]
)

= 1.

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 829

Proof. Recall that a hypergraph H is acyclic precisely when it admits a hypertree decom-
position of width 1, and that any induced subhypergraph of an acyclic hypergraph remains
acyclic.

Fix r ≥ 0 and a vertex v ∈ V . By definition the r‐neighborhood

N r
H(v) = {w ∈ V : there is a hyperpath of length ≤ r from v to w}

induces the subhypergraph H[N r
H(v)]. Since H is acyclic, H[N r

H(v)] is also acyclic and thus
admits a width‐1 hypertree decomposition. Hence

htw
(
H[N r

H(v)]
)
= 1.

Taking the maximum over all v ∈ V gives

lhtwH(r) = max
v∈V

htw
(
H[N r

H(v)]
)
= max

v∈V
1 = 1,

as required.

Theorem 3.18 (Local n‐SuperHypertree‐width in Structured n‐SuperHyperGraphs). Let S =

(V,E) be an n‐SuperHyperGraph whose global n‐superhypertree‐width satisfies

n-SHTW(S) ≤ k.

Then for every radius r ∈ N,

lshtwS(r) = max
v∈V

n-SHTW
(
S[N r

S(v)]
)

≤ k.

Proof. By assumption there exists an n‐SuperHypertree decomposition

(T,B = {Bt}, C = {Ct})

of S of width at most k, meaning |Ct| ≤ k for every t ∈ VT .
Now fix v ∈ V and r ≥ 0. Let

U = N r
S(v) and SU = S[U]

be the sub‐n‐SuperHyperGraph induced on the r‐neighborhood of v. We claim that restricting
the original decomposition yields a valid decomposition of SU of width ≤ k.

Define

T ′ =
{
t ∈ VT | Bt ∩ U 6= ∅

}
,

which, by the connectedness property of the original decomposition, forms a connected subtree
of T . For each t ∈ T ′ set

B′
t = Bt ∩ U, C ′

t = { e ∈ Ct : e ⊆ U}.

One checks directly:
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 830

(1) Every superedge e ∈ E with e ⊆ U is still contained in some B′
t, since it lay in Bt

originally and t ∈ T ′.
(2) For each u ∈ U , the set {t ∈ T ′ | u ∈ B′

t} remains connected in T ′ by restriction of the
original connectivity.

(3) Each bag B′
t is covered by its guard:

⋃
C ′
t ⊇ B′

t, since Bt ⊆
⋃
Ct and we only remove

guards not entirely inside U .
(4) The running intersection property(⋃

C ′
t

)
∩

⋃
u∈T ′

t

B′
u ⊆ B′

t

follows immediately from the corresponding property in the original decomposition.

Moreover, |C ′
t| ≤ |Ct| ≤ k for each t ∈ T ′. Therefore (T ′, {B′

t}, {C ′
t}) is an n‐SuperHypertree

decomposition of SU of width ≤ k, showing

n-SHTW(SU) ≤ k.

Taking the maximum over all v ∈ V gives lshtwS(r) ≤ k, as claimed.

Theorem 3.19 (Monotonicity and Boundedness of Local Hypertree‐width). Let H = (V,E)

be any hypergraph with hypertree‐width htw(H) = w. Then for all 0 ≤ r ≤ s,

lhtwH(r) ≤ lhtwH(s) ≤ w.

Proof. Fix v ∈ V . Since N r
H(v) ⊆ N s

H(v), the induced subhypergraphs satisfy

H[N r
H(v)] ⊆ H[N s

H(v)],

and hypertree‐width is monotone under taking induced subhypergraphs, so

htw
(
H[N r

H(v)]
)

≤ htw
(
H[N s

H(v)]
)

≤ htw(H) = w.

Taking the maximum over v ∈ V yields lhtwH(r) ≤ lhtwH(s) ≤ w, as claimed.

Theorem 3.20 (Local Hypertree‐width Stabilizes at the Global Radius). Let H = (V,E) be
a connected hypergraph of finite diameter D. Then for all r ≥ D,

lhtwH(r) = htw(H).

Proof. Since the diameter D is the maximum distance between any two vertices, for every
v ∈ V ,

ND
H (v) = V,

hence H[ND
H (v)] = H. Thus htw(H[ND

H (v)]) = htw(H) for all v, and

lhtwH(D) = max
v∈V

htw
(
H[ND

H (v)]
)
= htw(H).

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 831

Monotonicity then gives lhtwH(r) = htw(H) for all r ≥ D.

Theorem 3.21 (Zero‐Radius Local Width). For any hypergraph H = (V,E) without loops,

lhtwH(0) = 0.

Proof. By definition N0
H(v) = {v}, so the induced subhypergraph H[{v}] has only the single

vertex v and no hyperedges of size ≥ 2. Any hypertree decomposition of a singleton vertex
uses one bag of size 1, hence width |X| − 1 = 0. Therefore htw(H[{v}]) = 0 for every v, and
lhtwH(0) = maxv 0 = 0.

Theorem 3.22 (Monotonicity and Boundedness of Local n‐SuperHypertree‐width). Let S =

(V,E) be an n‐SuperHyperGraph with global width

n-SHTW(S) = k.

Then for all integers 0 ≤ r ≤ s,

lshtwS(r) ≤ lshtwS(s) ≤ k.

Proof. Recall that

lshtwS(r) = max
v∈V

n-SHTW
(
S[N r

S(v)]
)
,

where N r
S(v) = {w : dS(v, w) ≤ r} and S[N r

S(v)] is the induced subgraph on that neighbor-
hood.

(1) Monotonicity: Fix any vertex v ∈ V . Since r ≤ s, by definition of the distance,

N r
S(v) ⊆ N s

S(v).

Therefore the induced sub‐n‐SuperHyperGraph on N r
S(v) is a substructure of that on N s

S(v):

S[N r
S(v)] ⊆ S[N s

S(v)].

It is a standard fact that taking an induced substructure cannot increase the superhyper-
tree‐width. Hence

n-SHTW
(
S[N r

S(v)]
)

≤ n-SHTW
(
S[N s

S(v)]
)
.

Taking the maximum over all v ∈ V yields

lshtwS(r) = max
v

n-SHTW(S[N r
S(v)]) ≤ max

v
n-SHTW(S[N s

S(v)]) = lshtwS(s).

(2) Boundedness by the Global Width: Again for each v ∈ V ,

S[N s
S(v)] ⊆ S,

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 832

so

n-SHTW
(
S[N s

S(v)]
)

≤ n-SHTW(S) = k.

Taking the maximum over v gives

lshtwS(s) = max
v

n-SHTW(S[N s
S(v)]) ≤ k.

Combining these two parts establishes the claimed inequalities.

Theorem 3.23 (Stabilization of Local n‐SuperHypertree‐width). Let S = (V,E) be a con-
nected n‐SuperHyperGraph of finite diameter D, i.e. maxu,w∈V dS(u,w) = D. Then for every
r ≥ D,

lshtwS(r) = n-SHTW(S).

Proof. By definition of diameter, for each v ∈ V and every r ≥ D, we have

N r
S(v) = {w ∈ V : dS(v, w) ≤ r} = V,

so the induced substructure S[N r
S(v)] coincides with the entire S. Hence

n-SHTW
(
S[N r

S(v)]
)
= n-SHTW(S)

for every v. Taking the maximum over v ∈ V yields

lshtwS(r) = max
v

n-SHTW(S[N r
S(v)]) = n-SHTW(S).

4. Conclusion and Future Work

In this paper, we have introduced four new structural parameters for hypergraphs and su-
perhypergraphs—HyperClique-width, SuperHyperClique-width, Local Hypertree-width, and
Local SuperHypertree-width—providing formal definitions and an initial mathematical anal-
ysis of their properties.

Future research will deepen the theoretical study of these parameters and develop effi-
cient algorithms to compute or approximate them. We also anticipate applications in diverse
domains such as decision-making, machine learning, deep learning, chemistry, and network
theory. Moreover, we plan to extend our investigation to width parameters in Crisp, Fuzzy,
Intuitionistic Fuzzy, Soft, Hypersoft, Plithogenic, and Neutrosophic Graph (cf. [2, 3]).

Funding

This study was carried out without receiving any financial support or external funding from
any organization or individual.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 833

Acknowledgments

We sincerely thank all those who offered insights, inspiration, and assistance during the
course of this research. Special appreciation is extended to our readers for their interest and
to the authors of cited works, whose contributions laid the groundwork for this study. We also
acknowledge the individuals and institutions that provided the resources and infrastructure
needed to produce and disseminate this paper. Finally, we are grateful to everyone who
supported us in various capacities throughout this project.

Ethical Approval

As this research is entirely theoretical in nature and does not involve human participants or
animal subjects, no ethical approval is required.

Data Availability

This research is purely theoretical, involving no data collection or analysis. I encourage future
researchers to pursue empirical investigations to further develop and validate the concepts
introduced here.

Research Integrity

The authors hereby confirm that, to the best of their knowledge, this manuscript is their origi-
nal work, has not been published in any other journal, and is not currently under consideration
for publication elsewhere at this stage.

Conflicts of Interest

The authors confirm that there are no conflicts of interest related to this research or its
publication.

Consent to Publish declaration

The author approved to Publish declarations.

Disclaimer (Note on Computational Tools)

No computer-assisted proof, symbolic computation, or automated theorem proving tools (e.g.,
Mathematica, SageMath, Coq, etc.) were used in the development or verification of the results
presented in this paper. All proofs and derivations were carried out manually and analytically
by the authors.
Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 834

Disclaimer (Limitations and Claims)

The theoretical concepts presented in this paper have not yet been subject to practical im-
plementation or empirical validation. Future researchers are invited to explore these ideas in
applied or experimental settings. Although every effort has been made to ensure the accuracy
of the content and the proper citation of sources, unintentional errors or omissions may persist.
Readers should independently verify any referenced materials.
To the best of the authors’ knowledge, all mathematical statements and proofs contained
herein are correct and have been thoroughly vetted. Should you identify any potential errors
or ambiguities, please feel free to contact the authors for clarification.
The results presented are valid only under the specific assumptions and conditions detailed
in the manuscript. Extending these findings to broader mathematical structures may require
additional research. The opinions and conclusions expressed in this work are those of the
authors alone and do not necessarily reflect the official positions of their affiliated institutions.

References

1. Isolde Adler, Binh-Minh Bui-Xuan, Yuri Rabinovich, Gabriel Renault, Jan Arne Telle, and Martin Vatshelle.
On the boolean-width of a graph: Structure and applications. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 159–170. Springer, 2010.

2. Muhammad Akram, Danish Saleem, and Talal Al-Hawary. Spherical fuzzy graphs with application to
decision-making. Mathematical and Computational Applications, 25(1):8, 2020.

3. TALAL ALI AL-HAWARY. On dombi fuzzy graphs. Journal of applied mathematics & informatics,
43(1):33–41, 2025.

4. Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.
5. Daniel Bienstock. Graph searching, path-width, tree-width and related problems (a survey). Reliability of

computer and communication networks, 5:33–50, 1989.
6. Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer, 1, 2013.
7. Phyllis Z Chinn, Jarmila Chvátalová, Alexander K Dewdney, and Norman E Gibbs. The bandwidth problem

for graphs and matrices—a survey. Journal of Graph Theory, 6(3):223–254, 1982.
8. Erik D Demaine, Fedor V Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M Thilikos. Bidimensional

parameters and local treewidth. SIAM Journal on Discrete Mathematics, 18(3):501–511, 2004.
9. Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024.

10. Andrea Ferrara, Guoqiang Pan, and Moshe Y Vardi. Treewidth in verification: Local vs. global. In Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning, pages 489–503. Springer,
2005.

11. Eldar Fischer, Johann A Makowsky, and Elena V Ravve. Counting truth assignments of formulas of bounded
tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529, 2008.

12. Takaaki Fujita. Superhypertree-depth: A structural analysis within superhypergraphs. Advancing Uncer-
tain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft,
Rough, and Beyond, page 11.

13. Takaaki Fujita. Short note of supertree-width and n-superhypertree-width. Neutrosophic Sets and Systems,
77:54–78, 2024.

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 835

14. Takaaki Fujita. Improved version of short note: Exploring ideals in graph theory. International Journal of
Advanced Multidisciplinary Research and Studies, 5(2):2043–2050, 2025.

15. Takaaki Fujita. A theoretical investigation of quantum n-superhypergraph states. Neutrosophic Optimiza-
tion and Intelligent Systems, 6:15–25, 2025.

16. Takaaki Fujita and Florentin Smarandache. A concise study of some superhypergraph classes. Neutrosophic
Sets and Systems, 77:548–593, 2024.

17. Takaaki Fujita and Florentin Smarandache. Superhypergraph neural networks and plithogenic graph neural
networks: Theoretical foundations. Advancing Uncertain Combinatorics through Graphization, Hyperiza-
tion, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, 2025.

18. Masoud Ghods, Zahra Rostami, and Florentin Smarandache. Introduction to neutrosophic restricted su-
perhypergraphs and neutrosophic restricted superhypertrees and several of their properties. Neutrosophic
Sets and Systems, 50:480–487, 2022.

19. Georg Gottlob, Gianluigi Greco, Francesco Scarcello, et al. Treewidth and hypertree width. Tractability:
Practical Approaches to Hard Problems, 1:20, 2014.

20. Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable queries.
In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 21–32, 1999.

21. Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: Acyclicity and hypertree-width versus
clique-width. SIAM Journal on Computing, 33(2):351–378, 2004.

22. Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. arXiv preprint
math/0001128, 2000.

23. Pinar Heggernes, Daniel Lokshtanov, Rodica Mihai, and Charis Papadopoulos. Cutwidth of split graphs
and threshold graphs. SIAM Journal on Discrete Mathematics, 25(3):1418–1437, 2011.

24. Sang il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of Combinatorial
Theory, Series B, 96(4):514–528, 2006.

25. Haim Kaplan and Ron Shamir. Pathwidth, bandwidth, and completion problems to proper interval graphs
with small cliques. SIAM Journal on Computing, 25(3):540–561, 1996.

26. TM Nishad, Talal Ali Al-Hawary, and B Mohamed Harif. General fuzzy graphs. Ratio Mathematica, 47,
2023.

27. Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results: size bounds and readability.
In Proceedings of the 15th International Conference on Database Theory, pages 285–298, 2012.

28. Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms
(TALG), 5(1):1–20, 2008.

29. Sang-il Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathematics, 231:15–24,
2017.

30. Sang-il Oum and Paul Seymour. Testing branch-width. Journal of Combinatorial Theory, Series B,
97(3):385–393, 2007.

31. Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. Journal of Combinatorial Theory,
Series B, 35(1):39–61, 1983.

32. Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of
algorithms, 7(3):309–322, 1986.

33. Florentin Smarandache. n-superhypergraph and plithogenic n-superhypergraph. Nidus Idearum, 7:107–113,
2019.

34. Florentin Smarandache. Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-
SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-) HyperAlgebra. In-
finite Study, 2020.

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 836

35. Florentin Smarandache. Foundation of superhyperstructure & neutrosophic superhyperstructure. Neutro-
sophic Sets and Systems, 63(1):21, 2024.

Disclaimer/Publisher’s Note: The perspectives, opinions, and data shared in all pub-
lications are the sole responsibility of the individual authors and contributors, and do not
necessarily reflect the views of the editorial team. The editorial team disclaim any liability for
potential harm to individuals or property resulting from the ideas, methods, instructions, or
products referenced in the content.

Takaaki Fujita and Talal Ali Al-Hawary, Short note of SuperHyperClique-width and Local
Superhypertree-width

Neutrosophic Sets and Systems, Vol. 86, 2025 � � 837

Received: Nov. 10, 2024. Accepted: May 28, 2025

	1. Introduction
	1.1. Graph Width Parameters
	1.2. Hypergraph and SuperHyperGraph
	1.3. Our Contribution
	1.4. Structure of This Paper

	2. Preliminaries and Definitions
	2.1. Graph and Hypergraph
	2.2. n -SuperHyperGraph
	2.3. n-SuperHypertree-width
	2.4. Clique-width
	2.5. Local Tree-width

	3. Results
	3.1. HyperClique-width
	3.2. SuperhyperClique-width
	3.3. Local Hypertree-width and Local n-SuperHypertree-width

	4. Conclusion and Future Work
	Funding
	Acknowledgments
	Ethical Approval
	Data Availability
	Research Integrity
	Conflicts of Interest
	Consent to Publish declaration
	Disclaimer (Note on Computational Tools)
	Disclaimer (Limitations and Claims)
	References

